fw-ohci.c 52.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*						-*- c-basic-offset: 8 -*-
 *
 * fw-ohci.c - Driver for OHCI 1394 boards
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/poll.h>
A
Andrew Morton 已提交
28 29
#include <linux/dma-mapping.h>

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#include <asm/uaccess.h>
#include <asm/semaphore.h>

#include "fw-transaction.h"
#include "fw-ohci.h"

#define descriptor_output_more		0
#define descriptor_output_last		(1 << 12)
#define descriptor_input_more		(2 << 12)
#define descriptor_input_last		(3 << 12)
#define descriptor_status		(1 << 11)
#define descriptor_key_immediate	(2 << 8)
#define descriptor_ping			(1 << 7)
#define descriptor_yy			(1 << 6)
#define descriptor_no_irq		(0 << 4)
#define descriptor_irq_error		(1 << 4)
#define descriptor_irq_always		(3 << 4)
#define descriptor_branch_always	(3 << 2)
48
#define descriptor_wait			(3 << 0)
49 50 51 52 53 54 55 56 57 58

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

59 60 61 62 63 64 65 66 67 68 69 70 71 72
struct db_descriptor {
	__le16 first_size;
	__le16 control;
	__le16 second_req_count;
	__le16 first_req_count;
	__le32 branch_address;
	__le16 second_res_count;
	__le16 first_res_count;
	__le32 reserved0;
	__le32 first_buffer;
	__le32 second_buffer;
	__le32 reserved1;
} __attribute__((aligned(16)));

73 74 75 76 77
#define control_set(regs)	(regs)
#define control_clear(regs)	((regs) + 4)
#define command_ptr(regs)	((regs) + 12)
#define context_match(regs)	((regs) + 16)

78
struct ar_buffer {
79
	struct descriptor descriptor;
80 81 82
	struct ar_buffer *next;
	__le32 data[0];
};
83

84 85 86 87 88
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
89
	u32 regs;
90 91 92
	struct tasklet_struct tasklet;
};

93 94 95 96 97 98
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
struct context {
S
Stefan Richter 已提交
99
	struct fw_ohci *ohci;
100
	u32 regs;
S
Stefan Richter 已提交
101

102 103 104 105 106 107 108 109 110 111
	struct descriptor *buffer;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	struct descriptor *head_descriptor;
	struct descriptor *tail_descriptor;
	struct descriptor *tail_descriptor_last;
	struct descriptor *prev_descriptor;

	descriptor_callback_t callback;

S
Stefan Richter 已提交
112
	struct tasklet_struct tasklet;
113 114
};

115 116 117 118 119 120 121 122 123
#define it_header_sy(v)          ((v) <<  0)
#define it_header_tcode(v)       ((v) <<  4)
#define it_header_channel(v)     ((v) <<  8)
#define it_header_tag(v)         ((v) << 14)
#define it_header_speed(v)       ((v) << 16)
#define it_header_data_length(v) ((v) << 16)

struct iso_context {
	struct fw_iso_context base;
124
	struct context context;
125 126
	void *header;
	size_t header_length;
127 128 129 130 131 132 133
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

134
	u32 version;
135 136 137 138
	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
139
	int node_id;
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	int generation;
	int request_generation;

	/* Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held. */
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
	u32 next_header;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
157 158
	struct context at_request_ctx;
	struct context at_response_ctx;
159 160 161 162 163 164 165

	u32 it_context_mask;
	struct iso_context *it_context_list;
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

A
Adrian Bunk 已提交
166
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
167 168 169 170
{
	return container_of(card, struct fw_ohci, card);
}

171 172 173 174 175 176
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

#define OHCI1394_MAX_AT_REQ_RETRIES	0x2
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define FW_OHCI_MAJOR			240
#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
192
#define OHCI_TCODE_PHY_PACKET		0x0e
193
#define OHCI_VERSION_1_1		0x010010
194 195
#define ISO_BUFFER_SIZE			(64 * 1024)
#define AT_BUFFER_SIZE			4096
196

197 198
static char ohci_driver_name[] = KBUILD_MODNAME;

A
Adrian Bunk 已提交
199
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
200 201 202 203
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
204
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
205 206 207 208
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
209
static inline void flush_writes(const struct fw_ohci *ohci)
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

static int
ohci_update_phy_reg(struct fw_card *card, int addr,
		    int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

238
static int ar_context_add_page(struct ar_context *ctx)
239
{
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
	dma_addr_t ab_bus;
	size_t offset;

	ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
	if (ab == NULL)
		return -ENOMEM;

	ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(ab_bus)) {
		free_page((unsigned long) ab);
		return -ENOMEM;
	}

	memset(&ab->descriptor, 0, sizeof ab->descriptor);
	ab->descriptor.control        = cpu_to_le16(descriptor_input_more |
						    descriptor_status |
						    descriptor_branch_always);
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

	dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);

	ctx->last_buffer->descriptor.branch_address = ab_bus | 1;
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

271
	reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
272
	flush_writes(ctx->ohci);
273 274

	return 0;
275 276
}

277
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
278 279
{
	struct fw_ohci *ohci = ctx->ohci;
280 281 282
	struct fw_packet p;
	u32 status, length, tcode;

283 284 285
	p.header[0] = le32_to_cpu(buffer[0]);
	p.header[1] = le32_to_cpu(buffer[1]);
	p.header[2] = le32_to_cpu(buffer[2]);
286 287 288 289 290

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
291
		p.header[3] = (__force __u32) buffer[3];
292
		p.header_length = 16;
293
		p.payload_length = 0;
294 295 296
		break;

	case TCODE_READ_BLOCK_REQUEST :
297 298 299 300 301 302
		p.header[3] = le32_to_cpu(buffer[3]);
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
303 304 305
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
306
		p.header[3] = le32_to_cpu(buffer[3]);
307
		p.header_length = 16;
308
		p.payload_length = p.header[3] >> 16;
309 310 311 312
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
313
	case OHCI_TCODE_PHY_PACKET:
314
		p.header_length = 12;
315
		p.payload_length = 0;
316 317
		break;
	}
318

319 320 321 322 323 324 325 326 327 328
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
	status = le32_to_cpu(buffer[length]);

	p.ack        = ((status >> 16) & 0x1f) - 16;
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
329 330 331 332 333 334 335 336 337

	/* The OHCI bus reset handler synthesizes a phy packet with
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
	 * request. */

338
	if (p.ack + 16 == 0x09)
339
		ohci->request_generation = (buffer[2] >> 16) & 0xff;
340
	else if (ctx == &ohci->ar_request_ctx)
341
		fw_core_handle_request(&ohci->card, &p);
342
	else
343
		fw_core_handle_response(&ohci->card, &p);
344

345 346
	return buffer + length + 1;
}
347

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;

		/* This descriptor is finished and we may have a
		 * packet split across this and the next buffer. We
		 * reuse the page for reassembling the split packet. */

		offset = offsetof(struct ar_buffer, data);
		dma_unmap_single(ohci->card.device,
				 ab->descriptor.data_address - offset,
				 PAGE_SIZE, DMA_BIDIRECTIONAL);

		buffer = ab;
		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

		free_page((unsigned long)buffer);
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
395 396 397
}

static int
398
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
399
{
400
	struct ar_buffer ab;
401

402 403 404
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
405 406
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

407 408 409 410 411
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

412 413
	reg_write(ctx->ohci, command_ptr(ctx->regs), ab.descriptor.branch_address);
	reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_RUN);
414
	flush_writes(ctx->ohci);
415 416 417

	return 0;
}
S
Stefan Richter 已提交
418

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct fw_ohci *ohci = ctx->ohci;
	struct descriptor *d, *last;
	u32 address;
	int z;

	dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
				ctx->buffer_size, DMA_TO_DEVICE);

	d    = ctx->tail_descriptor;
	last = ctx->tail_descriptor_last;

	while (last->branch_address != 0) {
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
		d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
		last = (z == 2) ? d : d + z - 1;

		if (!ctx->callback(ctx, d, last))
			break;

		ctx->tail_descriptor      = d;
		ctx->tail_descriptor_last = last;
	}
}

static int
context_init(struct context *ctx, struct fw_ohci *ohci,
	     size_t buffer_size, u32 regs,
	     descriptor_callback_t callback)
{
	ctx->ohci = ohci;
	ctx->regs = regs;
	ctx->buffer_size = buffer_size;
	ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
	if (ctx->buffer == NULL)
		return -ENOMEM;

	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

	ctx->buffer_bus =
		dma_map_single(ohci->card.device, ctx->buffer,
			       buffer_size, DMA_TO_DEVICE);
	if (dma_mapping_error(ctx->buffer_bus)) {
		kfree(ctx->buffer);
		return -ENOMEM;
	}

	ctx->head_descriptor      = ctx->buffer;
	ctx->prev_descriptor      = ctx->buffer;
	ctx->tail_descriptor      = ctx->buffer;
	ctx->tail_descriptor_last = ctx->buffer;

	/* We put a dummy descriptor in the buffer that has a NULL
	 * branch address and looks like it's been sent.  That way we
	 * have a descriptor to append DMA programs to.  Also, the
	 * ring buffer invariant is that it always has at least one
	 * element so that head == tail means buffer full. */

	memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
	ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
	ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
	ctx->head_descriptor++;

	return 0;
}

489
static void
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
context_release(struct context *ctx)
{
	struct fw_card *card = &ctx->ohci->card;

	dma_unmap_single(card->device, ctx->buffer_bus,
			 ctx->buffer_size, DMA_TO_DEVICE);
	kfree(ctx->buffer);
}

static struct descriptor *
context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
{
	struct descriptor *d, *tail, *end;

	d = ctx->head_descriptor;
	tail = ctx->tail_descriptor;
	end = ctx->buffer + ctx->buffer_size / sizeof(struct descriptor);

	if (d + z <= tail) {
		goto has_space;
	} else if (d > tail && d + z <= end) {
		goto has_space;
	} else if (d > tail && ctx->buffer + z <= tail) {
		d = ctx->buffer;
		goto has_space;
	}

	return NULL;

 has_space:
	memset(d, 0, z * sizeof *d);
	*d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;

	return d;
}

526
static void context_run(struct context *ctx, u32 extra)
527 528 529 530 531 532
{
	struct fw_ohci *ohci = ctx->ohci;

	reg_write(ohci, command_ptr(ctx->regs),
		  le32_to_cpu(ctx->tail_descriptor_last->branch_address));
	reg_write(ohci, control_clear(ctx->regs), ~0);
533
	reg_write(ohci, control_set(ctx->regs), CONTEXT_RUN | extra);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;

	d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;

	ctx->head_descriptor = d + z + extra;
	ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev_descriptor = z == 2 ? d : d + z - 1;

	dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
				   ctx->buffer_size, DMA_TO_DEVICE);

	reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
558
	int i;
559 560

	reg_write(ctx->ohci, control_clear(ctx->regs), CONTEXT_RUN);
561
	flush_writes(ctx->ohci);
562

563 564 565 566 567 568 569 570
	for (i = 0; i < 10; i++) {
		reg = reg_read(ctx->ohci, control_set(ctx->regs));
		if ((reg & CONTEXT_ACTIVE) == 0)
			break;

		fw_notify("context_stop: still active (0x%08x)\n", reg);
		msleep(1);
	}
571
}
572

573 574 575
struct driver_data {
	struct fw_packet *packet;
};
576

577 578 579 580 581
/* This function apppends a packet to the DMA queue for transmission.
 * Must always be called with the ochi->lock held to ensure proper
 * generation handling and locking around packet queue manipulation. */
static int
at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
582 583
{
	struct fw_ohci *ohci = ctx->ohci;
584 585 586 587
	dma_addr_t d_bus, payload_bus;
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
588
	int z, tcode;
589
	u32 reg;
590

591 592 593 594
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
595 596
	}

597 598 599
	d[0].control   = cpu_to_le16(descriptor_key_immediate);
	d[0].res_count = cpu_to_le16(packet->timestamp);

600 601 602 603
	/* The DMA format for asyncronous link packets is different
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
	 * which we need to prepend an extra quadlet. */
604 605

	header = (__le32 *) &d[1];
606
	if (packet->header_length > 8) {
607 608 609 610 611
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
612 613 614

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
615
			header[3] = cpu_to_le32(packet->header[3]);
616
		else
617 618 619
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
620
	} else {
621 622 623 624 625
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
626 627
	}

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
	
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
		if (dma_mapping_error(payload_bus)) {
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
644
	} else {
645 646
		last = &d[0];
		z = 2;
647 648
	}

649 650 651
	last->control |= cpu_to_le16(descriptor_output_last |
				     descriptor_irq_always |
				     descriptor_branch_always);
652

653 654 655 656 657 658 659
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
660

661
	/* If the context isn't already running, start it up. */
662
	reg = reg_read(ctx->ohci, control_set(ctx->regs));
663 664 665 666
	if ((reg & CONTEXT_ACTIVE) == 0)
		context_run(ctx, 0);

	return 0;
667 668
}

669 670 671
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
672
{
673
	struct driver_data *driver_data;
674
	struct fw_packet *packet;
675 676
	struct fw_ohci *ohci = context->ohci;
	dma_addr_t payload_bus;
677 678
	int evt;

679 680 681
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
682

683 684 685 686 687
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
688

689 690 691
	payload_bus = le32_to_cpu(last->data_address);
	if (payload_bus != 0)
		dma_unmap_single(ohci->card.device, payload_bus,
692 693
				 packet->payload_length, DMA_TO_DEVICE);

694 695
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
696

697 698 699 700 701
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
702

703 704 705 706 707
	case OHCI1394_evt_flushed:
		/* The packet was flushed should give same error as
		 * when we try to use a stale generation count. */
		packet->ack = RCODE_GENERATION;
		break;
708

709 710 711 712 713
	case OHCI1394_evt_missing_ack:
		/* Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks. */
		packet->ack = RCODE_NO_ACK;
		break;
714

715 716 717 718 719 720 721 722 723
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
724

725 726 727 728
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
729

730
	packet->callback(packet, &ohci->card, packet->ack);
731

732
	return 1;
733 734
}

735
#define header_get_destination(q)	(((q) >> 16) & 0xffff)
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
#define header_get_tcode(q)		(((q) >> 4) & 0x0f)
#define header_get_offset_high(q)	(((q) >> 0) & 0xffff)
#define header_get_data_length(q)	(((q) >> 16) & 0xffff)
#define header_get_extended_tcode(q)	(((q) >> 0) & 0xffff)

static void
handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, i;

	tcode = header_get_tcode(packet->header[0]);
	if (TCODE_IS_BLOCK_PACKET(tcode))
		length = header_get_data_length(packet->header[3]);
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

static void
handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

	tcode = header_get_tcode(packet->header[0]);
	length = header_get_data_length(packet->header[3]);
	payload = packet->payload;
	ext_tcode = header_get_extended_tcode(packet->header[3]);

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
			 RCODE_COMPLETE, &lock_old, sizeof lock_old);
 out:
	fw_core_handle_response(&ohci->card, &response);
}

static void
811
handle_local_request(struct context *ctx, struct fw_packet *packet)
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
{
	u64 offset;
	u32 csr;

	packet->ack = ACK_PENDING;
	packet->callback(packet, &ctx->ohci->card, packet->ack);

	offset =
		((unsigned long long)
		 header_get_offset_high(packet->header[1]) << 32) |
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
}
843

844
static void
845
at_context_transmit(struct context *ctx, struct fw_packet *packet)
846 847
{
	unsigned long flags;
848
	int retval;
849 850 851

	spin_lock_irqsave(&ctx->ohci->lock, flags);

852 853
	if (header_get_destination(packet->header[0]) == ctx->ohci->node_id &&
	    ctx->ohci->generation == packet->generation) {
854 855 856
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
857
	}
858

859
	retval = at_context_queue_packet(ctx, packet);
860 861
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

862 863 864
	if (retval < 0)
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	
865 866 867 868 869
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
870
	int self_id_count, i, j, reg;
871 872 873 874 875 876 877 878
	int generation, new_generation;
	unsigned long flags;

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
		fw_error("node ID not valid, new bus reset in progress\n");
		return;
	}
879
	ohci->node_id = reg & 0xffff;
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917

	/* The count in the SelfIDCount register is the number of
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
	 * bit extra to get the actual number of self IDs. */

	self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
	generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
			fw_error("inconsistent self IDs\n");
		ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
	}

	/* Check the consistency of the self IDs we just read.  The
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
	 * of self IDs. */

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
918 919
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

	/* This next bit is unrelated to the AT context stuff but we
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
	 * next_config_rom pointer so a new udpate can take place. */

	if (ohci->next_config_rom != NULL) {
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

		/* Restore config_rom image and manually update
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
		 * do that last. */
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

948
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
	u32 event, iso_event;
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

	if (!event)
		return IRQ_NONE;

	reg_write(ohci, OHCI1394_IntEventClear, event);

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

980
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
981 982 983 984
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
985
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
986 987 988
		iso_event &= ~(1 << i);
	}

989
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
990 991 992 993
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
994
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
		iso_event &= ~(1 << i);
	}

	return IRQ_HANDLED;
}

static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);

	/* When the link is not yet enabled, the atomic config rom
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

	ohci->next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &ohci->next_config_rom_bus, GFP_KERNEL);
	if (ohci->next_config_rom == NULL)
		return -ENOMEM;

	memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
	fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);

	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
	reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1042
			IRQF_SHARED, ohci_driver_name, ohci)) {
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

	/* We are ready to go, initiate bus reset to finish the
	 * initialization. */

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

static int
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci;
	unsigned long flags;
	int retval = 0;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;

	ohci = fw_ohci(card);

	/* When the OHCI controller is enabled, the config rom update
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
				  length * 4);

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
	} else {
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
		retval = -EBUSY;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

	/* Now initiate a bus reset to have the changes take
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
	 * takes effect. */
	if (retval == 0)
		fw_core_initiate_bus_reset(&ohci->card, 1);

	return retval;
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1154 1155 1156
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1157 1158 1159
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
	int retval = -ENOENT;
1160

1161
	tasklet_disable(&ctx->tasklet);
1162

1163 1164
	if (packet->ack != 0)
		goto out;
1165

1166 1167 1168 1169
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
	retval = 0;
1170

1171 1172
 out:
	tasklet_enable(&ctx->tasklet);
1173

1174
	return retval;
1175 1176
}

1177 1178 1179 1180 1181
static int
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
{
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1182
	int n, retval = 0;
1183

1184 1185
	/* FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset. */
1186 1187 1188 1189 1190 1191 1192 1193

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
		retval = -ESTALE;
		goto out;
	}

1194 1195 1196 1197 1198 1199 1200 1201 1202
	/* NOTE, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses. */

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1203 1204
	flush_writes(ohci);
 out:
1205
	spin_unlock_irqrestore(&ohci->lock, flags);
1206 1207
	return retval;
}
S
Stefan Richter 已提交
1208

1209 1210 1211 1212 1213 1214
static int handle_ir_bufferfill_packet(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
1215

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	if (d->res_count > 0)
		return 0;

	if (le16_to_cpu(last->control) & descriptor_irq_always)
		ctx->base.callback(&ctx->base,
				   le16_to_cpu(last->res_count),
				   0, NULL, ctx->base.callback_data);

	return 1;
}

static int handle_ir_dualbuffer_packet(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
1230
{
1231 1232 1233
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct db_descriptor *db = (struct db_descriptor *) d;
1234
	size_t header_length;
1235

1236 1237 1238 1239
	if (db->first_res_count > 0 && db->second_res_count > 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1240 1241 1242 1243 1244 1245 1246 1247
	header_length = db->first_req_count - db->first_res_count;
	if (ctx->header_length + header_length <= PAGE_SIZE)
		memcpy(ctx->header + ctx->header_length, db + 1, header_length);
	ctx->header_length += header_length;

	if (le16_to_cpu(db->control) & descriptor_irq_always) {
		ctx->base.callback(&ctx->base, 0,
				   ctx->header_length, ctx->header,
1248
				   ctx->base.callback_data);
1249 1250
		ctx->header_length = 0;
	}
1251

1252
	return 1;
1253 1254
}

1255 1256 1257
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1258
{
1259 1260
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
S
Stefan Richter 已提交
1261

1262 1263 1264 1265 1266
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

	if (le16_to_cpu(last->control) & descriptor_irq_always)
1267 1268
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
				   0, NULL, ctx->base.callback_data);
1269 1270

	return 1;
1271 1272
}

1273
static struct fw_iso_context *
1274 1275
ohci_allocate_iso_context(struct fw_card *card, int type,
			  int sync, int tags, size_t header_size)
1276 1277 1278
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1279
	descriptor_callback_t callback;
1280
	u32 *mask, regs;
1281
	unsigned long flags;
1282
	int index, retval = -ENOMEM;
1283 1284 1285 1286

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1287
		callback = handle_it_packet;
1288
	} else {
S
Stefan Richter 已提交
1289 1290
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1291 1292 1293 1294
		if (header_size > 0)
			callback = handle_ir_dualbuffer_packet;
		else
			callback = handle_ir_bufferfill_packet;
1295 1296
	}

1297 1298 1299 1300
	if (callback == handle_ir_dualbuffer_packet &&
	    ohci->version < OHCI_VERSION_1_1)
		return ERR_PTR(-EINVAL);

1301 1302 1303 1304 1305 1306 1307 1308 1309
	spin_lock_irqsave(&ohci->lock, flags);
	index = ffs(*mask) - 1;
	if (index >= 0)
		*mask &= ~(1 << index);
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1310 1311 1312 1313 1314
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1315 1316
	ctx = &list[index];
	memset(ctx, 0, sizeof *ctx);
1317 1318 1319 1320 1321
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1322
	retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1323
			      regs, callback);
1324 1325
	if (retval < 0)
		goto out_with_header;
1326 1327

	return &ctx->base;
1328 1329 1330 1331 1332 1333 1334 1335 1336

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

	return ERR_PTR(retval);
1337 1338
}

1339
static int ohci_start_iso(struct fw_iso_context *base, s32 cycle)
1340
{
S
Stefan Richter 已提交
1341
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1342
	struct fw_ohci *ohci = ctx->context.ohci;
1343
	u32 cycle_match = 0, mode;
1344 1345
	int index;

1346 1347 1348 1349 1350
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		if (cycle > 0)
			cycle_match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
				(cycle & 0x7fff) << 16;
1351

1352 1353 1354 1355 1356
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
		context_run(&ctx->context, cycle_match);
	} else {
		index = ctx - ohci->ir_context_list;
1357

1358 1359 1360 1361
		if (ctx->base.header_size > 0)
			mode = IR_CONTEXT_DUAL_BUFFER_MODE;
		else
			mode = IR_CONTEXT_BUFFER_FILL;
1362 1363 1364
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
		reg_write(ohci, context_match(ctx->context.regs),
1365 1366
			  (ctx->base.tags << 28) |
			  (ctx->base.sync << 8) | ctx->base.channel);
1367
		context_run(&ctx->context, mode);
1368
	}
1369 1370 1371 1372

	return 0;
}

1373 1374 1375
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1376
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

1392 1393 1394
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1395
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1396 1397 1398
	unsigned long flags;
	int index;

1399 1400
	ohci_stop_iso(base);
	context_release(&ctx->context);
1401
	free_page((unsigned long)ctx->header);
1402

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

static int
1417 1418 1419 1420
ohci_queue_iso_transmit(struct fw_iso_context *base,
			struct fw_iso_packet *packet,
			struct fw_iso_buffer *buffer,
			unsigned long payload)
1421
{
S
Stefan Richter 已提交
1422
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1423
	struct descriptor *d, *last, *pd;
1424 1425
	struct fw_iso_packet *p;
	__le32 *header;
1426
	dma_addr_t d_bus, page_bus;
1427 1428
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
1429
	int page, end_page, i, length, offset;
1430 1431 1432 1433 1434

	/* FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate.. */

	p = packet;
1435
	payload_index = payload;
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(p->header_length, sizeof *d);

1456 1457 1458
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

	if (!p->skip) {
		d[0].control   = cpu_to_le16(descriptor_key_immediate);
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
		header[0] = cpu_to_le32(it_header_sy(p->sy) |
					it_header_tag(p->tag) |
					it_header_tcode(TCODE_STREAM_DATA) |
					it_header_channel(ctx->base.channel) |
					it_header_speed(ctx->base.speed));
		header[1] =
			cpu_to_le32(it_header_data_length(p->header_length +
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
1490 1491 1492

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
1493 1494 1495 1496 1497 1498 1499 1500 1501

		payload_index += length;
	}

	if (p->interrupt)
		irq = descriptor_irq_always;
	else
		irq = descriptor_no_irq;

1502
	last = z == 2 ? d : d + z - 1;
1503 1504 1505 1506
	last->control |= cpu_to_le16(descriptor_output_last |
				     descriptor_status |
				     descriptor_branch_always |
				     irq);
1507

1508
	context_append(&ctx->context, d, z, header_z);
1509 1510 1511

	return 0;
}
S
Stefan Richter 已提交
1512

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
static int
setup_wait_descriptor(struct context *ctx)
{
	struct descriptor *d;
	dma_addr_t d_bus;

	d = context_get_descriptors(ctx, 1, &d_bus);
	if (d == NULL)
		return -ENOMEM;

	d->control = cpu_to_le16(descriptor_input_more |
				 descriptor_status |
				 descriptor_branch_always |
				 descriptor_wait);

	context_append(ctx, d, 1, 0);

	return 0;
}
1532

1533
static int
1534 1535 1536 1537
ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
				  struct fw_iso_packet *packet,
				  struct fw_iso_buffer *buffer,
				  unsigned long payload)
1538 1539 1540 1541 1542 1543 1544 1545
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct db_descriptor *db = NULL;
	struct descriptor *d;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, length, rest;
	int page, offset;
S
Stefan Richter 已提交
1546

1547 1548 1549
	/* FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate.. */

1550 1551 1552
	if (packet->skip && setup_wait_descriptor(&ctx->context) < 0)
		return -ENOMEM;

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	p = packet;
	z = 2;

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;

	/* FIXME: OHCI 1.0 doesn't support dual buffer receive */
	/* FIXME: handle descriptor_wait */
	/* FIXME: make packet-per-buffer/dual-buffer a context option */
	while (rest > 0) {
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
		db->control = cpu_to_le16(descriptor_status |
					  descriptor_branch_always);
		db->first_size = cpu_to_le16(ctx->base.header_size);
		db->first_req_count = cpu_to_le16(p->header_length);
1576
		db->first_res_count = db->first_req_count;
1577
		db->first_buffer = cpu_to_le32(d_bus + sizeof *db);
S
Stefan Richter 已提交
1578

1579 1580 1581 1582 1583
		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;

1584 1585
		db->second_req_count = cpu_to_le16(length);
		db->second_res_count = db->second_req_count;
1586 1587 1588
		page_bus = page_private(buffer->pages[page]);
		db->second_buffer = cpu_to_le32(page_bus + offset);

1589 1590 1591
		if (p->interrupt && length == rest)
			db->control |= cpu_to_le16(descriptor_irq_always);

1592 1593 1594 1595 1596 1597
		context_append(&ctx->context, d, z, header_z);
		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
		page++;
	}

1598 1599
	return 0;
}
1600

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
static int
ohci_queue_iso_receive_bufferfill(struct fw_iso_context *base,
				  struct fw_iso_packet *packet,
				  struct fw_iso_buffer *buffer,
				  unsigned long payload)
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct descriptor *d = NULL;
	dma_addr_t d_bus, page_bus;
	u32 length, rest;
	int page, offset;
S
Stefan Richter 已提交
1612

1613 1614 1615 1616
	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

1617 1618 1619
	if (packet->skip && setup_wait_descriptor(&ctx->context) < 0)
		return -ENOMEM;

1620 1621 1622 1623 1624 1625 1626 1627
	while (rest > 0) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(descriptor_input_more |
					 descriptor_status |
					 descriptor_branch_always);
S
Stefan Richter 已提交
1628

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);
		d->req_count = cpu_to_le16(length);
		d->res_count = cpu_to_le16(length);

1639 1640 1641
		if (packet->interrupt && length == rest)
			d->control |= cpu_to_le16(descriptor_irq_always);

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
		context_append(&ctx->context, d, 1, 0);

		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
		page++;
	}

	return 0;
}

1652 1653 1654 1655 1656 1657
static int
ohci_queue_iso(struct fw_iso_context *base,
	       struct fw_iso_packet *packet,
	       struct fw_iso_buffer *buffer,
	       unsigned long payload)
{
1658 1659
	struct iso_context *ctx = container_of(base, struct iso_context, base);

1660 1661
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
		return ohci_queue_iso_transmit(base, packet, buffer, payload);
1662 1663 1664
	else if (base->header_size == 0)
		return ohci_queue_iso_receive_bufferfill(base, packet,
							 buffer, payload);
1665
	else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1666 1667
		return ohci_queue_iso_receive_dualbuffer(base, packet,
							 buffer, payload);
1668 1669 1670
	else
		/* FIXME: Implement fallback for OHCI 1.0 controllers. */
		return -EINVAL;
1671 1672
}

1673
static const struct fw_card_driver ohci_driver = {
1674 1675 1676 1677 1678 1679
	.name			= ohci_driver_name,
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
1680
	.cancel_packet		= ohci_cancel_packet,
1681 1682 1683 1684 1685
	.enable_phys_dma	= ohci_enable_phys_dma,

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
1686
	.start_iso		= ohci_start_iso,
1687
	.stop_iso		= ohci_stop_iso,
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
};

static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

/* ---------- pci subsystem interface ---------- */

enum {
	CLEANUP_SELF_ID,
	CLEANUP_REGISTERS,
	CLEANUP_IOMEM,
	CLEANUP_DISABLE,
	CLEANUP_PUT_CARD,
};

static int cleanup(struct fw_ohci *ohci, int stage, int code)
{
	struct pci_dev *dev = to_pci_dev(ohci->card.device);

	switch (stage) {
	case CLEANUP_SELF_ID:
		dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
				  ohci->self_id_cpu, ohci->self_id_bus);
	case CLEANUP_REGISTERS:
		kfree(ohci->it_context_list);
		kfree(ohci->ir_context_list);
		pci_iounmap(dev, ohci->registers);
	case CLEANUP_IOMEM:
		pci_release_region(dev, 0);
	case CLEANUP_DISABLE:
		pci_disable_device(dev);
	case CLEANUP_PUT_CARD:
		fw_card_put(&ohci->card);
	}

	return code;
}

static int __devinit
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
	struct fw_ohci *ohci;
1743
	u32 bus_options, max_receive, link_speed;
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	u64 guid;
	int error_code;
	size_t size;

	ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
	if (ohci == NULL) {
		fw_error("Could not malloc fw_ohci data.\n");
		return -ENOMEM;
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

	if (pci_enable_device(dev)) {
		fw_error("Failed to enable OHCI hardware.\n");
		return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

	if (pci_request_region(dev, 0, ohci_driver_name)) {
		fw_error("MMIO resource unavailable\n");
		return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
		return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
	}

	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
	}

	/* Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
	 * full link enabled.  */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
	msleep(50);

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

1811 1812
	context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
1813

1814 1815
	context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
		fw_error("Out of memory for it/ir contexts.\n");
		return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
		fw_error("Out of memory for self ID buffer.\n");
		return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
	}

	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
		  OHCI1394_masterIntEnable);

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

	error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
	if (error_code < 0)
		return cleanup(ohci, CLEANUP_SELF_ID, error_code);

1870
	ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1871
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1872
		  dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
1873 1874 1875 1876 1877 1878 1879 1880 1881

	return 0;
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
1882 1883
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	fw_core_remove_card(&ohci->card);

	/* FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more. */

	software_reset(ohci);
	free_irq(dev->irq, ohci);
	cleanup(ohci, CLEANUP_SELF_ID, 0);

	fw_notify("Removed fw-ohci device.\n");
}

static struct pci_device_id pci_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);