processor.h 23.5 KB
Newer Older
H
H. Peter Anvin 已提交
1 2
#ifndef _ASM_X86_PROCESSOR_H
#define _ASM_X86_PROCESSOR_H
3

4 5
#include <asm/processor-flags.h>

6 7 8
/* Forward declaration, a strange C thing */
struct task_struct;
struct mm_struct;
9
struct vm86;
10

11 12 13
#include <asm/math_emu.h>
#include <asm/segment.h>
#include <asm/types.h>
14
#include <uapi/asm/sigcontext.h>
15
#include <asm/current.h>
16
#include <asm/cpufeatures.h>
17
#include <asm/page.h>
18
#include <asm/pgtable_types.h>
19
#include <asm/percpu.h>
20 21
#include <asm/msr.h>
#include <asm/desc_defs.h>
22
#include <asm/nops.h>
23
#include <asm/special_insns.h>
24
#include <asm/fpu/types.h>
25

26
#include <linux/personality.h>
27
#include <linux/cache.h>
28
#include <linux/threads.h>
29
#include <linux/math64.h>
30
#include <linux/err.h>
31 32 33 34 35 36 37 38 39
#include <linux/irqflags.h>

/*
 * We handle most unaligned accesses in hardware.  On the other hand
 * unaligned DMA can be quite expensive on some Nehalem processors.
 *
 * Based on this we disable the IP header alignment in network drivers.
 */
#define NET_IP_ALIGN	0
40

41
#define HBP_NUM 4
42 43 44 45 46 47 48
/*
 * Default implementation of macro that returns current
 * instruction pointer ("program counter").
 */
static inline void *current_text_addr(void)
{
	void *pc;
49 50 51

	asm volatile("mov $1f, %0; 1:":"=r" (pc));

52 53 54
	return pc;
}

55 56 57 58 59
/*
 * These alignment constraints are for performance in the vSMP case,
 * but in the task_struct case we must also meet hardware imposed
 * alignment requirements of the FPU state:
 */
60
#ifdef CONFIG_X86_VSMP
61 62
# define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
# define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
63
#else
64
# define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
65
# define ARCH_MIN_MMSTRUCT_ALIGN	0
66 67
#endif

68 69 70 71 72 73 74 75 76 77 78
enum tlb_infos {
	ENTRIES,
	NR_INFO
};

extern u16 __read_mostly tlb_lli_4k[NR_INFO];
extern u16 __read_mostly tlb_lli_2m[NR_INFO];
extern u16 __read_mostly tlb_lli_4m[NR_INFO];
extern u16 __read_mostly tlb_lld_4k[NR_INFO];
extern u16 __read_mostly tlb_lld_2m[NR_INFO];
extern u16 __read_mostly tlb_lld_4m[NR_INFO];
79
extern u16 __read_mostly tlb_lld_1g[NR_INFO];
80

81 82
/*
 *  CPU type and hardware bug flags. Kept separately for each CPU.
83
 *  Members of this structure are referenced in head_32.S, so think twice
84 85 86 87
 *  before touching them. [mj]
 */

struct cpuinfo_x86 {
88 89 90 91
	__u8			x86;		/* CPU family */
	__u8			x86_vendor;	/* CPU vendor */
	__u8			x86_model;
	__u8			x86_mask;
92
#ifdef CONFIG_X86_64
93
	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
94
	int			x86_tlbsize;
95
#endif
96 97 98 99
	__u8			x86_virt_bits;
	__u8			x86_phys_bits;
	/* CPUID returned core id bits: */
	__u8			x86_coreid_bits;
100
	__u8			cu_id;
101 102 103 104
	/* Max extended CPUID function supported: */
	__u32			extended_cpuid_level;
	/* Maximum supported CPUID level, -1=no CPUID: */
	int			cpuid_level;
105
	__u32			x86_capability[NCAPINTS + NBUGINTS];
106 107 108 109 110
	char			x86_vendor_id[16];
	char			x86_model_id[64];
	/* in KB - valid for CPUS which support this call: */
	int			x86_cache_size;
	int			x86_cache_alignment;	/* In bytes */
111 112 113
	/* Cache QoS architectural values: */
	int			x86_cache_max_rmid;	/* max index */
	int			x86_cache_occ_scale;	/* scale to bytes */
114 115 116 117 118
	int			x86_power;
	unsigned long		loops_per_jiffy;
	/* cpuid returned max cores value: */
	u16			 x86_max_cores;
	u16			apicid;
Y
Yinghai Lu 已提交
119
	u16			initial_apicid;
120 121 122 123 124
	u16			x86_clflush_size;
	/* number of cores as seen by the OS: */
	u16			booted_cores;
	/* Physical processor id: */
	u16			phys_proc_id;
125 126
	/* Logical processor id: */
	u16			logical_proc_id;
127 128 129 130
	/* Core id: */
	u16			cpu_core_id;
	/* Index into per_cpu list: */
	u16			cpu_index;
131
	u32			microcode;
132
};
133

134 135 136 137 138 139 140 141 142 143 144
struct cpuid_regs {
	u32 eax, ebx, ecx, edx;
};

enum cpuid_regs_idx {
	CPUID_EAX = 0,
	CPUID_EBX,
	CPUID_ECX,
	CPUID_EDX,
};

145 146 147 148 149 150 151 152 153 154
#define X86_VENDOR_INTEL	0
#define X86_VENDOR_CYRIX	1
#define X86_VENDOR_AMD		2
#define X86_VENDOR_UMC		3
#define X86_VENDOR_CENTAUR	5
#define X86_VENDOR_TRANSMETA	7
#define X86_VENDOR_NSC		8
#define X86_VENDOR_NUM		9

#define X86_VENDOR_UNKNOWN	0xff
155

156 157 158
/*
 * capabilities of CPUs
 */
159 160 161 162
extern struct cpuinfo_x86	boot_cpu_data;
extern struct cpuinfo_x86	new_cpu_data;

extern struct tss_struct	doublefault_tss;
163 164
extern __u32			cpu_caps_cleared[NCAPINTS];
extern __u32			cpu_caps_set[NCAPINTS];
165 166

#ifdef CONFIG_SMP
167
DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
168 169
#define cpu_data(cpu)		per_cpu(cpu_info, cpu)
#else
170
#define cpu_info		boot_cpu_data
171 172 173
#define cpu_data(cpu)		boot_cpu_data
#endif

174 175
extern const struct seq_operations cpuinfo_op;

176 177 178
#define cache_line_size()	(boot_cpu_data.x86_cache_alignment)

extern void cpu_detect(struct cpuinfo_x86 *c);
179

180
extern void early_cpu_init(void);
181 182
extern void identify_boot_cpu(void);
extern void identify_secondary_cpu(struct cpuinfo_x86 *);
183
extern void print_cpu_info(struct cpuinfo_x86 *);
184
void print_cpu_msr(struct cpuinfo_x86 *);
185
extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
186 187 188
extern u32 get_scattered_cpuid_leaf(unsigned int level,
				    unsigned int sub_leaf,
				    enum cpuid_regs_idx reg);
189
extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
190
extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
191

192
extern void detect_extended_topology(struct cpuinfo_x86 *c);
193 194
extern void detect_ht(struct cpuinfo_x86 *c);

195 196 197 198 199 200 201 202
#ifdef CONFIG_X86_32
extern int have_cpuid_p(void);
#else
static inline int have_cpuid_p(void)
{
	return 1;
}
#endif
203
static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
204
				unsigned int *ecx, unsigned int *edx)
205 206
{
	/* ecx is often an input as well as an output. */
207
	asm volatile("cpuid"
208 209 210 211
	    : "=a" (*eax),
	      "=b" (*ebx),
	      "=c" (*ecx),
	      "=d" (*edx)
212 213
	    : "0" (*eax), "2" (*ecx)
	    : "memory");
214 215
}

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
#define native_cpuid_reg(reg)					\
static inline unsigned int native_cpuid_##reg(unsigned int op)	\
{								\
	unsigned int eax = op, ebx, ecx = 0, edx;		\
								\
	native_cpuid(&eax, &ebx, &ecx, &edx);			\
								\
	return reg;						\
}

/*
 * Native CPUID functions returning a single datum.
 */
native_cpuid_reg(eax)
native_cpuid_reg(ebx)
native_cpuid_reg(ecx)
native_cpuid_reg(edx)

234 235 236 237
static inline void load_cr3(pgd_t *pgdir)
{
	write_cr3(__pa(pgdir));
}
238

239 240 241
#ifdef CONFIG_X86_32
/* This is the TSS defined by the hardware. */
struct x86_hw_tss {
242 243 244
	unsigned short		back_link, __blh;
	unsigned long		sp0;
	unsigned short		ss0, __ss0h;
245
	unsigned long		sp1;
246 247

	/*
248 249 250 251 252 253
	 * We don't use ring 1, so ss1 is a convenient scratch space in
	 * the same cacheline as sp0.  We use ss1 to cache the value in
	 * MSR_IA32_SYSENTER_CS.  When we context switch
	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
	 * written matches ss1, and, if it's not, then we wrmsr the new
	 * value and update ss1.
254
	 *
255 256 257 258
	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
	 * that we set it to zero in vm86 tasks to avoid corrupting the
	 * stack if we were to go through the sysenter path from vm86
	 * mode.
259 260 261 262
	 */
	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */

	unsigned short		__ss1h;
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	unsigned long		sp2;
	unsigned short		ss2, __ss2h;
	unsigned long		__cr3;
	unsigned long		ip;
	unsigned long		flags;
	unsigned long		ax;
	unsigned long		cx;
	unsigned long		dx;
	unsigned long		bx;
	unsigned long		sp;
	unsigned long		bp;
	unsigned long		si;
	unsigned long		di;
	unsigned short		es, __esh;
	unsigned short		cs, __csh;
	unsigned short		ss, __ssh;
	unsigned short		ds, __dsh;
	unsigned short		fs, __fsh;
	unsigned short		gs, __gsh;
	unsigned short		ldt, __ldth;
	unsigned short		trace;
	unsigned short		io_bitmap_base;

286 287 288
} __attribute__((packed));
#else
struct x86_hw_tss {
289 290 291 292 293 294 295 296 297 298 299
	u32			reserved1;
	u64			sp0;
	u64			sp1;
	u64			sp2;
	u64			reserved2;
	u64			ist[7];
	u32			reserved3;
	u32			reserved4;
	u16			reserved5;
	u16			io_bitmap_base;

300
} __attribute__((packed));
301 302 303
#endif

/*
304
 * IO-bitmap sizes:
305
 */
306 307 308 309 310
#define IO_BITMAP_BITS			65536
#define IO_BITMAP_BYTES			(IO_BITMAP_BITS/8)
#define IO_BITMAP_LONGS			(IO_BITMAP_BYTES/sizeof(long))
#define IO_BITMAP_OFFSET		offsetof(struct tss_struct, io_bitmap)
#define INVALID_IO_BITMAP_OFFSET	0x8000
311 312

struct tss_struct {
313 314 315 316
	/*
	 * The hardware state:
	 */
	struct x86_hw_tss	x86_tss;
317 318 319 320 321 322 323

	/*
	 * The extra 1 is there because the CPU will access an
	 * additional byte beyond the end of the IO permission
	 * bitmap. The extra byte must be all 1 bits, and must
	 * be within the limit.
	 */
324 325
	unsigned long		io_bitmap[IO_BITMAP_LONGS + 1];

326
#ifdef CONFIG_X86_32
327
	/*
328
	 * Space for the temporary SYSENTER stack.
329
	 */
330
	unsigned long		SYSENTER_stack_canary;
331
	unsigned long		SYSENTER_stack[64];
332
#endif
333

334
} ____cacheline_aligned;
335

336
DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
337

338 339 340 341 342 343 344 345 346 347
/*
 * sizeof(unsigned long) coming from an extra "long" at the end
 * of the iobitmap.
 *
 * -1? seg base+limit should be pointing to the address of the
 * last valid byte
 */
#define __KERNEL_TSS_LIMIT	\
	(IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)

348 349 350 351
#ifdef CONFIG_X86_32
DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
#endif

352 353 354
/*
 * Save the original ist values for checking stack pointers during debugging
 */
355
struct orig_ist {
356
	unsigned long		ist[7];
357 358
};

359
#ifdef CONFIG_X86_64
360
DECLARE_PER_CPU(struct orig_ist, orig_ist);
361

362 363 364 365 366 367 368 369 370 371 372 373 374
union irq_stack_union {
	char irq_stack[IRQ_STACK_SIZE];
	/*
	 * GCC hardcodes the stack canary as %gs:40.  Since the
	 * irq_stack is the object at %gs:0, we reserve the bottom
	 * 48 bytes of the irq stack for the canary.
	 */
	struct {
		char gs_base[40];
		unsigned long stack_canary;
	};
};

375
DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
376 377
DECLARE_INIT_PER_CPU(irq_stack_union);

378
DECLARE_PER_CPU(char *, irq_stack_ptr);
379 380
DECLARE_PER_CPU(unsigned int, irq_count);
extern asmlinkage void ignore_sysret(void);
381 382
#else	/* X86_64 */
#ifdef CONFIG_CC_STACKPROTECTOR
383 384 385 386 387 388 389 390 391 392
/*
 * Make sure stack canary segment base is cached-aligned:
 *   "For Intel Atom processors, avoid non zero segment base address
 *    that is not aligned to cache line boundary at all cost."
 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
 */
struct stack_canary {
	char __pad[20];		/* canary at %gs:20 */
	unsigned long canary;
};
393
DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
394
#endif
395 396 397 398 399 400 401 402 403
/*
 * per-CPU IRQ handling stacks
 */
struct irq_stack {
	u32                     stack[THREAD_SIZE/sizeof(u32)];
} __aligned(THREAD_SIZE);

DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
404
#endif	/* X86_64 */
405

406
extern unsigned int fpu_kernel_xstate_size;
407
extern unsigned int fpu_user_xstate_size;
408

409 410
struct perf_event;

411 412 413 414
typedef struct {
	unsigned long		seg;
} mm_segment_t;

415
struct thread_struct {
416 417 418 419
	/* Cached TLS descriptors: */
	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
	unsigned long		sp0;
	unsigned long		sp;
420
#ifdef CONFIG_X86_32
421
	unsigned long		sysenter_cs;
422
#else
423 424 425 426
	unsigned short		es;
	unsigned short		ds;
	unsigned short		fsindex;
	unsigned short		gsindex;
427
#endif
428 429 430

	u32			status;		/* thread synchronous flags */

431
#ifdef CONFIG_X86_64
432 433 434 435 436 437 438 439 440
	unsigned long		fsbase;
	unsigned long		gsbase;
#else
	/*
	 * XXX: this could presumably be unsigned short.  Alternatively,
	 * 32-bit kernels could be taught to use fsindex instead.
	 */
	unsigned long fs;
	unsigned long gs;
441
#endif
442

443 444 445 446
	/* Save middle states of ptrace breakpoints */
	struct perf_event	*ptrace_bps[HBP_NUM];
	/* Debug status used for traps, single steps, etc... */
	unsigned long           debugreg6;
447 448
	/* Keep track of the exact dr7 value set by the user */
	unsigned long           ptrace_dr7;
449 450
	/* Fault info: */
	unsigned long		cr2;
451
	unsigned long		trap_nr;
452
	unsigned long		error_code;
453
#ifdef CONFIG_VM86
454
	/* Virtual 86 mode info */
455
	struct vm86		*vm86;
456
#endif
457 458 459 460 461
	/* IO permissions: */
	unsigned long		*io_bitmap_ptr;
	unsigned long		iopl;
	/* Max allowed port in the bitmap, in bytes: */
	unsigned		io_bitmap_max;
462

463 464
	mm_segment_t		addr_limit;

465
	unsigned int		sig_on_uaccess_err:1;
466 467
	unsigned int		uaccess_err:1;	/* uaccess failed */

468 469 470 471 472 473
	/* Floating point and extended processor state */
	struct fpu		fpu;
	/*
	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
	 * the end.
	 */
474 475
};

476 477 478 479 480 481 482 483 484
/*
 * Thread-synchronous status.
 *
 * This is different from the flags in that nobody else
 * ever touches our thread-synchronous status, so we don't
 * have to worry about atomic accesses.
 */
#define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/

485 486 487 488 489 490 491
/*
 * Set IOPL bits in EFLAGS from given mask
 */
static inline void native_set_iopl_mask(unsigned mask)
{
#ifdef CONFIG_X86_32
	unsigned int reg;
492

493 494 495 496 497 498 499 500
	asm volatile ("pushfl;"
		      "popl %0;"
		      "andl %1, %0;"
		      "orl %2, %0;"
		      "pushl %0;"
		      "popfl"
		      : "=&r" (reg)
		      : "i" (~X86_EFLAGS_IOPL), "r" (mask));
501 502 503
#endif
}

504 505
static inline void
native_load_sp0(struct tss_struct *tss, struct thread_struct *thread)
506 507 508
{
	tss->x86_tss.sp0 = thread->sp0;
#ifdef CONFIG_X86_32
509
	/* Only happens when SEP is enabled, no need to test "SEP"arately: */
510 511 512 513 514 515
	if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
		tss->x86_tss.ss1 = thread->sysenter_cs;
		wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
	}
#endif
}
516

517 518 519 520 521 522 523
static inline void native_swapgs(void)
{
#ifdef CONFIG_X86_64
	asm volatile("swapgs" ::: "memory");
#endif
}

524
static inline unsigned long current_top_of_stack(void)
525
{
526
#ifdef CONFIG_X86_64
527
	return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
528 529 530 531
#else
	/* sp0 on x86_32 is special in and around vm86 mode. */
	return this_cpu_read_stable(cpu_current_top_of_stack);
#endif
532 533
}

534 535 536
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#else
537
#define __cpuid			native_cpuid
538

539 540
static inline void load_sp0(struct tss_struct *tss,
			    struct thread_struct *thread)
541 542 543 544
{
	native_load_sp0(tss, thread);
}

545
#define set_iopl_mask native_set_iopl_mask
546 547
#endif /* CONFIG_PARAVIRT */

548 549 550 551
/* Free all resources held by a thread. */
extern void release_thread(struct task_struct *);

unsigned long get_wchan(struct task_struct *p);
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

/*
 * Generic CPUID function
 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
 * resulting in stale register contents being returned.
 */
static inline void cpuid(unsigned int op,
			 unsigned int *eax, unsigned int *ebx,
			 unsigned int *ecx, unsigned int *edx)
{
	*eax = op;
	*ecx = 0;
	__cpuid(eax, ebx, ecx, edx);
}

/* Some CPUID calls want 'count' to be placed in ecx */
static inline void cpuid_count(unsigned int op, int count,
			       unsigned int *eax, unsigned int *ebx,
			       unsigned int *ecx, unsigned int *edx)
{
	*eax = op;
	*ecx = count;
	__cpuid(eax, ebx, ecx, edx);
}

/*
 * CPUID functions returning a single datum
 */
static inline unsigned int cpuid_eax(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
585

586 587
	return eax;
}
588

589 590 591 592 593
static inline unsigned int cpuid_ebx(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
594

595 596
	return ebx;
}
597

598 599 600 601 602
static inline unsigned int cpuid_ecx(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
603

604 605
	return ecx;
}
606

607 608 609 610 611
static inline unsigned int cpuid_edx(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
612

613 614 615
	return edx;
}

616
/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
617
static __always_inline void rep_nop(void)
618
{
619
	asm volatile("rep; nop" ::: "memory");
620 621
}

622
static __always_inline void cpu_relax(void)
623 624 625 626
{
	rep_nop();
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640
/*
 * This function forces the icache and prefetched instruction stream to
 * catch up with reality in two very specific cases:
 *
 *  a) Text was modified using one virtual address and is about to be executed
 *     from the same physical page at a different virtual address.
 *
 *  b) Text was modified on a different CPU, may subsequently be
 *     executed on this CPU, and you want to make sure the new version
 *     gets executed.  This generally means you're calling this in a IPI.
 *
 * If you're calling this for a different reason, you're probably doing
 * it wrong.
 */
641 642
static inline void sync_core(void)
{
643
	/*
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
	 * There are quite a few ways to do this.  IRET-to-self is nice
	 * because it works on every CPU, at any CPL (so it's compatible
	 * with paravirtualization), and it never exits to a hypervisor.
	 * The only down sides are that it's a bit slow (it seems to be
	 * a bit more than 2x slower than the fastest options) and that
	 * it unmasks NMIs.  The "push %cs" is needed because, in
	 * paravirtual environments, __KERNEL_CS may not be a valid CS
	 * value when we do IRET directly.
	 *
	 * In case NMI unmasking or performance ever becomes a problem,
	 * the next best option appears to be MOV-to-CR2 and an
	 * unconditional jump.  That sequence also works on all CPUs,
	 * but it will fault at CPL3 (i.e. Xen PV and lguest).
	 *
	 * CPUID is the conventional way, but it's nasty: it doesn't
	 * exist on some 486-like CPUs, and it usually exits to a
	 * hypervisor.
	 *
	 * Like all of Linux's memory ordering operations, this is a
	 * compiler barrier as well.
664
	 */
665 666 667 668 669 670 671 672 673 674
	register void *__sp asm(_ASM_SP);

#ifdef CONFIG_X86_32
	asm volatile (
		"pushfl\n\t"
		"pushl %%cs\n\t"
		"pushl $1f\n\t"
		"iret\n\t"
		"1:"
		: "+r" (__sp) : : "memory");
675
#else
676 677 678 679 680 681 682 683 684 685 686 687 688 689
	unsigned int tmp;

	asm volatile (
		"mov %%ss, %0\n\t"
		"pushq %q0\n\t"
		"pushq %%rsp\n\t"
		"addq $8, (%%rsp)\n\t"
		"pushfq\n\t"
		"mov %%cs, %0\n\t"
		"pushq %q0\n\t"
		"pushq $1f\n\t"
		"iretq\n\t"
		"1:"
		: "=&r" (tmp), "+r" (__sp) : : "cc", "memory");
690
#endif
691 692 693
}

extern void select_idle_routine(const struct cpuinfo_x86 *c);
694
extern void amd_e400_c1e_apic_setup(void);
695

696
extern unsigned long		boot_option_idle_override;
697

698
enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
699
			 IDLE_POLL};
700

701 702 703
extern void enable_sep_cpu(void);
extern int sysenter_setup(void);

704
extern void early_trap_init(void);
705
void early_trap_pf_init(void);
706

707
/* Defined in head.S */
708
extern struct desc_ptr		early_gdt_descr;
709 710

extern void cpu_set_gdt(int);
711
extern void switch_to_new_gdt(int);
712
extern void load_direct_gdt(int);
713
extern void load_fixmap_gdt(int);
714
extern void load_percpu_segment(int);
715 716
extern void cpu_init(void);

717 718
static inline unsigned long get_debugctlmsr(void)
{
P
Peter Zijlstra 已提交
719
	unsigned long debugctlmsr = 0;
720 721 722 723 724 725 726

#ifndef CONFIG_X86_DEBUGCTLMSR
	if (boot_cpu_data.x86 < 6)
		return 0;
#endif
	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);

P
Peter Zijlstra 已提交
727
	return debugctlmsr;
728 729
}

730 731 732 733 734 735 736 737 738
static inline void update_debugctlmsr(unsigned long debugctlmsr)
{
#ifndef CONFIG_X86_DEBUGCTLMSR
	if (boot_cpu_data.x86 < 6)
		return;
#endif
	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
}

739 740
extern void set_task_blockstep(struct task_struct *task, bool on);

741 742
/* Boot loader type from the setup header: */
extern int			bootloader_type;
743
extern int			bootloader_version;
744

745
extern char			ignore_fpu_irq;
746 747 748 749 750

#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
#define ARCH_HAS_PREFETCHW
#define ARCH_HAS_SPINLOCK_PREFETCH

751
#ifdef CONFIG_X86_32
752
# define BASE_PREFETCH		""
753
# define ARCH_HAS_PREFETCH
754
#else
755
# define BASE_PREFETCH		"prefetcht0 %P1"
756 757
#endif

758 759 760 761 762 763
/*
 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
 *
 * It's not worth to care about 3dnow prefetches for the K6
 * because they are microcoded there and very slow.
 */
764 765
static inline void prefetch(const void *x)
{
766
	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
767
			  X86_FEATURE_XMM,
768
			  "m" (*(const char *)x));
769 770
}

771 772 773 774 775
/*
 * 3dnow prefetch to get an exclusive cache line.
 * Useful for spinlocks to avoid one state transition in the
 * cache coherency protocol:
 */
776 777
static inline void prefetchw(const void *x)
{
778 779 780
	alternative_input(BASE_PREFETCH, "prefetchw %P1",
			  X86_FEATURE_3DNOWPREFETCH,
			  "m" (*(const char *)x));
781 782
}

783 784 785 786 787
static inline void spin_lock_prefetch(const void *x)
{
	prefetchw(x);
}

788 789 790
#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
			   TOP_OF_KERNEL_STACK_PADDING)

791 792 793 794
#ifdef CONFIG_X86_32
/*
 * User space process size: 3GB (default).
 */
795
#define IA32_PAGE_OFFSET	PAGE_OFFSET
796
#define TASK_SIZE		PAGE_OFFSET
797
#define TASK_SIZE_MAX		TASK_SIZE
798 799 800 801
#define STACK_TOP		TASK_SIZE
#define STACK_TOP_MAX		STACK_TOP

#define INIT_THREAD  {							  \
802
	.sp0			= TOP_OF_INIT_STACK,			  \
803 804
	.sysenter_cs		= __KERNEL_CS,				  \
	.io_bitmap_ptr		= NULL,					  \
805
	.addr_limit		= KERNEL_DS,				  \
806 807 808
}

/*
809
 * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack.
810
 * This is necessary to guarantee that the entire "struct pt_regs"
811
 * is accessible even if the CPU haven't stored the SS/ESP registers
812 813 814 815 816 817
 * on the stack (interrupt gate does not save these registers
 * when switching to the same priv ring).
 * Therefore beware: accessing the ss/esp fields of the
 * "struct pt_regs" is possible, but they may contain the
 * completely wrong values.
 */
818 819 820 821 822
#define task_pt_regs(task) \
({									\
	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
	((struct pt_regs *)__ptr) - 1;					\
823 824
})

825
#define KSTK_ESP(task)		(task_pt_regs(task)->sp)
826 827 828

#else
/*
829 830 831 832 833 834 835
 * User space process size. 47bits minus one guard page.  The guard
 * page is necessary on Intel CPUs: if a SYSCALL instruction is at
 * the highest possible canonical userspace address, then that
 * syscall will enter the kernel with a non-canonical return
 * address, and SYSRET will explode dangerously.  We avoid this
 * particular problem by preventing anything from being mapped
 * at the maximum canonical address.
836
 */
837
#define TASK_SIZE_MAX	((1UL << 47) - PAGE_SIZE)
838 839 840 841

/* This decides where the kernel will search for a free chunk of vm
 * space during mmap's.
 */
842 843
#define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \
					0xc0000000 : 0xFFFFe000)
844

845
#define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \
846
					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
847
#define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
848
					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
849

850
#define STACK_TOP		TASK_SIZE
851
#define STACK_TOP_MAX		TASK_SIZE_MAX
852

853 854 855
#define INIT_THREAD  {						\
	.sp0			= TOP_OF_INIT_STACK,		\
	.addr_limit		= KERNEL_DS,			\
856 857
}

858
#define task_pt_regs(tsk)	((struct pt_regs *)(tsk)->thread.sp0 - 1)
859
extern unsigned long KSTK_ESP(struct task_struct *task);
860

861 862
#endif /* CONFIG_X86_64 */

B
Brian Gerst 已提交
863 864
extern unsigned long thread_saved_pc(struct task_struct *tsk);

I
Ingo Molnar 已提交
865 866 867
extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
					       unsigned long new_sp);

868 869
/*
 * This decides where the kernel will search for a free chunk of vm
870 871
 * space during mmap's.
 */
872 873
#define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3))
#define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE)
874

875
#define KSTK_EIP(task)		(task_pt_regs(task)->ip)
876

877 878 879 880 881 882 883
/* Get/set a process' ability to use the timestamp counter instruction */
#define GET_TSC_CTL(adr)	get_tsc_mode((adr))
#define SET_TSC_CTL(val)	set_tsc_mode((val))

extern int get_tsc_mode(unsigned long adr);
extern int set_tsc_mode(unsigned int val);

884 885
DECLARE_PER_CPU(u64, msr_misc_features_shadow);

886
/* Register/unregister a process' MPX related resource */
887 888
#define MPX_ENABLE_MANAGEMENT()	mpx_enable_management()
#define MPX_DISABLE_MANAGEMENT()	mpx_disable_management()
889 890

#ifdef CONFIG_X86_INTEL_MPX
891 892
extern int mpx_enable_management(void);
extern int mpx_disable_management(void);
893
#else
894
static inline int mpx_enable_management(void)
895 896 897
{
	return -EINVAL;
}
898
static inline int mpx_disable_management(void)
899 900 901 902 903
{
	return -EINVAL;
}
#endif /* CONFIG_X86_INTEL_MPX */

904
#ifdef CONFIG_CPU_SUP_AMD
905
extern u16 amd_get_nb_id(int cpu);
906
extern u32 amd_get_nodes_per_socket(void);
907 908 909 910
#else
static inline u16 amd_get_nb_id(int cpu)		{ return 0; }
static inline u32 amd_get_nodes_per_socket(void)	{ return 0; }
#endif
911

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
{
	uint32_t base, eax, signature[3];

	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);

		if (!memcmp(sig, signature, 12) &&
		    (leaves == 0 || ((eax - base) >= leaves)))
			return base;
	}

	return 0;
}

927 928 929 930
extern unsigned long arch_align_stack(unsigned long sp);
extern void free_init_pages(char *what, unsigned long begin, unsigned long end);

void default_idle(void);
931 932 933 934 935
#ifdef	CONFIG_XEN
bool xen_set_default_idle(void);
#else
#define xen_set_default_idle 0
#endif
936 937

void stop_this_cpu(void *dummy);
938
void df_debug(struct pt_regs *regs, long error_code);
H
H. Peter Anvin 已提交
939
#endif /* _ASM_X86_PROCESSOR_H */