intel_ringbuffer.c 37.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drv.h"
33
#include "i915_drm.h"
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41 42 43 44 45 46
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
struct pipe_control {
	struct drm_i915_gem_object *obj;
	volatile u32 *cpu_page;
	u32 gtt_offset;
};

47 48 49 50 51 52 53 54
static inline int ring_space(struct intel_ring_buffer *ring)
{
	int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
	if (space < 0)
		space += ring->size;
	return space;
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68
static u32 i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno;

	seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

69
static int
70
render_ring_flush(struct intel_ring_buffer *ring,
71 72
		  u32	invalidate_domains,
		  u32	flush_domains)
73
{
74
	struct drm_device *dev = ring->dev;
75
	u32 cmd;
76
	int ret;
77

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
	if ((invalidate_domains|flush_domains) &
	    I915_GEM_DOMAIN_RENDER)
		cmd &= ~MI_NO_WRITE_FLUSH;
	if (INTEL_INFO(dev)->gen < 4) {
111
		/*
112 113
		 * On the 965, the sampler cache always gets flushed
		 * and this bit is reserved.
114
		 */
115 116 117 118 119
		if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
			cmd |= MI_READ_FLUSH;
	}
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
		cmd |= MI_EXE_FLUSH;
120

121 122 123
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
	    (IS_G4X(dev) || IS_GEN5(dev)))
		cmd |= MI_INVALIDATE_ISP;
124

125 126 127
	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;
128

129 130 131
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
132 133

	return 0;
134 135
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc = ring->private;
	u32 scratch_addr = pc->gtt_offset + 128;
	int ret;


	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);

	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);

	return 0;
}

static int
gen6_render_ring_flush(struct intel_ring_buffer *ring,
                         u32 invalidate_domains, u32 flush_domains)
{
	u32 flags = 0;
	struct pipe_control *pc = ring->private;
	u32 scratch_addr = pc->gtt_offset + 128;
	int ret;

	/* Force SNB workarounds for PIPE_CONTROL flushes */
	intel_emit_post_sync_nonzero_flush(ring);

	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
	flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
	flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
	flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;

	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* lower dword */
	intel_ring_emit(ring, 0); /* uppwer dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);

	return 0;
}

248
static void ring_write_tail(struct intel_ring_buffer *ring,
249
			    u32 value)
250
{
251
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
252
	I915_WRITE_TAIL(ring, value);
253 254
}

255
u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
256
{
257 258
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
	u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
D
Daniel Vetter 已提交
259
			RING_ACTHD(ring->mmio_base) : ACTHD;
260 261 262 263

	return I915_READ(acthd_reg);
}

264
static int init_ring_common(struct intel_ring_buffer *ring)
265
{
266
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
267
	struct drm_i915_gem_object *obj = ring->obj;
268 269 270
	u32 head;

	/* Stop the ring if it's running. */
271
	I915_WRITE_CTL(ring, 0);
272
	I915_WRITE_HEAD(ring, 0);
273
	ring->write_tail(ring, 0);
274 275

	/* Initialize the ring. */
276
	I915_WRITE_START(ring, obj->gtt_offset);
277
	head = I915_READ_HEAD(ring) & HEAD_ADDR;
278 279 280

	/* G45 ring initialization fails to reset head to zero */
	if (head != 0) {
281 282 283 284 285 286 287
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
			      ring->name,
			      I915_READ_CTL(ring),
			      I915_READ_HEAD(ring),
			      I915_READ_TAIL(ring),
			      I915_READ_START(ring));
288

289
		I915_WRITE_HEAD(ring, 0);
290

291 292 293 294 295 296 297 298 299
		if (I915_READ_HEAD(ring) & HEAD_ADDR) {
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
				  ring->name,
				  I915_READ_CTL(ring),
				  I915_READ_HEAD(ring),
				  I915_READ_TAIL(ring),
				  I915_READ_START(ring));
		}
300 301
	}

302
	I915_WRITE_CTL(ring,
303
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
304
			| RING_REPORT_64K | RING_VALID);
305 306

	/* If the head is still not zero, the ring is dead */
307
	if ((I915_READ_CTL(ring) & RING_VALID) == 0 ||
308
	    I915_READ_START(ring) != obj->gtt_offset ||
309
	    (I915_READ_HEAD(ring) & HEAD_ADDR) != 0) {
310 311 312 313 314 315 316 317
		DRM_ERROR("%s initialization failed "
				"ctl %08x head %08x tail %08x start %08x\n",
				ring->name,
				I915_READ_CTL(ring),
				I915_READ_HEAD(ring),
				I915_READ_TAIL(ring),
				I915_READ_START(ring));
		return -EIO;
318 319
	}

320 321
	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
		i915_kernel_lost_context(ring->dev);
322
	else {
323
		ring->head = I915_READ_HEAD(ring);
324
		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
325
		ring->space = ring_space(ring);
326
	}
327

328 329 330
	return 0;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
static int
init_pipe_control(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc;
	struct drm_i915_gem_object *obj;
	int ret;

	if (ring->private)
		return 0;

	pc = kmalloc(sizeof(*pc), GFP_KERNEL);
	if (!pc)
		return -ENOMEM;

	obj = i915_gem_alloc_object(ring->dev, 4096);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
351 352

	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

	ret = i915_gem_object_pin(obj, 4096, true);
	if (ret)
		goto err_unref;

	pc->gtt_offset = obj->gtt_offset;
	pc->cpu_page =  kmap(obj->pages[0]);
	if (pc->cpu_page == NULL)
		goto err_unpin;

	pc->obj = obj;
	ring->private = pc;
	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(&obj->base);
err:
	kfree(pc);
	return ret;
}

static void
cleanup_pipe_control(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc = ring->private;
	struct drm_i915_gem_object *obj;

	if (!ring->private)
		return;

	obj = pc->obj;
	kunmap(obj->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(&obj->base);

	kfree(pc);
	ring->private = NULL;
}

394
static int init_render_ring(struct intel_ring_buffer *ring)
395
{
396
	struct drm_device *dev = ring->dev;
397
	struct drm_i915_private *dev_priv = dev->dev_private;
398
	int ret = init_ring_common(ring);
399

400
	if (INTEL_INFO(dev)->gen > 3) {
401
		int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH;
402
		if (IS_GEN6(dev) || IS_GEN7(dev))
403 404
			mode |= MI_FLUSH_ENABLE << 16 | MI_FLUSH_ENABLE;
		I915_WRITE(MI_MODE, mode);
405 406 407 408
		if (IS_GEN7(dev))
			I915_WRITE(GFX_MODE_GEN7,
				   GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
				   GFX_MODE_ENABLE(GFX_REPLAY_MODE));
409
	}
410

411
	if (INTEL_INFO(dev)->gen >= 5) {
412 413 414 415 416
		ret = init_pipe_control(ring);
		if (ret)
			return ret;
	}

417 418 419 420 421
	if (INTEL_INFO(dev)->gen >= 6) {
		I915_WRITE(INSTPM,
			   INSTPM_FORCE_ORDERING << 16 | INSTPM_FORCE_ORDERING);
	}

422 423 424
	return ret;
}

425 426 427 428 429 430 431 432
static void render_ring_cleanup(struct intel_ring_buffer *ring)
{
	if (!ring->private)
		return;

	cleanup_pipe_control(ring);
}

433
static void
434 435 436
update_mboxes(struct intel_ring_buffer *ring,
	    u32 seqno,
	    u32 mmio_offset)
437
{
438 439 440 441
	intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
			      MI_SEMAPHORE_GLOBAL_GTT |
			      MI_SEMAPHORE_REGISTER |
			      MI_SEMAPHORE_UPDATE);
442
	intel_ring_emit(ring, seqno);
443
	intel_ring_emit(ring, mmio_offset);
444 445
}

446 447 448 449 450 451 452 453 454
/**
 * gen6_add_request - Update the semaphore mailbox registers
 * 
 * @ring - ring that is adding a request
 * @seqno - return seqno stuck into the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
455 456
static int
gen6_add_request(struct intel_ring_buffer *ring,
457
		 u32 *seqno)
458
{
459 460
	u32 mbox1_reg;
	u32 mbox2_reg;
461 462 463 464 465 466
	int ret;

	ret = intel_ring_begin(ring, 10);
	if (ret)
		return ret;

467 468
	mbox1_reg = ring->signal_mbox[0];
	mbox2_reg = ring->signal_mbox[1];
469

470 471 472 473
	*seqno = i915_gem_get_seqno(ring->dev);

	update_mboxes(ring, *seqno, mbox1_reg);
	update_mboxes(ring, *seqno, mbox2_reg);
474 475
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
476
	intel_ring_emit(ring, *seqno);
477 478 479 480 481 482
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_advance(ring);

	return 0;
}

483 484 485 486 487 488 489 490 491 492 493
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
static int
intel_ring_sync(struct intel_ring_buffer *waiter,
		struct intel_ring_buffer *signaller,
		int ring,
494 495 496
		u32 seqno)
{
	int ret;
497 498 499
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
500

501
	ret = intel_ring_begin(waiter, 4);
502 503 504
	if (ret)
		return ret;

505 506 507 508 509
	intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
	intel_ring_emit(waiter, seqno);
	intel_ring_emit(waiter, 0);
	intel_ring_emit(waiter, MI_NOOP);
	intel_ring_advance(waiter);
510 511 512 513

	return 0;
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
/* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
int
render_ring_sync_to(struct intel_ring_buffer *waiter,
		    struct intel_ring_buffer *signaller,
		    u32 seqno)
{
	WARN_ON(signaller->semaphore_register[RCS] == MI_SEMAPHORE_SYNC_INVALID);
	return intel_ring_sync(waiter,
			       signaller,
			       RCS,
			       seqno);
}

/* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
int
gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
		      struct intel_ring_buffer *signaller,
		      u32 seqno)
{
	WARN_ON(signaller->semaphore_register[VCS] == MI_SEMAPHORE_SYNC_INVALID);
	return intel_ring_sync(waiter,
			       signaller,
			       VCS,
			       seqno);
}

/* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
int
gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
		      struct intel_ring_buffer *signaller,
		      u32 seqno)
{
	WARN_ON(signaller->semaphore_register[BCS] == MI_SEMAPHORE_SYNC_INVALID);
	return intel_ring_sync(waiter,
			       signaller,
			       BCS,
			       seqno);
}



555 556
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
do {									\
557 558
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
		 PIPE_CONTROL_DEPTH_STALL);				\
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
	intel_ring_emit(ring__, 0);							\
	intel_ring_emit(ring__, 0);							\
} while (0)

static int
pc_render_add_request(struct intel_ring_buffer *ring,
		      u32 *result)
{
	struct drm_device *dev = ring->dev;
	u32 seqno = i915_gem_get_seqno(dev);
	struct pipe_control *pc = ring->private;
	u32 scratch_addr = pc->gtt_offset + 128;
	int ret;

	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
	 * incoherent with writes to memory, i.e. completely fubar,
	 * so we need to use PIPE_NOTIFY instead.
	 *
	 * However, we also need to workaround the qword write
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
	 * memory before requesting an interrupt.
	 */
	ret = intel_ring_begin(ring, 32);
	if (ret)
		return ret;

586
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
587 588
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
589 590 591 592 593 594 595 596 597 598 599 600 601 602
	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, 0);
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128; /* write to separate cachelines */
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
603
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
604 605
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
606 607 608 609 610 611 612 613 614 615
			PIPE_CONTROL_NOTIFY);
	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);

	*result = seqno;
	return 0;
}

616 617 618 619 620 621 622
static int
render_ring_add_request(struct intel_ring_buffer *ring,
			u32 *result)
{
	struct drm_device *dev = ring->dev;
	u32 seqno = i915_gem_get_seqno(dev);
	int ret;
623

624 625 626
	ret = intel_ring_begin(ring, 4);
	if (ret)
		return ret;
627

628 629 630 631
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
632
	intel_ring_advance(ring);
633

634 635
	*result = seqno;
	return 0;
636 637
}

638
static u32
639
ring_get_seqno(struct intel_ring_buffer *ring)
640
{
641 642 643
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

644 645 646 647 648 649 650
static u32
pc_render_get_seqno(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc = ring->private;
	return pc->cpu_page[0];
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
static void
ironlake_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->gt_irq_mask &= ~mask;
	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
	POSTING_READ(GTIMR);
}

static void
ironlake_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->gt_irq_mask |= mask;
	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
	POSTING_READ(GTIMR);
}

static void
i915_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->irq_mask &= ~mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ(IMR);
}

static void
i915_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->irq_mask |= mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ(IMR);
}

683
static bool
684
render_ring_get_irq(struct intel_ring_buffer *ring)
685
{
686
	struct drm_device *dev = ring->dev;
687
	drm_i915_private_t *dev_priv = dev->dev_private;
688

689 690 691
	if (!dev->irq_enabled)
		return false;

692
	spin_lock(&ring->irq_lock);
693
	if (ring->irq_refcount++ == 0) {
694
		if (HAS_PCH_SPLIT(dev))
695 696
			ironlake_enable_irq(dev_priv,
					    GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
697 698 699
		else
			i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
	}
700
	spin_unlock(&ring->irq_lock);
701 702

	return true;
703 704
}

705
static void
706
render_ring_put_irq(struct intel_ring_buffer *ring)
707
{
708
	struct drm_device *dev = ring->dev;
709
	drm_i915_private_t *dev_priv = dev->dev_private;
710

711
	spin_lock(&ring->irq_lock);
712
	if (--ring->irq_refcount == 0) {
713
		if (HAS_PCH_SPLIT(dev))
714 715 716
			ironlake_disable_irq(dev_priv,
					     GT_USER_INTERRUPT |
					     GT_PIPE_NOTIFY);
717 718 719
		else
			i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
	}
720
	spin_unlock(&ring->irq_lock);
721 722
}

723
void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
724
{
725
	struct drm_device *dev = ring->dev;
726
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
	u32 mmio = 0;

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
	if (IS_GEN7(dev)) {
		switch (ring->id) {
		case RING_RENDER:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case RING_BLT:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		case RING_BSD:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		}
	} else if (IS_GEN6(ring->dev)) {
		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
	} else {
		mmio = RING_HWS_PGA(ring->mmio_base);
	}

750 751
	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
	POSTING_READ(mmio);
752 753
}

754
static int
755 756 757
bsd_ring_flush(struct intel_ring_buffer *ring,
	       u32     invalidate_domains,
	       u32     flush_domains)
758
{
759 760 761 762 763 764 765 766 767 768
	int ret;

	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;

	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
	return 0;
769 770
}

771
static int
772
ring_add_request(struct intel_ring_buffer *ring,
773
		 u32 *result)
774 775
{
	u32 seqno;
776 777 778 779 780
	int ret;

	ret = intel_ring_begin(ring, 4);
	if (ret)
		return ret;
781

782
	seqno = i915_gem_get_seqno(ring->dev);
783

784 785 786 787 788
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_advance(ring);
789

790 791
	*result = seqno;
	return 0;
792 793
}

794 795 796 797
static bool
gen6_ring_get_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
{
	struct drm_device *dev = ring->dev;
798
	drm_i915_private_t *dev_priv = dev->dev_private;
799 800 801 802

	if (!dev->irq_enabled)
	       return false;

803
	spin_lock(&ring->irq_lock);
804
	if (ring->irq_refcount++ == 0) {
805 806 807 808
		ring->irq_mask &= ~rflag;
		I915_WRITE_IMR(ring, ring->irq_mask);
		ironlake_enable_irq(dev_priv, gflag);
	}
809
	spin_unlock(&ring->irq_lock);
810 811 812 813 814 815 816 817

	return true;
}

static void
gen6_ring_put_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
{
	struct drm_device *dev = ring->dev;
818
	drm_i915_private_t *dev_priv = dev->dev_private;
819

820
	spin_lock(&ring->irq_lock);
821
	if (--ring->irq_refcount == 0) {
822 823 824
		ring->irq_mask |= rflag;
		I915_WRITE_IMR(ring, ring->irq_mask);
		ironlake_disable_irq(dev_priv, gflag);
825
	}
826
	spin_unlock(&ring->irq_lock);
827 828
}

829
static bool
830
bsd_ring_get_irq(struct intel_ring_buffer *ring)
831
{
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	struct drm_device *dev = ring->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;

	if (!dev->irq_enabled)
		return false;

	spin_lock(&ring->irq_lock);
	if (ring->irq_refcount++ == 0) {
		if (IS_G4X(dev))
			i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
		else
			ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
	}
	spin_unlock(&ring->irq_lock);

	return true;
848 849 850 851
}
static void
bsd_ring_put_irq(struct intel_ring_buffer *ring)
{
852 853 854 855 856 857 858 859 860 861 862
	struct drm_device *dev = ring->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;

	spin_lock(&ring->irq_lock);
	if (--ring->irq_refcount == 0) {
		if (IS_G4X(dev))
			i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
		else
			ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
	}
	spin_unlock(&ring->irq_lock);
863 864 865
}

static int
866
ring_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 length)
867
{
868
	int ret;
869

870 871 872 873
	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;

874
	intel_ring_emit(ring,
875
			MI_BATCH_BUFFER_START | (2 << 6) |
876
			MI_BATCH_NON_SECURE_I965);
877
	intel_ring_emit(ring, offset);
878 879
	intel_ring_advance(ring);

880 881 882
	return 0;
}

883
static int
884
render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
885
				u32 offset, u32 len)
886
{
887
	struct drm_device *dev = ring->dev;
888
	int ret;
889

890 891 892 893
	if (IS_I830(dev) || IS_845G(dev)) {
		ret = intel_ring_begin(ring, 4);
		if (ret)
			return ret;
894

895 896 897 898 899 900 901 902
		intel_ring_emit(ring, MI_BATCH_BUFFER);
		intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
		intel_ring_emit(ring, offset + len - 8);
		intel_ring_emit(ring, 0);
	} else {
		ret = intel_ring_begin(ring, 2);
		if (ret)
			return ret;
903

904 905 906 907 908
		if (INTEL_INFO(dev)->gen >= 4) {
			intel_ring_emit(ring,
					MI_BATCH_BUFFER_START | (2 << 6) |
					MI_BATCH_NON_SECURE_I965);
			intel_ring_emit(ring, offset);
909
		} else {
910 911 912
			intel_ring_emit(ring,
					MI_BATCH_BUFFER_START | (2 << 6));
			intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
913 914
		}
	}
915
	intel_ring_advance(ring);
916 917 918 919

	return 0;
}

920
static void cleanup_status_page(struct intel_ring_buffer *ring)
921
{
922
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
923
	struct drm_i915_gem_object *obj;
924

925 926
	obj = ring->status_page.obj;
	if (obj == NULL)
927 928
		return;

929
	kunmap(obj->pages[0]);
930
	i915_gem_object_unpin(obj);
931
	drm_gem_object_unreference(&obj->base);
932
	ring->status_page.obj = NULL;
933 934 935 936

	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
}

937
static int init_status_page(struct intel_ring_buffer *ring)
938
{
939
	struct drm_device *dev = ring->dev;
940
	drm_i915_private_t *dev_priv = dev->dev_private;
941
	struct drm_i915_gem_object *obj;
942 943 944 945 946 947 948 949
	int ret;

	obj = i915_gem_alloc_object(dev, 4096);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate status page\n");
		ret = -ENOMEM;
		goto err;
	}
950 951

	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
952

953
	ret = i915_gem_object_pin(obj, 4096, true);
954 955 956 957
	if (ret != 0) {
		goto err_unref;
	}

958 959
	ring->status_page.gfx_addr = obj->gtt_offset;
	ring->status_page.page_addr = kmap(obj->pages[0]);
960
	if (ring->status_page.page_addr == NULL) {
961 962 963
		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
		goto err_unpin;
	}
964 965
	ring->status_page.obj = obj;
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
966

967
	intel_ring_setup_status_page(ring);
968 969
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			ring->name, ring->status_page.gfx_addr);
970 971 972 973 974 975

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
976
	drm_gem_object_unreference(&obj->base);
977
err:
978
	return ret;
979 980
}

981
int intel_init_ring_buffer(struct drm_device *dev,
982
			   struct intel_ring_buffer *ring)
983
{
984
	struct drm_i915_gem_object *obj;
985 986
	int ret;

987
	ring->dev = dev;
988 989
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
990
	INIT_LIST_HEAD(&ring->gpu_write_list);
991

992
	init_waitqueue_head(&ring->irq_queue);
993
	spin_lock_init(&ring->irq_lock);
994
	ring->irq_mask = ~0;
995

996
	if (I915_NEED_GFX_HWS(dev)) {
997
		ret = init_status_page(ring);
998 999 1000
		if (ret)
			return ret;
	}
1001

1002
	obj = i915_gem_alloc_object(dev, ring->size);
1003 1004
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate ringbuffer\n");
1005
		ret = -ENOMEM;
1006
		goto err_hws;
1007 1008
	}

1009
	ring->obj = obj;
1010

1011
	ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1012 1013
	if (ret)
		goto err_unref;
1014

1015
	ring->map.size = ring->size;
1016
	ring->map.offset = dev->agp->base + obj->gtt_offset;
1017 1018 1019 1020 1021 1022 1023
	ring->map.type = 0;
	ring->map.flags = 0;
	ring->map.mtrr = 0;

	drm_core_ioremap_wc(&ring->map, dev);
	if (ring->map.handle == NULL) {
		DRM_ERROR("Failed to map ringbuffer.\n");
1024
		ret = -EINVAL;
1025
		goto err_unpin;
1026 1027
	}

1028
	ring->virtual_start = ring->map.handle;
1029
	ret = ring->init(ring);
1030 1031
	if (ret)
		goto err_unmap;
1032

1033 1034 1035 1036 1037 1038 1039 1040
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = ring->size;
	if (IS_I830(ring->dev))
		ring->effective_size -= 128;

1041
	return 0;
1042 1043 1044 1045 1046 1047

err_unmap:
	drm_core_ioremapfree(&ring->map, dev);
err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
1048 1049
	drm_gem_object_unreference(&obj->base);
	ring->obj = NULL;
1050
err_hws:
1051
	cleanup_status_page(ring);
1052
	return ret;
1053 1054
}

1055
void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1056
{
1057 1058 1059
	struct drm_i915_private *dev_priv;
	int ret;

1060
	if (ring->obj == NULL)
1061 1062
		return;

1063 1064
	/* Disable the ring buffer. The ring must be idle at this point */
	dev_priv = ring->dev->dev_private;
1065
	ret = intel_wait_ring_idle(ring);
1066 1067 1068 1069
	if (ret)
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

1070 1071
	I915_WRITE_CTL(ring, 0);

1072
	drm_core_ioremapfree(&ring->map, ring->dev);
1073

1074 1075 1076
	i915_gem_object_unpin(ring->obj);
	drm_gem_object_unreference(&ring->obj->base);
	ring->obj = NULL;
1077

Z
Zou Nan hai 已提交
1078 1079 1080
	if (ring->cleanup)
		ring->cleanup(ring);

1081
	cleanup_status_page(ring);
1082 1083
}

1084
static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1085
{
1086
	unsigned int *virt;
1087
	int rem = ring->size - ring->tail;
1088

1089
	if (ring->space < rem) {
1090
		int ret = intel_wait_ring_buffer(ring, rem);
1091 1092 1093 1094
		if (ret)
			return ret;
	}

1095
	virt = (unsigned int *)(ring->virtual_start + ring->tail);
1096 1097
	rem /= 8;
	while (rem--) {
1098
		*virt++ = MI_NOOP;
1099 1100
		*virt++ = MI_NOOP;
	}
1101

1102
	ring->tail = 0;
1103
	ring->space = ring_space(ring);
1104 1105 1106 1107

	return 0;
}

1108
int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
1109
{
1110
	struct drm_device *dev = ring->dev;
1111
	struct drm_i915_private *dev_priv = dev->dev_private;
1112
	unsigned long end;
1113 1114
	u32 head;

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	/* If the reported head position has wrapped or hasn't advanced,
	 * fallback to the slow and accurate path.
	 */
	head = intel_read_status_page(ring, 4);
	if (head > ring->head) {
		ring->head = head;
		ring->space = ring_space(ring);
		if (ring->space >= n)
			return 0;
	}

C
Chris Wilson 已提交
1126
	trace_i915_ring_wait_begin(ring);
1127 1128
	end = jiffies + 3 * HZ;
	do {
1129 1130
		ring->head = I915_READ_HEAD(ring);
		ring->space = ring_space(ring);
1131
		if (ring->space >= n) {
C
Chris Wilson 已提交
1132
			trace_i915_ring_wait_end(ring);
1133 1134 1135 1136 1137 1138 1139 1140
			return 0;
		}

		if (dev->primary->master) {
			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
			if (master_priv->sarea_priv)
				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
		}
1141

1142
		msleep(1);
1143 1144
		if (atomic_read(&dev_priv->mm.wedged))
			return -EAGAIN;
1145
	} while (!time_after(jiffies, end));
C
Chris Wilson 已提交
1146
	trace_i915_ring_wait_end(ring);
1147 1148
	return -EBUSY;
}
1149

1150 1151
int intel_ring_begin(struct intel_ring_buffer *ring,
		     int num_dwords)
1152
{
1153
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1154
	int n = 4*num_dwords;
1155
	int ret;
1156

1157 1158 1159
	if (unlikely(atomic_read(&dev_priv->mm.wedged)))
		return -EIO;

1160
	if (unlikely(ring->tail + n > ring->effective_size)) {
1161 1162 1163 1164
		ret = intel_wrap_ring_buffer(ring);
		if (unlikely(ret))
			return ret;
	}
1165

1166 1167 1168 1169 1170
	if (unlikely(ring->space < n)) {
		ret = intel_wait_ring_buffer(ring, n);
		if (unlikely(ret))
			return ret;
	}
1171 1172

	ring->space -= n;
1173
	return 0;
1174
}
1175

1176
void intel_ring_advance(struct intel_ring_buffer *ring)
1177
{
1178
	ring->tail &= ring->size - 1;
1179
	ring->write_tail(ring, ring->tail);
1180
}
1181

1182
static const struct intel_ring_buffer render_ring = {
1183
	.name			= "render ring",
1184
	.id			= RING_RENDER,
1185
	.mmio_base		= RENDER_RING_BASE,
1186 1187
	.size			= 32 * PAGE_SIZE,
	.init			= init_render_ring,
1188
	.write_tail		= ring_write_tail,
1189 1190
	.flush			= render_ring_flush,
	.add_request		= render_ring_add_request,
1191 1192 1193
	.get_seqno		= ring_get_seqno,
	.irq_get		= render_ring_get_irq,
	.irq_put		= render_ring_put_irq,
1194
	.dispatch_execbuffer	= render_ring_dispatch_execbuffer,
1195
	.cleanup		= render_ring_cleanup,
1196 1197 1198 1199 1200
	.sync_to		= render_ring_sync_to,
	.semaphore_register	= {MI_SEMAPHORE_SYNC_INVALID,
				   MI_SEMAPHORE_SYNC_RV,
				   MI_SEMAPHORE_SYNC_RB},
	.signal_mbox		= {GEN6_VRSYNC, GEN6_BRSYNC},
1201
};
1202 1203 1204

/* ring buffer for bit-stream decoder */

1205
static const struct intel_ring_buffer bsd_ring = {
1206
	.name                   = "bsd ring",
1207
	.id			= RING_BSD,
1208
	.mmio_base		= BSD_RING_BASE,
1209
	.size			= 32 * PAGE_SIZE,
1210
	.init			= init_ring_common,
1211
	.write_tail		= ring_write_tail,
1212
	.flush			= bsd_ring_flush,
1213
	.add_request		= ring_add_request,
1214 1215 1216
	.get_seqno		= ring_get_seqno,
	.irq_get		= bsd_ring_get_irq,
	.irq_put		= bsd_ring_put_irq,
1217
	.dispatch_execbuffer	= ring_dispatch_execbuffer,
1218
};
1219

1220

1221
static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1222
				     u32 value)
1223
{
1224
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1225 1226

       /* Every tail move must follow the sequence below */
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
	I915_WRITE(GEN6_BSD_RNCID, 0x0);

	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
		GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0,
		50))
	DRM_ERROR("timed out waiting for IDLE Indicator\n");

	I915_WRITE_TAIL(ring, value);
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
1241 1242
}

1243
static int gen6_ring_flush(struct intel_ring_buffer *ring,
1244
			   u32 invalidate, u32 flush)
1245
{
1246
	uint32_t cmd;
1247 1248 1249 1250 1251 1252
	int ret;

	ret = intel_ring_begin(ring, 4);
	if (ret)
		return ret;

1253 1254 1255 1256
	cmd = MI_FLUSH_DW;
	if (invalidate & I915_GEM_GPU_DOMAINS)
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
	intel_ring_emit(ring, cmd);
1257 1258
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
1259
	intel_ring_emit(ring, MI_NOOP);
1260 1261
	intel_ring_advance(ring);
	return 0;
1262 1263 1264
}

static int
1265
gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1266
			      u32 offset, u32 len)
1267
{
1268
	int ret;
1269

1270 1271 1272
	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;
1273

1274 1275 1276 1277
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
	/* bit0-7 is the length on GEN6+ */
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1278

1279
	return 0;
1280 1281
}

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
static bool
gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
{
	return gen6_ring_get_irq(ring,
				 GT_USER_INTERRUPT,
				 GEN6_RENDER_USER_INTERRUPT);
}

static void
gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
{
	return gen6_ring_put_irq(ring,
				 GT_USER_INTERRUPT,
				 GEN6_RENDER_USER_INTERRUPT);
}

1298
static bool
1299 1300
gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
{
1301 1302 1303
	return gen6_ring_get_irq(ring,
				 GT_GEN6_BSD_USER_INTERRUPT,
				 GEN6_BSD_USER_INTERRUPT);
1304 1305 1306 1307 1308
}

static void
gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
{
1309 1310 1311
	return gen6_ring_put_irq(ring,
				 GT_GEN6_BSD_USER_INTERRUPT,
				 GEN6_BSD_USER_INTERRUPT);
1312 1313
}

1314
/* ring buffer for Video Codec for Gen6+ */
1315
static const struct intel_ring_buffer gen6_bsd_ring = {
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	.name			= "gen6 bsd ring",
	.id			= RING_BSD,
	.mmio_base		= GEN6_BSD_RING_BASE,
	.size			= 32 * PAGE_SIZE,
	.init			= init_ring_common,
	.write_tail		= gen6_bsd_ring_write_tail,
	.flush			= gen6_ring_flush,
	.add_request		= gen6_add_request,
	.get_seqno		= ring_get_seqno,
	.irq_get		= gen6_bsd_ring_get_irq,
	.irq_put		= gen6_bsd_ring_put_irq,
	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1328 1329 1330 1331 1332
	.sync_to		= gen6_bsd_ring_sync_to,
	.semaphore_register	= {MI_SEMAPHORE_SYNC_VR,
				   MI_SEMAPHORE_SYNC_INVALID,
				   MI_SEMAPHORE_SYNC_VB},
	.signal_mbox		= {GEN6_RVSYNC, GEN6_BVSYNC},
1333 1334 1335 1336
};

/* Blitter support (SandyBridge+) */

1337
static bool
1338
blt_ring_get_irq(struct intel_ring_buffer *ring)
1339
{
1340 1341 1342
	return gen6_ring_get_irq(ring,
				 GT_BLT_USER_INTERRUPT,
				 GEN6_BLITTER_USER_INTERRUPT);
1343
}
1344

1345
static void
1346
blt_ring_put_irq(struct intel_ring_buffer *ring)
1347
{
1348 1349 1350
	gen6_ring_put_irq(ring,
			  GT_BLT_USER_INTERRUPT,
			  GEN6_BLITTER_USER_INTERRUPT);
1351 1352
}

Z
Zou Nan hai 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

/* Workaround for some stepping of SNB,
 * each time when BLT engine ring tail moved,
 * the first command in the ring to be parsed
 * should be MI_BATCH_BUFFER_START
 */
#define NEED_BLT_WORKAROUND(dev) \
	(IS_GEN6(dev) && (dev->pdev->revision < 8))

static inline struct drm_i915_gem_object *
to_blt_workaround(struct intel_ring_buffer *ring)
{
	return ring->private;
}

static int blt_ring_init(struct intel_ring_buffer *ring)
{
	if (NEED_BLT_WORKAROUND(ring->dev)) {
		struct drm_i915_gem_object *obj;
1372
		u32 *ptr;
Z
Zou Nan hai 已提交
1373 1374
		int ret;

1375
		obj = i915_gem_alloc_object(ring->dev, 4096);
Z
Zou Nan hai 已提交
1376 1377 1378
		if (obj == NULL)
			return -ENOMEM;

1379
		ret = i915_gem_object_pin(obj, 4096, true);
Z
Zou Nan hai 已提交
1380 1381 1382 1383 1384 1385
		if (ret) {
			drm_gem_object_unreference(&obj->base);
			return ret;
		}

		ptr = kmap(obj->pages[0]);
1386 1387
		*ptr++ = MI_BATCH_BUFFER_END;
		*ptr++ = MI_NOOP;
Z
Zou Nan hai 已提交
1388 1389
		kunmap(obj->pages[0]);

1390
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
Z
Zou Nan hai 已提交
1391
		if (ret) {
1392
			i915_gem_object_unpin(obj);
Z
Zou Nan hai 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
			drm_gem_object_unreference(&obj->base);
			return ret;
		}

		ring->private = obj;
	}

	return init_ring_common(ring);
}

static int blt_ring_begin(struct intel_ring_buffer *ring,
			  int num_dwords)
{
	if (ring->private) {
		int ret = intel_ring_begin(ring, num_dwords+2);
		if (ret)
			return ret;

		intel_ring_emit(ring, MI_BATCH_BUFFER_START);
		intel_ring_emit(ring, to_blt_workaround(ring)->gtt_offset);

		return 0;
	} else
		return intel_ring_begin(ring, 4);
}

1419
static int blt_ring_flush(struct intel_ring_buffer *ring,
1420
			  u32 invalidate, u32 flush)
Z
Zou Nan hai 已提交
1421
{
1422
	uint32_t cmd;
1423 1424 1425 1426 1427 1428
	int ret;

	ret = blt_ring_begin(ring, 4);
	if (ret)
		return ret;

1429 1430 1431 1432
	cmd = MI_FLUSH_DW;
	if (invalidate & I915_GEM_DOMAIN_RENDER)
		cmd |= MI_INVALIDATE_TLB;
	intel_ring_emit(ring, cmd);
1433 1434
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
1435
	intel_ring_emit(ring, MI_NOOP);
1436 1437
	intel_ring_advance(ring);
	return 0;
Z
Zou Nan hai 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
}

static void blt_ring_cleanup(struct intel_ring_buffer *ring)
{
	if (!ring->private)
		return;

	i915_gem_object_unpin(ring->private);
	drm_gem_object_unreference(ring->private);
	ring->private = NULL;
}

1450
static const struct intel_ring_buffer gen6_blt_ring = {
1451 1452 1453 1454 1455 1456 1457 1458 1459
	.name			= "blt ring",
	.id			= RING_BLT,
	.mmio_base		= BLT_RING_BASE,
	.size			= 32 * PAGE_SIZE,
	.init			= blt_ring_init,
	.write_tail		= ring_write_tail,
	.flush			= blt_ring_flush,
	.add_request		= gen6_add_request,
	.get_seqno		= ring_get_seqno,
1460 1461
	.irq_get		= blt_ring_get_irq,
	.irq_put		= blt_ring_put_irq,
1462
	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1463 1464 1465 1466 1467 1468
	.cleanup		= blt_ring_cleanup,
	.sync_to		= gen6_blt_ring_sync_to,
	.semaphore_register	= {MI_SEMAPHORE_SYNC_BR,
				   MI_SEMAPHORE_SYNC_BV,
				   MI_SEMAPHORE_SYNC_INVALID},
	.signal_mbox		= {GEN6_RBSYNC, GEN6_VBSYNC},
1469 1470
};

1471 1472 1473
int intel_init_render_ring_buffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1474
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1475

1476 1477 1478
	*ring = render_ring;
	if (INTEL_INFO(dev)->gen >= 6) {
		ring->add_request = gen6_add_request;
1479
		ring->flush = gen6_render_ring_flush;
1480 1481
		ring->irq_get = gen6_render_ring_get_irq;
		ring->irq_put = gen6_render_ring_put_irq;
1482 1483 1484
	} else if (IS_GEN5(dev)) {
		ring->add_request = pc_render_add_request;
		ring->get_seqno = pc_render_get_seqno;
1485
	}
1486 1487

	if (!I915_NEED_GFX_HWS(dev)) {
1488 1489
		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
		memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1490 1491
	}

1492
	return intel_init_ring_buffer(dev, ring);
1493 1494
}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];

	*ring = render_ring;
	if (INTEL_INFO(dev)->gen >= 6) {
		ring->add_request = gen6_add_request;
		ring->irq_get = gen6_render_ring_get_irq;
		ring->irq_put = gen6_render_ring_put_irq;
	} else if (IS_GEN5(dev)) {
		ring->add_request = pc_render_add_request;
		ring->get_seqno = pc_render_get_seqno;
	}

1510 1511 1512
	if (!I915_NEED_GFX_HWS(dev))
		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);

	ring->size = size;
	ring->effective_size = ring->size;
	if (IS_I830(ring->dev))
		ring->effective_size -= 128;

	ring->map.offset = start;
	ring->map.size = size;
	ring->map.type = 0;
	ring->map.flags = 0;
	ring->map.mtrr = 0;

	drm_core_ioremap_wc(&ring->map, dev);
	if (ring->map.handle == NULL) {
		DRM_ERROR("can not ioremap virtual address for"
			  " ring buffer\n");
		return -ENOMEM;
	}

	ring->virtual_start = (void __force __iomem *)ring->map.handle;
	return 0;
}

1540 1541 1542
int intel_init_bsd_ring_buffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1543
	struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1544

1545
	if (IS_GEN6(dev) || IS_GEN7(dev))
1546
		*ring = gen6_bsd_ring;
1547
	else
1548
		*ring = bsd_ring;
1549

1550
	return intel_init_ring_buffer(dev, ring);
1551
}
1552 1553 1554 1555

int intel_init_blt_ring_buffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1556
	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1557

1558
	*ring = gen6_blt_ring;
1559

1560
	return intel_init_ring_buffer(dev, ring);
1561
}