intel_ringbuffer.c 38.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drv.h"
33
#include "i915_drm.h"
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41 42 43 44 45 46
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
struct pipe_control {
	struct drm_i915_gem_object *obj;
	volatile u32 *cpu_page;
	u32 gtt_offset;
};

47 48 49 50 51 52 53 54
static inline int ring_space(struct intel_ring_buffer *ring)
{
	int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
	if (space < 0)
		space += ring->size;
	return space;
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68
static u32 i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno;

	seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

69
static int
70
render_ring_flush(struct intel_ring_buffer *ring,
71 72
		  u32	invalidate_domains,
		  u32	flush_domains)
73
{
74
	struct drm_device *dev = ring->dev;
75
	u32 cmd;
76
	int ret;
77

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
	if ((invalidate_domains|flush_domains) &
	    I915_GEM_DOMAIN_RENDER)
		cmd &= ~MI_NO_WRITE_FLUSH;
	if (INTEL_INFO(dev)->gen < 4) {
111
		/*
112 113
		 * On the 965, the sampler cache always gets flushed
		 * and this bit is reserved.
114
		 */
115 116 117 118 119
		if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
			cmd |= MI_READ_FLUSH;
	}
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
		cmd |= MI_EXE_FLUSH;
120

121 122 123
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
	    (IS_G4X(dev) || IS_GEN5(dev)))
		cmd |= MI_INVALIDATE_ISP;
124

125 126 127
	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;
128

129 130 131
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
132 133

	return 0;
134 135
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc = ring->private;
	u32 scratch_addr = pc->gtt_offset + 128;
	int ret;


	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);

	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);

	return 0;
}

static int
gen6_render_ring_flush(struct intel_ring_buffer *ring,
                         u32 invalidate_domains, u32 flush_domains)
{
	u32 flags = 0;
	struct pipe_control *pc = ring->private;
	u32 scratch_addr = pc->gtt_offset + 128;
	int ret;

	/* Force SNB workarounds for PIPE_CONTROL flushes */
	intel_emit_post_sync_nonzero_flush(ring);

	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
	flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
	flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
	flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;

	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* lower dword */
	intel_ring_emit(ring, 0); /* uppwer dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);

	return 0;
}

248
static void ring_write_tail(struct intel_ring_buffer *ring,
249
			    u32 value)
250
{
251
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
252
	I915_WRITE_TAIL(ring, value);
253 254
}

255
u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
256
{
257 258
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
	u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
D
Daniel Vetter 已提交
259
			RING_ACTHD(ring->mmio_base) : ACTHD;
260 261 262 263

	return I915_READ(acthd_reg);
}

264
static int init_ring_common(struct intel_ring_buffer *ring)
265
{
266
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
267
	struct drm_i915_gem_object *obj = ring->obj;
268 269 270
	u32 head;

	/* Stop the ring if it's running. */
271
	I915_WRITE_CTL(ring, 0);
272
	I915_WRITE_HEAD(ring, 0);
273
	ring->write_tail(ring, 0);
274 275

	/* Initialize the ring. */
276
	I915_WRITE_START(ring, obj->gtt_offset);
277
	head = I915_READ_HEAD(ring) & HEAD_ADDR;
278 279 280

	/* G45 ring initialization fails to reset head to zero */
	if (head != 0) {
281 282 283 284 285 286 287
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
			      ring->name,
			      I915_READ_CTL(ring),
			      I915_READ_HEAD(ring),
			      I915_READ_TAIL(ring),
			      I915_READ_START(ring));
288

289
		I915_WRITE_HEAD(ring, 0);
290

291 292 293 294 295 296 297 298 299
		if (I915_READ_HEAD(ring) & HEAD_ADDR) {
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
				  ring->name,
				  I915_READ_CTL(ring),
				  I915_READ_HEAD(ring),
				  I915_READ_TAIL(ring),
				  I915_READ_START(ring));
		}
300 301
	}

302
	I915_WRITE_CTL(ring,
303
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
304
			| RING_REPORT_64K | RING_VALID);
305 306

	/* If the head is still not zero, the ring is dead */
307
	if ((I915_READ_CTL(ring) & RING_VALID) == 0 ||
308
	    I915_READ_START(ring) != obj->gtt_offset ||
309
	    (I915_READ_HEAD(ring) & HEAD_ADDR) != 0) {
310 311 312 313 314 315 316 317
		DRM_ERROR("%s initialization failed "
				"ctl %08x head %08x tail %08x start %08x\n",
				ring->name,
				I915_READ_CTL(ring),
				I915_READ_HEAD(ring),
				I915_READ_TAIL(ring),
				I915_READ_START(ring));
		return -EIO;
318 319
	}

320 321
	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
		i915_kernel_lost_context(ring->dev);
322
	else {
323
		ring->head = I915_READ_HEAD(ring);
324
		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
325
		ring->space = ring_space(ring);
326
	}
327

328 329 330
	return 0;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
static int
init_pipe_control(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc;
	struct drm_i915_gem_object *obj;
	int ret;

	if (ring->private)
		return 0;

	pc = kmalloc(sizeof(*pc), GFP_KERNEL);
	if (!pc)
		return -ENOMEM;

	obj = i915_gem_alloc_object(ring->dev, 4096);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
351 352

	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

	ret = i915_gem_object_pin(obj, 4096, true);
	if (ret)
		goto err_unref;

	pc->gtt_offset = obj->gtt_offset;
	pc->cpu_page =  kmap(obj->pages[0]);
	if (pc->cpu_page == NULL)
		goto err_unpin;

	pc->obj = obj;
	ring->private = pc;
	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(&obj->base);
err:
	kfree(pc);
	return ret;
}

static void
cleanup_pipe_control(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc = ring->private;
	struct drm_i915_gem_object *obj;

	if (!ring->private)
		return;

	obj = pc->obj;
	kunmap(obj->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(&obj->base);

	kfree(pc);
	ring->private = NULL;
}

394
static int init_render_ring(struct intel_ring_buffer *ring)
395
{
396
	struct drm_device *dev = ring->dev;
397
	struct drm_i915_private *dev_priv = dev->dev_private;
398
	int ret = init_ring_common(ring);
399

400
	if (INTEL_INFO(dev)->gen > 3) {
401
		int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH;
402
		I915_WRITE(MI_MODE, mode);
403 404 405 406
		if (IS_GEN7(dev))
			I915_WRITE(GFX_MODE_GEN7,
				   GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
				   GFX_MODE_ENABLE(GFX_REPLAY_MODE));
407
	}
408

409
	if (INTEL_INFO(dev)->gen >= 5) {
410 411 412 413 414
		ret = init_pipe_control(ring);
		if (ret)
			return ret;
	}

415 416 417 418 419
	if (INTEL_INFO(dev)->gen >= 6) {
		I915_WRITE(INSTPM,
			   INSTPM_FORCE_ORDERING << 16 | INSTPM_FORCE_ORDERING);
	}

420 421 422
	return ret;
}

423 424 425 426 427 428 429 430
static void render_ring_cleanup(struct intel_ring_buffer *ring)
{
	if (!ring->private)
		return;

	cleanup_pipe_control(ring);
}

431
static void
432 433 434
update_mboxes(struct intel_ring_buffer *ring,
	    u32 seqno,
	    u32 mmio_offset)
435
{
436 437 438 439
	intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
			      MI_SEMAPHORE_GLOBAL_GTT |
			      MI_SEMAPHORE_REGISTER |
			      MI_SEMAPHORE_UPDATE);
440
	intel_ring_emit(ring, seqno);
441
	intel_ring_emit(ring, mmio_offset);
442 443
}

444 445 446 447 448 449 450 451 452
/**
 * gen6_add_request - Update the semaphore mailbox registers
 * 
 * @ring - ring that is adding a request
 * @seqno - return seqno stuck into the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
453 454
static int
gen6_add_request(struct intel_ring_buffer *ring,
455
		 u32 *seqno)
456
{
457 458
	u32 mbox1_reg;
	u32 mbox2_reg;
459 460 461 462 463 464
	int ret;

	ret = intel_ring_begin(ring, 10);
	if (ret)
		return ret;

465 466
	mbox1_reg = ring->signal_mbox[0];
	mbox2_reg = ring->signal_mbox[1];
467

468 469 470 471
	*seqno = i915_gem_get_seqno(ring->dev);

	update_mboxes(ring, *seqno, mbox1_reg);
	update_mboxes(ring, *seqno, mbox2_reg);
472 473
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
474
	intel_ring_emit(ring, *seqno);
475 476 477 478 479 480
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_advance(ring);

	return 0;
}

481 482 483 484 485 486 487 488 489 490 491
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
static int
intel_ring_sync(struct intel_ring_buffer *waiter,
		struct intel_ring_buffer *signaller,
		int ring,
492 493 494
		u32 seqno)
{
	int ret;
495 496 497
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
498

499
	ret = intel_ring_begin(waiter, 4);
500 501 502
	if (ret)
		return ret;

503 504 505 506 507
	intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
	intel_ring_emit(waiter, seqno);
	intel_ring_emit(waiter, 0);
	intel_ring_emit(waiter, MI_NOOP);
	intel_ring_advance(waiter);
508 509 510 511

	return 0;
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
/* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
int
render_ring_sync_to(struct intel_ring_buffer *waiter,
		    struct intel_ring_buffer *signaller,
		    u32 seqno)
{
	WARN_ON(signaller->semaphore_register[RCS] == MI_SEMAPHORE_SYNC_INVALID);
	return intel_ring_sync(waiter,
			       signaller,
			       RCS,
			       seqno);
}

/* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
int
gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
		      struct intel_ring_buffer *signaller,
		      u32 seqno)
{
	WARN_ON(signaller->semaphore_register[VCS] == MI_SEMAPHORE_SYNC_INVALID);
	return intel_ring_sync(waiter,
			       signaller,
			       VCS,
			       seqno);
}

/* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
int
gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
		      struct intel_ring_buffer *signaller,
		      u32 seqno)
{
	WARN_ON(signaller->semaphore_register[BCS] == MI_SEMAPHORE_SYNC_INVALID);
	return intel_ring_sync(waiter,
			       signaller,
			       BCS,
			       seqno);
}



553 554
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
do {									\
555 556
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
		 PIPE_CONTROL_DEPTH_STALL);				\
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
	intel_ring_emit(ring__, 0);							\
	intel_ring_emit(ring__, 0);							\
} while (0)

static int
pc_render_add_request(struct intel_ring_buffer *ring,
		      u32 *result)
{
	struct drm_device *dev = ring->dev;
	u32 seqno = i915_gem_get_seqno(dev);
	struct pipe_control *pc = ring->private;
	u32 scratch_addr = pc->gtt_offset + 128;
	int ret;

	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
	 * incoherent with writes to memory, i.e. completely fubar,
	 * so we need to use PIPE_NOTIFY instead.
	 *
	 * However, we also need to workaround the qword write
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
	 * memory before requesting an interrupt.
	 */
	ret = intel_ring_begin(ring, 32);
	if (ret)
		return ret;

584
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
585 586
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
587 588 589 590 591 592 593 594 595 596 597 598 599 600
	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, 0);
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128; /* write to separate cachelines */
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
601
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
602 603
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
604 605 606 607 608 609 610 611 612 613
			PIPE_CONTROL_NOTIFY);
	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);

	*result = seqno;
	return 0;
}

614 615 616 617 618 619 620
static int
render_ring_add_request(struct intel_ring_buffer *ring,
			u32 *result)
{
	struct drm_device *dev = ring->dev;
	u32 seqno = i915_gem_get_seqno(dev);
	int ret;
621

622 623 624
	ret = intel_ring_begin(ring, 4);
	if (ret)
		return ret;
625

626 627 628 629
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
630
	intel_ring_advance(ring);
631

632 633
	*result = seqno;
	return 0;
634 635
}

636
static u32
637
ring_get_seqno(struct intel_ring_buffer *ring)
638
{
639 640 641
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

642 643 644 645 646 647 648
static u32
pc_render_get_seqno(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc = ring->private;
	return pc->cpu_page[0];
}

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
static void
ironlake_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->gt_irq_mask &= ~mask;
	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
	POSTING_READ(GTIMR);
}

static void
ironlake_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->gt_irq_mask |= mask;
	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
	POSTING_READ(GTIMR);
}

static void
i915_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->irq_mask &= ~mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ(IMR);
}

static void
i915_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->irq_mask |= mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ(IMR);
}

681
static bool
682
render_ring_get_irq(struct intel_ring_buffer *ring)
683
{
684
	struct drm_device *dev = ring->dev;
685
	drm_i915_private_t *dev_priv = dev->dev_private;
686

687 688 689
	if (!dev->irq_enabled)
		return false;

690
	spin_lock(&ring->irq_lock);
691
	if (ring->irq_refcount++ == 0) {
692
		if (HAS_PCH_SPLIT(dev))
693 694
			ironlake_enable_irq(dev_priv,
					    GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
695 696 697
		else
			i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
	}
698
	spin_unlock(&ring->irq_lock);
699 700

	return true;
701 702
}

703
static void
704
render_ring_put_irq(struct intel_ring_buffer *ring)
705
{
706
	struct drm_device *dev = ring->dev;
707
	drm_i915_private_t *dev_priv = dev->dev_private;
708

709
	spin_lock(&ring->irq_lock);
710
	if (--ring->irq_refcount == 0) {
711
		if (HAS_PCH_SPLIT(dev))
712 713 714
			ironlake_disable_irq(dev_priv,
					     GT_USER_INTERRUPT |
					     GT_PIPE_NOTIFY);
715 716 717
		else
			i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
	}
718
	spin_unlock(&ring->irq_lock);
719 720
}

721
void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
722
{
723
	struct drm_device *dev = ring->dev;
724
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	u32 mmio = 0;

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
	if (IS_GEN7(dev)) {
		switch (ring->id) {
		case RING_RENDER:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case RING_BLT:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		case RING_BSD:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		}
	} else if (IS_GEN6(ring->dev)) {
		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
	} else {
		mmio = RING_HWS_PGA(ring->mmio_base);
	}

748 749
	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
	POSTING_READ(mmio);
750 751
}

752
static int
753 754 755
bsd_ring_flush(struct intel_ring_buffer *ring,
	       u32     invalidate_domains,
	       u32     flush_domains)
756
{
757 758 759 760 761 762 763 764 765 766
	int ret;

	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;

	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
	return 0;
767 768
}

769
static int
770
ring_add_request(struct intel_ring_buffer *ring,
771
		 u32 *result)
772 773
{
	u32 seqno;
774 775 776 777 778
	int ret;

	ret = intel_ring_begin(ring, 4);
	if (ret)
		return ret;
779

780
	seqno = i915_gem_get_seqno(ring->dev);
781

782 783 784 785 786
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_advance(ring);
787

788 789
	*result = seqno;
	return 0;
790 791
}

792 793 794 795 796 797 798 799 800 801 802
static bool
gen7_blt_ring_get_irq(struct intel_ring_buffer *ring)
{
	/* The BLT ring on IVB appears to have broken synchronization
	 * between the seqno write and the interrupt, so that the
	 * interrupt appears first.  Returning false here makes
	 * i915_wait_request() do a polling loop, instead.
	 */
	return false;
}

803 804 805 806
static bool
gen6_ring_get_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
{
	struct drm_device *dev = ring->dev;
807
	drm_i915_private_t *dev_priv = dev->dev_private;
808 809 810 811

	if (!dev->irq_enabled)
	       return false;

812
	spin_lock(&ring->irq_lock);
813
	if (ring->irq_refcount++ == 0) {
814 815 816 817
		ring->irq_mask &= ~rflag;
		I915_WRITE_IMR(ring, ring->irq_mask);
		ironlake_enable_irq(dev_priv, gflag);
	}
818
	spin_unlock(&ring->irq_lock);
819 820 821 822 823 824 825 826

	return true;
}

static void
gen6_ring_put_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
{
	struct drm_device *dev = ring->dev;
827
	drm_i915_private_t *dev_priv = dev->dev_private;
828

829
	spin_lock(&ring->irq_lock);
830
	if (--ring->irq_refcount == 0) {
831 832 833
		ring->irq_mask |= rflag;
		I915_WRITE_IMR(ring, ring->irq_mask);
		ironlake_disable_irq(dev_priv, gflag);
834
	}
835
	spin_unlock(&ring->irq_lock);
836 837
}

838
static bool
839
bsd_ring_get_irq(struct intel_ring_buffer *ring)
840
{
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	struct drm_device *dev = ring->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;

	if (!dev->irq_enabled)
		return false;

	spin_lock(&ring->irq_lock);
	if (ring->irq_refcount++ == 0) {
		if (IS_G4X(dev))
			i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
		else
			ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
	}
	spin_unlock(&ring->irq_lock);

	return true;
857 858 859 860
}
static void
bsd_ring_put_irq(struct intel_ring_buffer *ring)
{
861 862 863 864 865 866 867 868 869 870 871
	struct drm_device *dev = ring->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;

	spin_lock(&ring->irq_lock);
	if (--ring->irq_refcount == 0) {
		if (IS_G4X(dev))
			i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
		else
			ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
	}
	spin_unlock(&ring->irq_lock);
872 873 874
}

static int
875
ring_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 length)
876
{
877
	int ret;
878

879 880 881 882
	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;

883
	intel_ring_emit(ring,
884
			MI_BATCH_BUFFER_START | (2 << 6) |
885
			MI_BATCH_NON_SECURE_I965);
886
	intel_ring_emit(ring, offset);
887 888
	intel_ring_advance(ring);

889 890 891
	return 0;
}

892
static int
893
render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
894
				u32 offset, u32 len)
895
{
896
	struct drm_device *dev = ring->dev;
897
	int ret;
898

899 900 901 902
	if (IS_I830(dev) || IS_845G(dev)) {
		ret = intel_ring_begin(ring, 4);
		if (ret)
			return ret;
903

904 905 906 907 908 909 910 911
		intel_ring_emit(ring, MI_BATCH_BUFFER);
		intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
		intel_ring_emit(ring, offset + len - 8);
		intel_ring_emit(ring, 0);
	} else {
		ret = intel_ring_begin(ring, 2);
		if (ret)
			return ret;
912

913 914 915 916 917
		if (INTEL_INFO(dev)->gen >= 4) {
			intel_ring_emit(ring,
					MI_BATCH_BUFFER_START | (2 << 6) |
					MI_BATCH_NON_SECURE_I965);
			intel_ring_emit(ring, offset);
918
		} else {
919 920 921
			intel_ring_emit(ring,
					MI_BATCH_BUFFER_START | (2 << 6));
			intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
922 923
		}
	}
924
	intel_ring_advance(ring);
925 926 927 928

	return 0;
}

929
static void cleanup_status_page(struct intel_ring_buffer *ring)
930
{
931
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
932
	struct drm_i915_gem_object *obj;
933

934 935
	obj = ring->status_page.obj;
	if (obj == NULL)
936 937
		return;

938
	kunmap(obj->pages[0]);
939
	i915_gem_object_unpin(obj);
940
	drm_gem_object_unreference(&obj->base);
941
	ring->status_page.obj = NULL;
942 943 944 945

	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
}

946
static int init_status_page(struct intel_ring_buffer *ring)
947
{
948
	struct drm_device *dev = ring->dev;
949
	drm_i915_private_t *dev_priv = dev->dev_private;
950
	struct drm_i915_gem_object *obj;
951 952 953 954 955 956 957 958
	int ret;

	obj = i915_gem_alloc_object(dev, 4096);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate status page\n");
		ret = -ENOMEM;
		goto err;
	}
959 960

	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
961

962
	ret = i915_gem_object_pin(obj, 4096, true);
963 964 965 966
	if (ret != 0) {
		goto err_unref;
	}

967 968
	ring->status_page.gfx_addr = obj->gtt_offset;
	ring->status_page.page_addr = kmap(obj->pages[0]);
969
	if (ring->status_page.page_addr == NULL) {
970 971 972
		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
		goto err_unpin;
	}
973 974
	ring->status_page.obj = obj;
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
975

976
	intel_ring_setup_status_page(ring);
977 978
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			ring->name, ring->status_page.gfx_addr);
979 980 981 982 983 984

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
985
	drm_gem_object_unreference(&obj->base);
986
err:
987
	return ret;
988 989
}

990
int intel_init_ring_buffer(struct drm_device *dev,
991
			   struct intel_ring_buffer *ring)
992
{
993
	struct drm_i915_gem_object *obj;
994 995
	int ret;

996
	ring->dev = dev;
997 998
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
999
	INIT_LIST_HEAD(&ring->gpu_write_list);
1000

1001
	init_waitqueue_head(&ring->irq_queue);
1002
	spin_lock_init(&ring->irq_lock);
1003
	ring->irq_mask = ~0;
1004

1005
	if (I915_NEED_GFX_HWS(dev)) {
1006
		ret = init_status_page(ring);
1007 1008 1009
		if (ret)
			return ret;
	}
1010

1011
	obj = i915_gem_alloc_object(dev, ring->size);
1012 1013
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate ringbuffer\n");
1014
		ret = -ENOMEM;
1015
		goto err_hws;
1016 1017
	}

1018
	ring->obj = obj;
1019

1020
	ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1021 1022
	if (ret)
		goto err_unref;
1023

1024
	ring->map.size = ring->size;
1025
	ring->map.offset = dev->agp->base + obj->gtt_offset;
1026 1027 1028 1029 1030 1031 1032
	ring->map.type = 0;
	ring->map.flags = 0;
	ring->map.mtrr = 0;

	drm_core_ioremap_wc(&ring->map, dev);
	if (ring->map.handle == NULL) {
		DRM_ERROR("Failed to map ringbuffer.\n");
1033
		ret = -EINVAL;
1034
		goto err_unpin;
1035 1036
	}

1037
	ring->virtual_start = ring->map.handle;
1038
	ret = ring->init(ring);
1039 1040
	if (ret)
		goto err_unmap;
1041

1042 1043 1044 1045 1046 1047 1048 1049
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = ring->size;
	if (IS_I830(ring->dev))
		ring->effective_size -= 128;

1050
	return 0;
1051 1052 1053 1054 1055 1056

err_unmap:
	drm_core_ioremapfree(&ring->map, dev);
err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
1057 1058
	drm_gem_object_unreference(&obj->base);
	ring->obj = NULL;
1059
err_hws:
1060
	cleanup_status_page(ring);
1061
	return ret;
1062 1063
}

1064
void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1065
{
1066 1067 1068
	struct drm_i915_private *dev_priv;
	int ret;

1069
	if (ring->obj == NULL)
1070 1071
		return;

1072 1073
	/* Disable the ring buffer. The ring must be idle at this point */
	dev_priv = ring->dev->dev_private;
1074
	ret = intel_wait_ring_idle(ring);
1075 1076 1077 1078
	if (ret)
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

1079 1080
	I915_WRITE_CTL(ring, 0);

1081
	drm_core_ioremapfree(&ring->map, ring->dev);
1082

1083 1084 1085
	i915_gem_object_unpin(ring->obj);
	drm_gem_object_unreference(&ring->obj->base);
	ring->obj = NULL;
1086

Z
Zou Nan hai 已提交
1087 1088 1089
	if (ring->cleanup)
		ring->cleanup(ring);

1090
	cleanup_status_page(ring);
1091 1092
}

1093
static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1094
{
1095
	unsigned int *virt;
1096
	int rem = ring->size - ring->tail;
1097

1098
	if (ring->space < rem) {
1099
		int ret = intel_wait_ring_buffer(ring, rem);
1100 1101 1102 1103
		if (ret)
			return ret;
	}

1104
	virt = (unsigned int *)(ring->virtual_start + ring->tail);
1105 1106
	rem /= 8;
	while (rem--) {
1107
		*virt++ = MI_NOOP;
1108 1109
		*virt++ = MI_NOOP;
	}
1110

1111
	ring->tail = 0;
1112
	ring->space = ring_space(ring);
1113 1114 1115 1116

	return 0;
}

1117
int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
1118
{
1119
	struct drm_device *dev = ring->dev;
1120
	struct drm_i915_private *dev_priv = dev->dev_private;
1121
	unsigned long end;
1122 1123
	u32 head;

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	/* If the reported head position has wrapped or hasn't advanced,
	 * fallback to the slow and accurate path.
	 */
	head = intel_read_status_page(ring, 4);
	if (head > ring->head) {
		ring->head = head;
		ring->space = ring_space(ring);
		if (ring->space >= n)
			return 0;
	}

C
Chris Wilson 已提交
1135
	trace_i915_ring_wait_begin(ring);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	if (drm_core_check_feature(dev, DRIVER_GEM))
		/* With GEM the hangcheck timer should kick us out of the loop,
		 * leaving it early runs the risk of corrupting GEM state (due
		 * to running on almost untested codepaths). But on resume
		 * timers don't work yet, so prevent a complete hang in that
		 * case by choosing an insanely large timeout. */
		end = jiffies + 60 * HZ;
	else
		end = jiffies + 3 * HZ;

1146
	do {
1147 1148
		ring->head = I915_READ_HEAD(ring);
		ring->space = ring_space(ring);
1149
		if (ring->space >= n) {
C
Chris Wilson 已提交
1150
			trace_i915_ring_wait_end(ring);
1151 1152 1153 1154 1155 1156 1157 1158
			return 0;
		}

		if (dev->primary->master) {
			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
			if (master_priv->sarea_priv)
				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
		}
1159

1160
		msleep(1);
1161 1162
		if (atomic_read(&dev_priv->mm.wedged))
			return -EAGAIN;
1163
	} while (!time_after(jiffies, end));
C
Chris Wilson 已提交
1164
	trace_i915_ring_wait_end(ring);
1165 1166
	return -EBUSY;
}
1167

1168 1169
int intel_ring_begin(struct intel_ring_buffer *ring,
		     int num_dwords)
1170
{
1171
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1172
	int n = 4*num_dwords;
1173
	int ret;
1174

1175 1176 1177
	if (unlikely(atomic_read(&dev_priv->mm.wedged)))
		return -EIO;

1178
	if (unlikely(ring->tail + n > ring->effective_size)) {
1179 1180 1181 1182
		ret = intel_wrap_ring_buffer(ring);
		if (unlikely(ret))
			return ret;
	}
1183

1184 1185 1186 1187 1188
	if (unlikely(ring->space < n)) {
		ret = intel_wait_ring_buffer(ring, n);
		if (unlikely(ret))
			return ret;
	}
1189 1190

	ring->space -= n;
1191
	return 0;
1192
}
1193

1194
void intel_ring_advance(struct intel_ring_buffer *ring)
1195
{
1196
	ring->tail &= ring->size - 1;
1197
	ring->write_tail(ring, ring->tail);
1198
}
1199

1200
static const struct intel_ring_buffer render_ring = {
1201
	.name			= "render ring",
1202
	.id			= RING_RENDER,
1203
	.mmio_base		= RENDER_RING_BASE,
1204 1205
	.size			= 32 * PAGE_SIZE,
	.init			= init_render_ring,
1206
	.write_tail		= ring_write_tail,
1207 1208
	.flush			= render_ring_flush,
	.add_request		= render_ring_add_request,
1209 1210 1211
	.get_seqno		= ring_get_seqno,
	.irq_get		= render_ring_get_irq,
	.irq_put		= render_ring_put_irq,
1212
	.dispatch_execbuffer	= render_ring_dispatch_execbuffer,
1213
	.cleanup		= render_ring_cleanup,
1214 1215 1216 1217 1218
	.sync_to		= render_ring_sync_to,
	.semaphore_register	= {MI_SEMAPHORE_SYNC_INVALID,
				   MI_SEMAPHORE_SYNC_RV,
				   MI_SEMAPHORE_SYNC_RB},
	.signal_mbox		= {GEN6_VRSYNC, GEN6_BRSYNC},
1219
};
1220 1221 1222

/* ring buffer for bit-stream decoder */

1223
static const struct intel_ring_buffer bsd_ring = {
1224
	.name                   = "bsd ring",
1225
	.id			= RING_BSD,
1226
	.mmio_base		= BSD_RING_BASE,
1227
	.size			= 32 * PAGE_SIZE,
1228
	.init			= init_ring_common,
1229
	.write_tail		= ring_write_tail,
1230
	.flush			= bsd_ring_flush,
1231
	.add_request		= ring_add_request,
1232 1233 1234
	.get_seqno		= ring_get_seqno,
	.irq_get		= bsd_ring_get_irq,
	.irq_put		= bsd_ring_put_irq,
1235
	.dispatch_execbuffer	= ring_dispatch_execbuffer,
1236
};
1237

1238

1239
static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1240
				     u32 value)
1241
{
1242
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1243 1244

       /* Every tail move must follow the sequence below */
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
	I915_WRITE(GEN6_BSD_RNCID, 0x0);

	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
		GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0,
		50))
	DRM_ERROR("timed out waiting for IDLE Indicator\n");

	I915_WRITE_TAIL(ring, value);
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
1259 1260
}

1261
static int gen6_ring_flush(struct intel_ring_buffer *ring,
1262
			   u32 invalidate, u32 flush)
1263
{
1264
	uint32_t cmd;
1265 1266 1267 1268 1269 1270
	int ret;

	ret = intel_ring_begin(ring, 4);
	if (ret)
		return ret;

1271 1272 1273 1274
	cmd = MI_FLUSH_DW;
	if (invalidate & I915_GEM_GPU_DOMAINS)
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
	intel_ring_emit(ring, cmd);
1275 1276
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
1277
	intel_ring_emit(ring, MI_NOOP);
1278 1279
	intel_ring_advance(ring);
	return 0;
1280 1281 1282
}

static int
1283
gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1284
			      u32 offset, u32 len)
1285
{
1286
	int ret;
1287

1288 1289 1290
	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;
1291

1292 1293 1294 1295
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
	/* bit0-7 is the length on GEN6+ */
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1296

1297
	return 0;
1298 1299
}

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
static bool
gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
{
	return gen6_ring_get_irq(ring,
				 GT_USER_INTERRUPT,
				 GEN6_RENDER_USER_INTERRUPT);
}

static void
gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
{
	return gen6_ring_put_irq(ring,
				 GT_USER_INTERRUPT,
				 GEN6_RENDER_USER_INTERRUPT);
}

1316
static bool
1317 1318
gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
{
1319 1320 1321
	return gen6_ring_get_irq(ring,
				 GT_GEN6_BSD_USER_INTERRUPT,
				 GEN6_BSD_USER_INTERRUPT);
1322 1323 1324 1325 1326
}

static void
gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
{
1327 1328 1329
	return gen6_ring_put_irq(ring,
				 GT_GEN6_BSD_USER_INTERRUPT,
				 GEN6_BSD_USER_INTERRUPT);
1330 1331
}

1332
/* ring buffer for Video Codec for Gen6+ */
1333
static const struct intel_ring_buffer gen6_bsd_ring = {
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	.name			= "gen6 bsd ring",
	.id			= RING_BSD,
	.mmio_base		= GEN6_BSD_RING_BASE,
	.size			= 32 * PAGE_SIZE,
	.init			= init_ring_common,
	.write_tail		= gen6_bsd_ring_write_tail,
	.flush			= gen6_ring_flush,
	.add_request		= gen6_add_request,
	.get_seqno		= ring_get_seqno,
	.irq_get		= gen6_bsd_ring_get_irq,
	.irq_put		= gen6_bsd_ring_put_irq,
	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1346 1347 1348 1349 1350
	.sync_to		= gen6_bsd_ring_sync_to,
	.semaphore_register	= {MI_SEMAPHORE_SYNC_VR,
				   MI_SEMAPHORE_SYNC_INVALID,
				   MI_SEMAPHORE_SYNC_VB},
	.signal_mbox		= {GEN6_RVSYNC, GEN6_BVSYNC},
1351 1352 1353 1354
};

/* Blitter support (SandyBridge+) */

1355
static bool
1356
blt_ring_get_irq(struct intel_ring_buffer *ring)
1357
{
1358 1359 1360
	return gen6_ring_get_irq(ring,
				 GT_BLT_USER_INTERRUPT,
				 GEN6_BLITTER_USER_INTERRUPT);
1361
}
1362

1363
static void
1364
blt_ring_put_irq(struct intel_ring_buffer *ring)
1365
{
1366 1367 1368
	gen6_ring_put_irq(ring,
			  GT_BLT_USER_INTERRUPT,
			  GEN6_BLITTER_USER_INTERRUPT);
1369 1370
}

Z
Zou Nan hai 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389

/* Workaround for some stepping of SNB,
 * each time when BLT engine ring tail moved,
 * the first command in the ring to be parsed
 * should be MI_BATCH_BUFFER_START
 */
#define NEED_BLT_WORKAROUND(dev) \
	(IS_GEN6(dev) && (dev->pdev->revision < 8))

static inline struct drm_i915_gem_object *
to_blt_workaround(struct intel_ring_buffer *ring)
{
	return ring->private;
}

static int blt_ring_init(struct intel_ring_buffer *ring)
{
	if (NEED_BLT_WORKAROUND(ring->dev)) {
		struct drm_i915_gem_object *obj;
1390
		u32 *ptr;
Z
Zou Nan hai 已提交
1391 1392
		int ret;

1393
		obj = i915_gem_alloc_object(ring->dev, 4096);
Z
Zou Nan hai 已提交
1394 1395 1396
		if (obj == NULL)
			return -ENOMEM;

1397
		ret = i915_gem_object_pin(obj, 4096, true);
Z
Zou Nan hai 已提交
1398 1399 1400 1401 1402 1403
		if (ret) {
			drm_gem_object_unreference(&obj->base);
			return ret;
		}

		ptr = kmap(obj->pages[0]);
1404 1405
		*ptr++ = MI_BATCH_BUFFER_END;
		*ptr++ = MI_NOOP;
Z
Zou Nan hai 已提交
1406 1407
		kunmap(obj->pages[0]);

1408
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
Z
Zou Nan hai 已提交
1409
		if (ret) {
1410
			i915_gem_object_unpin(obj);
Z
Zou Nan hai 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
			drm_gem_object_unreference(&obj->base);
			return ret;
		}

		ring->private = obj;
	}

	return init_ring_common(ring);
}

static int blt_ring_begin(struct intel_ring_buffer *ring,
			  int num_dwords)
{
	if (ring->private) {
		int ret = intel_ring_begin(ring, num_dwords+2);
		if (ret)
			return ret;

		intel_ring_emit(ring, MI_BATCH_BUFFER_START);
		intel_ring_emit(ring, to_blt_workaround(ring)->gtt_offset);

		return 0;
	} else
		return intel_ring_begin(ring, 4);
}

1437
static int blt_ring_flush(struct intel_ring_buffer *ring,
1438
			  u32 invalidate, u32 flush)
Z
Zou Nan hai 已提交
1439
{
1440
	uint32_t cmd;
1441 1442 1443 1444 1445 1446
	int ret;

	ret = blt_ring_begin(ring, 4);
	if (ret)
		return ret;

1447 1448 1449 1450
	cmd = MI_FLUSH_DW;
	if (invalidate & I915_GEM_DOMAIN_RENDER)
		cmd |= MI_INVALIDATE_TLB;
	intel_ring_emit(ring, cmd);
1451 1452
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
1453
	intel_ring_emit(ring, MI_NOOP);
1454 1455
	intel_ring_advance(ring);
	return 0;
Z
Zou Nan hai 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
}

static void blt_ring_cleanup(struct intel_ring_buffer *ring)
{
	if (!ring->private)
		return;

	i915_gem_object_unpin(ring->private);
	drm_gem_object_unreference(ring->private);
	ring->private = NULL;
}

1468
static const struct intel_ring_buffer gen6_blt_ring = {
1469 1470 1471 1472 1473 1474 1475 1476 1477
	.name			= "blt ring",
	.id			= RING_BLT,
	.mmio_base		= BLT_RING_BASE,
	.size			= 32 * PAGE_SIZE,
	.init			= blt_ring_init,
	.write_tail		= ring_write_tail,
	.flush			= blt_ring_flush,
	.add_request		= gen6_add_request,
	.get_seqno		= ring_get_seqno,
1478 1479
	.irq_get		= blt_ring_get_irq,
	.irq_put		= blt_ring_put_irq,
1480
	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1481 1482 1483 1484 1485 1486
	.cleanup		= blt_ring_cleanup,
	.sync_to		= gen6_blt_ring_sync_to,
	.semaphore_register	= {MI_SEMAPHORE_SYNC_BR,
				   MI_SEMAPHORE_SYNC_BV,
				   MI_SEMAPHORE_SYNC_INVALID},
	.signal_mbox		= {GEN6_RBSYNC, GEN6_VBSYNC},
1487 1488
};

1489 1490 1491
int intel_init_render_ring_buffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1492
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1493

1494 1495 1496
	*ring = render_ring;
	if (INTEL_INFO(dev)->gen >= 6) {
		ring->add_request = gen6_add_request;
1497
		ring->flush = gen6_render_ring_flush;
1498 1499
		ring->irq_get = gen6_render_ring_get_irq;
		ring->irq_put = gen6_render_ring_put_irq;
1500 1501 1502
	} else if (IS_GEN5(dev)) {
		ring->add_request = pc_render_add_request;
		ring->get_seqno = pc_render_get_seqno;
1503
	}
1504 1505

	if (!I915_NEED_GFX_HWS(dev)) {
1506 1507
		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
		memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1508 1509
	}

1510
	return intel_init_ring_buffer(dev, ring);
1511 1512
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];

	*ring = render_ring;
	if (INTEL_INFO(dev)->gen >= 6) {
		ring->add_request = gen6_add_request;
		ring->irq_get = gen6_render_ring_get_irq;
		ring->irq_put = gen6_render_ring_put_irq;
	} else if (IS_GEN5(dev)) {
		ring->add_request = pc_render_add_request;
		ring->get_seqno = pc_render_get_seqno;
	}

1528 1529 1530
	if (!I915_NEED_GFX_HWS(dev))
		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);

	ring->size = size;
	ring->effective_size = ring->size;
	if (IS_I830(ring->dev))
		ring->effective_size -= 128;

	ring->map.offset = start;
	ring->map.size = size;
	ring->map.type = 0;
	ring->map.flags = 0;
	ring->map.mtrr = 0;

	drm_core_ioremap_wc(&ring->map, dev);
	if (ring->map.handle == NULL) {
		DRM_ERROR("can not ioremap virtual address for"
			  " ring buffer\n");
		return -ENOMEM;
	}

	ring->virtual_start = (void __force __iomem *)ring->map.handle;
	return 0;
}

1558 1559 1560
int intel_init_bsd_ring_buffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1561
	struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1562

1563
	if (IS_GEN6(dev) || IS_GEN7(dev))
1564
		*ring = gen6_bsd_ring;
1565
	else
1566
		*ring = bsd_ring;
1567

1568
	return intel_init_ring_buffer(dev, ring);
1569
}
1570 1571 1572 1573

int intel_init_blt_ring_buffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1574
	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1575

1576
	*ring = gen6_blt_ring;
1577

1578 1579 1580
	if (IS_GEN7(dev))
		ring->irq_get = gen7_blt_ring_get_irq;

1581
	return intel_init_ring_buffer(dev, ring);
1582
}