processor.h 23.4 KB
Newer Older
H
H. Peter Anvin 已提交
1 2
#ifndef _ASM_X86_PROCESSOR_H
#define _ASM_X86_PROCESSOR_H
3

4 5
#include <asm/processor-flags.h>

6 7 8
/* Forward declaration, a strange C thing */
struct task_struct;
struct mm_struct;
9
struct vm86;
10

11 12 13
#include <asm/math_emu.h>
#include <asm/segment.h>
#include <asm/types.h>
14
#include <uapi/asm/sigcontext.h>
15
#include <asm/current.h>
16
#include <asm/cpufeatures.h>
17
#include <asm/page.h>
18
#include <asm/pgtable_types.h>
19
#include <asm/percpu.h>
20 21
#include <asm/msr.h>
#include <asm/desc_defs.h>
22
#include <asm/nops.h>
23
#include <asm/special_insns.h>
24
#include <asm/fpu/types.h>
25

26
#include <linux/personality.h>
27
#include <linux/cache.h>
28
#include <linux/threads.h>
29
#include <linux/math64.h>
30
#include <linux/err.h>
31 32 33 34 35 36 37 38 39
#include <linux/irqflags.h>

/*
 * We handle most unaligned accesses in hardware.  On the other hand
 * unaligned DMA can be quite expensive on some Nehalem processors.
 *
 * Based on this we disable the IP header alignment in network drivers.
 */
#define NET_IP_ALIGN	0
40

41
#define HBP_NUM 4
42 43 44 45 46 47 48
/*
 * Default implementation of macro that returns current
 * instruction pointer ("program counter").
 */
static inline void *current_text_addr(void)
{
	void *pc;
49 50 51

	asm volatile("mov $1f, %0; 1:":"=r" (pc));

52 53 54
	return pc;
}

55 56 57 58 59
/*
 * These alignment constraints are for performance in the vSMP case,
 * but in the task_struct case we must also meet hardware imposed
 * alignment requirements of the FPU state:
 */
60
#ifdef CONFIG_X86_VSMP
61 62
# define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
# define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
63
#else
64
# define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
65
# define ARCH_MIN_MMSTRUCT_ALIGN	0
66 67
#endif

68 69 70 71 72 73 74 75 76 77 78
enum tlb_infos {
	ENTRIES,
	NR_INFO
};

extern u16 __read_mostly tlb_lli_4k[NR_INFO];
extern u16 __read_mostly tlb_lli_2m[NR_INFO];
extern u16 __read_mostly tlb_lli_4m[NR_INFO];
extern u16 __read_mostly tlb_lld_4k[NR_INFO];
extern u16 __read_mostly tlb_lld_2m[NR_INFO];
extern u16 __read_mostly tlb_lld_4m[NR_INFO];
79
extern u16 __read_mostly tlb_lld_1g[NR_INFO];
80

81 82 83 84 85 86 87
/*
 *  CPU type and hardware bug flags. Kept separately for each CPU.
 *  Members of this structure are referenced in head.S, so think twice
 *  before touching them. [mj]
 */

struct cpuinfo_x86 {
88 89 90 91
	__u8			x86;		/* CPU family */
	__u8			x86_vendor;	/* CPU vendor */
	__u8			x86_model;
	__u8			x86_mask;
92
#ifdef CONFIG_X86_32
93 94 95 96 97
	char			wp_works_ok;	/* It doesn't on 386's */

	/* Problems on some 486Dx4's and old 386's: */
	char			rfu;
	char			pad0;
98
	char			pad1;
99
#else
100
	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
101
	int			x86_tlbsize;
102
#endif
103 104 105 106
	__u8			x86_virt_bits;
	__u8			x86_phys_bits;
	/* CPUID returned core id bits: */
	__u8			x86_coreid_bits;
107
	__u8			cu_id;
108 109 110 111
	/* Max extended CPUID function supported: */
	__u32			extended_cpuid_level;
	/* Maximum supported CPUID level, -1=no CPUID: */
	int			cpuid_level;
112
	__u32			x86_capability[NCAPINTS + NBUGINTS];
113 114 115 116 117
	char			x86_vendor_id[16];
	char			x86_model_id[64];
	/* in KB - valid for CPUS which support this call: */
	int			x86_cache_size;
	int			x86_cache_alignment;	/* In bytes */
118 119 120
	/* Cache QoS architectural values: */
	int			x86_cache_max_rmid;	/* max index */
	int			x86_cache_occ_scale;	/* scale to bytes */
121 122 123 124 125
	int			x86_power;
	unsigned long		loops_per_jiffy;
	/* cpuid returned max cores value: */
	u16			 x86_max_cores;
	u16			apicid;
Y
Yinghai Lu 已提交
126
	u16			initial_apicid;
127 128 129 130 131
	u16			x86_clflush_size;
	/* number of cores as seen by the OS: */
	u16			booted_cores;
	/* Physical processor id: */
	u16			phys_proc_id;
132 133
	/* Logical processor id: */
	u16			logical_proc_id;
134 135 136 137
	/* Core id: */
	u16			cpu_core_id;
	/* Index into per_cpu list: */
	u16			cpu_index;
138
	u32			microcode;
139
};
140

141 142 143 144 145 146 147 148 149 150 151
struct cpuid_regs {
	u32 eax, ebx, ecx, edx;
};

enum cpuid_regs_idx {
	CPUID_EAX = 0,
	CPUID_EBX,
	CPUID_ECX,
	CPUID_EDX,
};

152 153 154 155 156 157 158 159 160 161
#define X86_VENDOR_INTEL	0
#define X86_VENDOR_CYRIX	1
#define X86_VENDOR_AMD		2
#define X86_VENDOR_UMC		3
#define X86_VENDOR_CENTAUR	5
#define X86_VENDOR_TRANSMETA	7
#define X86_VENDOR_NSC		8
#define X86_VENDOR_NUM		9

#define X86_VENDOR_UNKNOWN	0xff
162

163 164 165
/*
 * capabilities of CPUs
 */
166 167 168 169
extern struct cpuinfo_x86	boot_cpu_data;
extern struct cpuinfo_x86	new_cpu_data;

extern struct tss_struct	doublefault_tss;
170 171
extern __u32			cpu_caps_cleared[NCAPINTS];
extern __u32			cpu_caps_set[NCAPINTS];
172 173

#ifdef CONFIG_SMP
174
DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
175 176
#define cpu_data(cpu)		per_cpu(cpu_info, cpu)
#else
177
#define cpu_info		boot_cpu_data
178 179 180
#define cpu_data(cpu)		boot_cpu_data
#endif

181 182
extern const struct seq_operations cpuinfo_op;

183 184 185
#define cache_line_size()	(boot_cpu_data.x86_cache_alignment)

extern void cpu_detect(struct cpuinfo_x86 *c);
186

187
extern void early_cpu_init(void);
188 189
extern void identify_boot_cpu(void);
extern void identify_secondary_cpu(struct cpuinfo_x86 *);
190
extern void print_cpu_info(struct cpuinfo_x86 *);
191
void print_cpu_msr(struct cpuinfo_x86 *);
192
extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
193 194 195
extern u32 get_scattered_cpuid_leaf(unsigned int level,
				    unsigned int sub_leaf,
				    enum cpuid_regs_idx reg);
196
extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
197
extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
198

199
extern void detect_extended_topology(struct cpuinfo_x86 *c);
200 201
extern void detect_ht(struct cpuinfo_x86 *c);

202 203 204 205 206 207 208 209
#ifdef CONFIG_X86_32
extern int have_cpuid_p(void);
#else
static inline int have_cpuid_p(void)
{
	return 1;
}
#endif
210
static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
211
				unsigned int *ecx, unsigned int *edx)
212 213
{
	/* ecx is often an input as well as an output. */
214
	asm volatile("cpuid"
215 216 217 218
	    : "=a" (*eax),
	      "=b" (*ebx),
	      "=c" (*ecx),
	      "=d" (*edx)
219 220
	    : "0" (*eax), "2" (*ecx)
	    : "memory");
221 222
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
#define native_cpuid_reg(reg)					\
static inline unsigned int native_cpuid_##reg(unsigned int op)	\
{								\
	unsigned int eax = op, ebx, ecx = 0, edx;		\
								\
	native_cpuid(&eax, &ebx, &ecx, &edx);			\
								\
	return reg;						\
}

/*
 * Native CPUID functions returning a single datum.
 */
native_cpuid_reg(eax)
native_cpuid_reg(ebx)
native_cpuid_reg(ecx)
native_cpuid_reg(edx)

241 242 243 244
static inline void load_cr3(pgd_t *pgdir)
{
	write_cr3(__pa(pgdir));
}
245

246 247 248
#ifdef CONFIG_X86_32
/* This is the TSS defined by the hardware. */
struct x86_hw_tss {
249 250 251
	unsigned short		back_link, __blh;
	unsigned long		sp0;
	unsigned short		ss0, __ss0h;
252
	unsigned long		sp1;
253 254

	/*
255 256 257 258 259 260
	 * We don't use ring 1, so ss1 is a convenient scratch space in
	 * the same cacheline as sp0.  We use ss1 to cache the value in
	 * MSR_IA32_SYSENTER_CS.  When we context switch
	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
	 * written matches ss1, and, if it's not, then we wrmsr the new
	 * value and update ss1.
261
	 *
262 263 264 265
	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
	 * that we set it to zero in vm86 tasks to avoid corrupting the
	 * stack if we were to go through the sysenter path from vm86
	 * mode.
266 267 268 269
	 */
	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */

	unsigned short		__ss1h;
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
	unsigned long		sp2;
	unsigned short		ss2, __ss2h;
	unsigned long		__cr3;
	unsigned long		ip;
	unsigned long		flags;
	unsigned long		ax;
	unsigned long		cx;
	unsigned long		dx;
	unsigned long		bx;
	unsigned long		sp;
	unsigned long		bp;
	unsigned long		si;
	unsigned long		di;
	unsigned short		es, __esh;
	unsigned short		cs, __csh;
	unsigned short		ss, __ssh;
	unsigned short		ds, __dsh;
	unsigned short		fs, __fsh;
	unsigned short		gs, __gsh;
	unsigned short		ldt, __ldth;
	unsigned short		trace;
	unsigned short		io_bitmap_base;

293 294 295
} __attribute__((packed));
#else
struct x86_hw_tss {
296 297 298 299 300 301 302 303 304 305 306
	u32			reserved1;
	u64			sp0;
	u64			sp1;
	u64			sp2;
	u64			reserved2;
	u64			ist[7];
	u32			reserved3;
	u32			reserved4;
	u16			reserved5;
	u16			io_bitmap_base;

307
} __attribute__((packed));
308 309 310
#endif

/*
311
 * IO-bitmap sizes:
312
 */
313 314 315 316 317
#define IO_BITMAP_BITS			65536
#define IO_BITMAP_BYTES			(IO_BITMAP_BITS/8)
#define IO_BITMAP_LONGS			(IO_BITMAP_BYTES/sizeof(long))
#define IO_BITMAP_OFFSET		offsetof(struct tss_struct, io_bitmap)
#define INVALID_IO_BITMAP_OFFSET	0x8000
318 319

struct tss_struct {
320 321 322 323
	/*
	 * The hardware state:
	 */
	struct x86_hw_tss	x86_tss;
324 325 326 327 328 329 330

	/*
	 * The extra 1 is there because the CPU will access an
	 * additional byte beyond the end of the IO permission
	 * bitmap. The extra byte must be all 1 bits, and must
	 * be within the limit.
	 */
331 332
	unsigned long		io_bitmap[IO_BITMAP_LONGS + 1];

333
#ifdef CONFIG_X86_32
334
	/*
335
	 * Space for the temporary SYSENTER stack.
336
	 */
337
	unsigned long		SYSENTER_stack_canary;
338
	unsigned long		SYSENTER_stack[64];
339
#endif
340

341
} ____cacheline_aligned;
342

343
DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
344

345 346 347 348 349 350 351 352 353 354
/*
 * sizeof(unsigned long) coming from an extra "long" at the end
 * of the iobitmap.
 *
 * -1? seg base+limit should be pointing to the address of the
 * last valid byte
 */
#define __KERNEL_TSS_LIMIT	\
	(IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)

355 356 357 358
#ifdef CONFIG_X86_32
DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
#endif

359 360 361
/*
 * Save the original ist values for checking stack pointers during debugging
 */
362
struct orig_ist {
363
	unsigned long		ist[7];
364 365
};

366
#ifdef CONFIG_X86_64
367
DECLARE_PER_CPU(struct orig_ist, orig_ist);
368

369 370 371 372 373 374 375 376 377 378 379 380 381
union irq_stack_union {
	char irq_stack[IRQ_STACK_SIZE];
	/*
	 * GCC hardcodes the stack canary as %gs:40.  Since the
	 * irq_stack is the object at %gs:0, we reserve the bottom
	 * 48 bytes of the irq stack for the canary.
	 */
	struct {
		char gs_base[40];
		unsigned long stack_canary;
	};
};

382
DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
383 384
DECLARE_INIT_PER_CPU(irq_stack_union);

385
DECLARE_PER_CPU(char *, irq_stack_ptr);
386 387
DECLARE_PER_CPU(unsigned int, irq_count);
extern asmlinkage void ignore_sysret(void);
388 389
#else	/* X86_64 */
#ifdef CONFIG_CC_STACKPROTECTOR
390 391 392 393 394 395 396 397 398 399
/*
 * Make sure stack canary segment base is cached-aligned:
 *   "For Intel Atom processors, avoid non zero segment base address
 *    that is not aligned to cache line boundary at all cost."
 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
 */
struct stack_canary {
	char __pad[20];		/* canary at %gs:20 */
	unsigned long canary;
};
400
DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
401
#endif
402 403 404 405 406 407 408 409 410
/*
 * per-CPU IRQ handling stacks
 */
struct irq_stack {
	u32                     stack[THREAD_SIZE/sizeof(u32)];
} __aligned(THREAD_SIZE);

DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
411
#endif	/* X86_64 */
412

413
extern unsigned int fpu_kernel_xstate_size;
414
extern unsigned int fpu_user_xstate_size;
415

416 417
struct perf_event;

418 419 420 421
typedef struct {
	unsigned long		seg;
} mm_segment_t;

422
struct thread_struct {
423 424 425 426
	/* Cached TLS descriptors: */
	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
	unsigned long		sp0;
	unsigned long		sp;
427
#ifdef CONFIG_X86_32
428
	unsigned long		sysenter_cs;
429
#else
430 431 432 433
	unsigned short		es;
	unsigned short		ds;
	unsigned short		fsindex;
	unsigned short		gsindex;
434
#endif
435 436 437

	u32			status;		/* thread synchronous flags */

438
#ifdef CONFIG_X86_64
439 440 441 442 443 444 445 446 447
	unsigned long		fsbase;
	unsigned long		gsbase;
#else
	/*
	 * XXX: this could presumably be unsigned short.  Alternatively,
	 * 32-bit kernels could be taught to use fsindex instead.
	 */
	unsigned long fs;
	unsigned long gs;
448
#endif
449

450 451 452 453
	/* Save middle states of ptrace breakpoints */
	struct perf_event	*ptrace_bps[HBP_NUM];
	/* Debug status used for traps, single steps, etc... */
	unsigned long           debugreg6;
454 455
	/* Keep track of the exact dr7 value set by the user */
	unsigned long           ptrace_dr7;
456 457
	/* Fault info: */
	unsigned long		cr2;
458
	unsigned long		trap_nr;
459
	unsigned long		error_code;
460
#ifdef CONFIG_VM86
461
	/* Virtual 86 mode info */
462
	struct vm86		*vm86;
463
#endif
464 465 466 467 468
	/* IO permissions: */
	unsigned long		*io_bitmap_ptr;
	unsigned long		iopl;
	/* Max allowed port in the bitmap, in bytes: */
	unsigned		io_bitmap_max;
469

470 471
	mm_segment_t		addr_limit;

472
	unsigned int		sig_on_uaccess_err:1;
473 474
	unsigned int		uaccess_err:1;	/* uaccess failed */

475 476 477 478 479 480
	/* Floating point and extended processor state */
	struct fpu		fpu;
	/*
	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
	 * the end.
	 */
481 482
};

483 484 485 486 487 488 489 490 491
/*
 * Thread-synchronous status.
 *
 * This is different from the flags in that nobody else
 * ever touches our thread-synchronous status, so we don't
 * have to worry about atomic accesses.
 */
#define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/

492 493 494 495 496 497 498
/*
 * Set IOPL bits in EFLAGS from given mask
 */
static inline void native_set_iopl_mask(unsigned mask)
{
#ifdef CONFIG_X86_32
	unsigned int reg;
499

500 501 502 503 504 505 506 507
	asm volatile ("pushfl;"
		      "popl %0;"
		      "andl %1, %0;"
		      "orl %2, %0;"
		      "pushl %0;"
		      "popfl"
		      : "=&r" (reg)
		      : "i" (~X86_EFLAGS_IOPL), "r" (mask));
508 509 510
#endif
}

511 512
static inline void
native_load_sp0(struct tss_struct *tss, struct thread_struct *thread)
513 514 515
{
	tss->x86_tss.sp0 = thread->sp0;
#ifdef CONFIG_X86_32
516
	/* Only happens when SEP is enabled, no need to test "SEP"arately: */
517 518 519 520 521 522
	if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
		tss->x86_tss.ss1 = thread->sysenter_cs;
		wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
	}
#endif
}
523

524 525 526 527 528 529 530
static inline void native_swapgs(void)
{
#ifdef CONFIG_X86_64
	asm volatile("swapgs" ::: "memory");
#endif
}

531
static inline unsigned long current_top_of_stack(void)
532
{
533
#ifdef CONFIG_X86_64
534
	return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
535 536 537 538
#else
	/* sp0 on x86_32 is special in and around vm86 mode. */
	return this_cpu_read_stable(cpu_current_top_of_stack);
#endif
539 540
}

541 542 543
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#else
544
#define __cpuid			native_cpuid
545

546 547
static inline void load_sp0(struct tss_struct *tss,
			    struct thread_struct *thread)
548 549 550 551
{
	native_load_sp0(tss, thread);
}

552
#define set_iopl_mask native_set_iopl_mask
553 554
#endif /* CONFIG_PARAVIRT */

555 556 557 558
/* Free all resources held by a thread. */
extern void release_thread(struct task_struct *);

unsigned long get_wchan(struct task_struct *p);
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

/*
 * Generic CPUID function
 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
 * resulting in stale register contents being returned.
 */
static inline void cpuid(unsigned int op,
			 unsigned int *eax, unsigned int *ebx,
			 unsigned int *ecx, unsigned int *edx)
{
	*eax = op;
	*ecx = 0;
	__cpuid(eax, ebx, ecx, edx);
}

/* Some CPUID calls want 'count' to be placed in ecx */
static inline void cpuid_count(unsigned int op, int count,
			       unsigned int *eax, unsigned int *ebx,
			       unsigned int *ecx, unsigned int *edx)
{
	*eax = op;
	*ecx = count;
	__cpuid(eax, ebx, ecx, edx);
}

/*
 * CPUID functions returning a single datum
 */
static inline unsigned int cpuid_eax(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
592

593 594
	return eax;
}
595

596 597 598 599 600
static inline unsigned int cpuid_ebx(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
601

602 603
	return ebx;
}
604

605 606 607 608 609
static inline unsigned int cpuid_ecx(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
610

611 612
	return ecx;
}
613

614 615 616 617 618
static inline unsigned int cpuid_edx(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
619

620 621 622
	return edx;
}

623
/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
624
static __always_inline void rep_nop(void)
625
{
626
	asm volatile("rep; nop" ::: "memory");
627 628
}

629
static __always_inline void cpu_relax(void)
630 631 632 633
{
	rep_nop();
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647
/*
 * This function forces the icache and prefetched instruction stream to
 * catch up with reality in two very specific cases:
 *
 *  a) Text was modified using one virtual address and is about to be executed
 *     from the same physical page at a different virtual address.
 *
 *  b) Text was modified on a different CPU, may subsequently be
 *     executed on this CPU, and you want to make sure the new version
 *     gets executed.  This generally means you're calling this in a IPI.
 *
 * If you're calling this for a different reason, you're probably doing
 * it wrong.
 */
648 649
static inline void sync_core(void)
{
650
	/*
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	 * There are quite a few ways to do this.  IRET-to-self is nice
	 * because it works on every CPU, at any CPL (so it's compatible
	 * with paravirtualization), and it never exits to a hypervisor.
	 * The only down sides are that it's a bit slow (it seems to be
	 * a bit more than 2x slower than the fastest options) and that
	 * it unmasks NMIs.  The "push %cs" is needed because, in
	 * paravirtual environments, __KERNEL_CS may not be a valid CS
	 * value when we do IRET directly.
	 *
	 * In case NMI unmasking or performance ever becomes a problem,
	 * the next best option appears to be MOV-to-CR2 and an
	 * unconditional jump.  That sequence also works on all CPUs,
	 * but it will fault at CPL3 (i.e. Xen PV and lguest).
	 *
	 * CPUID is the conventional way, but it's nasty: it doesn't
	 * exist on some 486-like CPUs, and it usually exits to a
	 * hypervisor.
	 *
	 * Like all of Linux's memory ordering operations, this is a
	 * compiler barrier as well.
671
	 */
672 673 674 675 676 677 678 679 680 681
	register void *__sp asm(_ASM_SP);

#ifdef CONFIG_X86_32
	asm volatile (
		"pushfl\n\t"
		"pushl %%cs\n\t"
		"pushl $1f\n\t"
		"iret\n\t"
		"1:"
		: "+r" (__sp) : : "memory");
682
#else
683 684 685 686 687 688 689 690 691 692 693 694 695 696
	unsigned int tmp;

	asm volatile (
		"mov %%ss, %0\n\t"
		"pushq %q0\n\t"
		"pushq %%rsp\n\t"
		"addq $8, (%%rsp)\n\t"
		"pushfq\n\t"
		"mov %%cs, %0\n\t"
		"pushq %q0\n\t"
		"pushq $1f\n\t"
		"iretq\n\t"
		"1:"
		: "=&r" (tmp), "+r" (__sp) : : "cc", "memory");
697
#endif
698 699 700
}

extern void select_idle_routine(const struct cpuinfo_x86 *c);
701
extern void amd_e400_c1e_apic_setup(void);
702

703
extern unsigned long		boot_option_idle_override;
704

705
enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
706
			 IDLE_POLL};
707

708 709 710
extern void enable_sep_cpu(void);
extern int sysenter_setup(void);

711
extern void early_trap_init(void);
712
void early_trap_pf_init(void);
713

714
/* Defined in head.S */
715
extern struct desc_ptr		early_gdt_descr;
716 717

extern void cpu_set_gdt(int);
718
extern void switch_to_new_gdt(int);
719
extern void load_fixmap_gdt(int);
720
extern void load_percpu_segment(int);
721 722
extern void cpu_init(void);

723 724
static inline unsigned long get_debugctlmsr(void)
{
P
Peter Zijlstra 已提交
725
	unsigned long debugctlmsr = 0;
726 727 728 729 730 731 732

#ifndef CONFIG_X86_DEBUGCTLMSR
	if (boot_cpu_data.x86 < 6)
		return 0;
#endif
	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);

P
Peter Zijlstra 已提交
733
	return debugctlmsr;
734 735
}

736 737 738 739 740 741 742 743 744
static inline void update_debugctlmsr(unsigned long debugctlmsr)
{
#ifndef CONFIG_X86_DEBUGCTLMSR
	if (boot_cpu_data.x86 < 6)
		return;
#endif
	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
}

745 746
extern void set_task_blockstep(struct task_struct *task, bool on);

747 748
/* Boot loader type from the setup header: */
extern int			bootloader_type;
749
extern int			bootloader_version;
750

751
extern char			ignore_fpu_irq;
752 753 754 755 756

#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
#define ARCH_HAS_PREFETCHW
#define ARCH_HAS_SPINLOCK_PREFETCH

757
#ifdef CONFIG_X86_32
758
# define BASE_PREFETCH		""
759
# define ARCH_HAS_PREFETCH
760
#else
761
# define BASE_PREFETCH		"prefetcht0 %P1"
762 763
#endif

764 765 766 767 768 769
/*
 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
 *
 * It's not worth to care about 3dnow prefetches for the K6
 * because they are microcoded there and very slow.
 */
770 771
static inline void prefetch(const void *x)
{
772
	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
773
			  X86_FEATURE_XMM,
774
			  "m" (*(const char *)x));
775 776
}

777 778 779 780 781
/*
 * 3dnow prefetch to get an exclusive cache line.
 * Useful for spinlocks to avoid one state transition in the
 * cache coherency protocol:
 */
782 783
static inline void prefetchw(const void *x)
{
784 785 786
	alternative_input(BASE_PREFETCH, "prefetchw %P1",
			  X86_FEATURE_3DNOWPREFETCH,
			  "m" (*(const char *)x));
787 788
}

789 790 791 792 793
static inline void spin_lock_prefetch(const void *x)
{
	prefetchw(x);
}

794 795 796
#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
			   TOP_OF_KERNEL_STACK_PADDING)

797 798 799 800
#ifdef CONFIG_X86_32
/*
 * User space process size: 3GB (default).
 */
801
#define IA32_PAGE_OFFSET	PAGE_OFFSET
802
#define TASK_SIZE		PAGE_OFFSET
803
#define TASK_SIZE_MAX		TASK_SIZE
804 805 806 807
#define STACK_TOP		TASK_SIZE
#define STACK_TOP_MAX		STACK_TOP

#define INIT_THREAD  {							  \
808
	.sp0			= TOP_OF_INIT_STACK,			  \
809 810
	.sysenter_cs		= __KERNEL_CS,				  \
	.io_bitmap_ptr		= NULL,					  \
811
	.addr_limit		= KERNEL_DS,				  \
812 813 814
}

/*
815
 * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack.
816
 * This is necessary to guarantee that the entire "struct pt_regs"
817
 * is accessible even if the CPU haven't stored the SS/ESP registers
818 819 820 821 822 823
 * on the stack (interrupt gate does not save these registers
 * when switching to the same priv ring).
 * Therefore beware: accessing the ss/esp fields of the
 * "struct pt_regs" is possible, but they may contain the
 * completely wrong values.
 */
824 825 826 827 828
#define task_pt_regs(task) \
({									\
	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
	((struct pt_regs *)__ptr) - 1;					\
829 830
})

831
#define KSTK_ESP(task)		(task_pt_regs(task)->sp)
832 833 834

#else
/*
835 836 837 838 839 840 841
 * User space process size. 47bits minus one guard page.  The guard
 * page is necessary on Intel CPUs: if a SYSCALL instruction is at
 * the highest possible canonical userspace address, then that
 * syscall will enter the kernel with a non-canonical return
 * address, and SYSRET will explode dangerously.  We avoid this
 * particular problem by preventing anything from being mapped
 * at the maximum canonical address.
842
 */
843
#define TASK_SIZE_MAX	((1UL << 47) - PAGE_SIZE)
844 845 846 847

/* This decides where the kernel will search for a free chunk of vm
 * space during mmap's.
 */
848 849
#define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \
					0xc0000000 : 0xFFFFe000)
850

851
#define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \
852
					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
853
#define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
854
					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
855

856
#define STACK_TOP		TASK_SIZE
857
#define STACK_TOP_MAX		TASK_SIZE_MAX
858

859 860 861
#define INIT_THREAD  {						\
	.sp0			= TOP_OF_INIT_STACK,		\
	.addr_limit		= KERNEL_DS,			\
862 863
}

864
#define task_pt_regs(tsk)	((struct pt_regs *)(tsk)->thread.sp0 - 1)
865
extern unsigned long KSTK_ESP(struct task_struct *task);
866

867 868
#endif /* CONFIG_X86_64 */

B
Brian Gerst 已提交
869 870
extern unsigned long thread_saved_pc(struct task_struct *tsk);

I
Ingo Molnar 已提交
871 872 873
extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
					       unsigned long new_sp);

874 875
/*
 * This decides where the kernel will search for a free chunk of vm
876 877
 * space during mmap's.
 */
878 879
#define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3))
#define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE)
880

881
#define KSTK_EIP(task)		(task_pt_regs(task)->ip)
882

883 884 885 886 887 888 889
/* Get/set a process' ability to use the timestamp counter instruction */
#define GET_TSC_CTL(adr)	get_tsc_mode((adr))
#define SET_TSC_CTL(val)	set_tsc_mode((val))

extern int get_tsc_mode(unsigned long adr);
extern int set_tsc_mode(unsigned int val);

890
/* Register/unregister a process' MPX related resource */
891 892
#define MPX_ENABLE_MANAGEMENT()	mpx_enable_management()
#define MPX_DISABLE_MANAGEMENT()	mpx_disable_management()
893 894

#ifdef CONFIG_X86_INTEL_MPX
895 896
extern int mpx_enable_management(void);
extern int mpx_disable_management(void);
897
#else
898
static inline int mpx_enable_management(void)
899 900 901
{
	return -EINVAL;
}
902
static inline int mpx_disable_management(void)
903 904 905 906 907
{
	return -EINVAL;
}
#endif /* CONFIG_X86_INTEL_MPX */

908
extern u16 amd_get_nb_id(int cpu);
909
extern u32 amd_get_nodes_per_socket(void);
910

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
{
	uint32_t base, eax, signature[3];

	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);

		if (!memcmp(sig, signature, 12) &&
		    (leaves == 0 || ((eax - base) >= leaves)))
			return base;
	}

	return 0;
}

926 927 928 929
extern unsigned long arch_align_stack(unsigned long sp);
extern void free_init_pages(char *what, unsigned long begin, unsigned long end);

void default_idle(void);
930 931 932 933 934
#ifdef	CONFIG_XEN
bool xen_set_default_idle(void);
#else
#define xen_set_default_idle 0
#endif
935 936

void stop_this_cpu(void *dummy);
937
void df_debug(struct pt_regs *regs, long error_code);
H
H. Peter Anvin 已提交
938
#endif /* _ASM_X86_PROCESSOR_H */