44x_tlb.c 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright IBM Corp. 2007
 *
 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
22
#include <linux/kvm.h>
23 24
#include <linux/kvm_host.h>
#include <linux/highmem.h>
25 26

#include <asm/tlbflush.h>
27 28
#include <asm/mmu-44x.h>
#include <asm/kvm_ppc.h>
29
#include <asm/kvm_44x.h>
30
#include "timing.h"
31 32

#include "44x_tlb.h"
33
#include "trace.h"
34

35 36 37 38 39 40 41
#ifndef PPC44x_TLBE_SIZE
#define PPC44x_TLBE_SIZE	PPC44x_TLB_4K
#endif

#define PAGE_SIZE_4K (1<<12)
#define PAGE_MASK_4K (~(PAGE_SIZE_4K - 1))

42 43
#define PPC44x_TLB_UATTR_MASK \
	(PPC44x_TLB_U0|PPC44x_TLB_U1|PPC44x_TLB_U2|PPC44x_TLB_U3)
44 45 46
#define PPC44x_TLB_USER_PERM_MASK (PPC44x_TLB_UX|PPC44x_TLB_UR|PPC44x_TLB_UW)
#define PPC44x_TLB_SUPER_PERM_MASK (PPC44x_TLB_SX|PPC44x_TLB_SR|PPC44x_TLB_SW)

47 48 49
#ifdef DEBUG
void kvmppc_dump_tlbs(struct kvm_vcpu *vcpu)
{
50
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
51 52 53 54 55 56 57
	struct kvmppc_44x_tlbe *tlbe;
	int i;

	printk("vcpu %d TLB dump:\n", vcpu->vcpu_id);
	printk("| %2s | %3s | %8s | %8s | %8s |\n",
			"nr", "tid", "word0", "word1", "word2");

58
	for (i = 0; i < ARRAY_SIZE(vcpu_44x->guest_tlb); i++) {
59
		tlbe = &vcpu_44x->guest_tlb[i];
60 61 62 63 64 65 66 67
		if (tlbe->word0 & PPC44x_TLB_VALID)
			printk(" G%2d |  %02X | %08X | %08X | %08X |\n",
			       i, tlbe->tid, tlbe->word0, tlbe->word1,
			       tlbe->word2);
	}
}
#endif

68 69 70 71 72 73 74 75 76 77 78
static inline void kvmppc_44x_tlbie(unsigned int index)
{
	/* 0 <= index < 64, so the V bit is clear and we can use the index as
	 * word0. */
	asm volatile(
		"tlbwe %[index], %[index], 0\n"
	:
	: [index] "r"(index)
	);
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
static inline void kvmppc_44x_tlbre(unsigned int index,
                                    struct kvmppc_44x_tlbe *tlbe)
{
	asm volatile(
		"tlbre %[word0], %[index], 0\n"
		"mfspr %[tid], %[sprn_mmucr]\n"
		"andi. %[tid], %[tid], 0xff\n"
		"tlbre %[word1], %[index], 1\n"
		"tlbre %[word2], %[index], 2\n"
		: [word0] "=r"(tlbe->word0),
		  [word1] "=r"(tlbe->word1),
		  [word2] "=r"(tlbe->word2),
		  [tid]   "=r"(tlbe->tid)
		: [index] "r"(index),
		  [sprn_mmucr] "i"(SPRN_MMUCR)
		: "cc"
	);
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
static inline void kvmppc_44x_tlbwe(unsigned int index,
                                    struct kvmppc_44x_tlbe *stlbe)
{
	unsigned long tmp;

	asm volatile(
		"mfspr %[tmp], %[sprn_mmucr]\n"
		"rlwimi %[tmp], %[tid], 0, 0xff\n"
		"mtspr %[sprn_mmucr], %[tmp]\n"
		"tlbwe %[word0], %[index], 0\n"
		"tlbwe %[word1], %[index], 1\n"
		"tlbwe %[word2], %[index], 2\n"
		: [tmp]   "=&r"(tmp)
		: [word0] "r"(stlbe->word0),
		  [word1] "r"(stlbe->word1),
		  [word2] "r"(stlbe->word2),
		  [tid]   "r"(stlbe->tid),
		  [index] "r"(index),
		  [sprn_mmucr] "i"(SPRN_MMUCR)
	);
}

120 121
static u32 kvmppc_44x_tlb_shadow_attrib(u32 attrib, int usermode)
{
122 123
	/* We only care about the guest's permission and user bits. */
	attrib &= PPC44x_TLB_PERM_MASK|PPC44x_TLB_UATTR_MASK;
124 125 126 127 128 129 130 131 132 133 134

	if (!usermode) {
		/* Guest is in supervisor mode, so we need to translate guest
		 * supervisor permissions into user permissions. */
		attrib &= ~PPC44x_TLB_USER_PERM_MASK;
		attrib |= (attrib & PPC44x_TLB_SUPER_PERM_MASK) << 3;
	}

	/* Make sure host can always access this memory. */
	attrib |= PPC44x_TLB_SX|PPC44x_TLB_SR|PPC44x_TLB_SW;

135 136 137
	/* WIMGE = 0b00100 */
	attrib |= PPC44x_TLB_M;

138 139 140
	return attrib;
}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
/* Load shadow TLB back into hardware. */
void kvmppc_44x_tlb_load(struct kvm_vcpu *vcpu)
{
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
	int i;

	for (i = 0; i <= tlb_44x_hwater; i++) {
		struct kvmppc_44x_tlbe *stlbe = &vcpu_44x->shadow_tlb[i];

		if (get_tlb_v(stlbe) && get_tlb_ts(stlbe))
			kvmppc_44x_tlbwe(i, stlbe);
	}
}

static void kvmppc_44x_tlbe_set_modified(struct kvmppc_vcpu_44x *vcpu_44x,
                                         unsigned int i)
{
	vcpu_44x->shadow_tlb_mod[i] = 1;
}

/* Save hardware TLB to the vcpu, and invalidate all guest mappings. */
void kvmppc_44x_tlb_put(struct kvm_vcpu *vcpu)
{
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
	int i;

	for (i = 0; i <= tlb_44x_hwater; i++) {
		struct kvmppc_44x_tlbe *stlbe = &vcpu_44x->shadow_tlb[i];

		if (vcpu_44x->shadow_tlb_mod[i])
			kvmppc_44x_tlbre(i, stlbe);

		if (get_tlb_v(stlbe) && get_tlb_ts(stlbe))
			kvmppc_44x_tlbie(i);
	}
}


179 180 181 182
/* Search the guest TLB for a matching entry. */
int kvmppc_44x_tlb_index(struct kvm_vcpu *vcpu, gva_t eaddr, unsigned int pid,
                         unsigned int as)
{
183
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
184 185 186
	int i;

	/* XXX Replace loop with fancy data structures. */
187
	for (i = 0; i < ARRAY_SIZE(vcpu_44x->guest_tlb); i++) {
188
		struct kvmppc_44x_tlbe *tlbe = &vcpu_44x->guest_tlb[i];
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
		unsigned int tid;

		if (eaddr < get_tlb_eaddr(tlbe))
			continue;

		if (eaddr > get_tlb_end(tlbe))
			continue;

		tid = get_tlb_tid(tlbe);
		if (tid && (tid != pid))
			continue;

		if (!get_tlb_v(tlbe))
			continue;

		if (get_tlb_ts(tlbe) != as)
			continue;

		return i;
	}

	return -1;
}

213 214 215 216 217 218 219 220 221 222
gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int gtlb_index,
                       gva_t eaddr)
{
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
	struct kvmppc_44x_tlbe *gtlbe = &vcpu_44x->guest_tlb[gtlb_index];
	unsigned int pgmask = get_tlb_bytes(gtlbe) - 1;

	return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
}

223
int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
224
{
225
	unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
226

227
	return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as);
228 229
}

230
int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
231
{
232
	unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
233

234
	return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as);
235 236
}

237 238 239 240 241 242 243 244
void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
{
}

void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
{
}

245 246
static void kvmppc_44x_shadow_release(struct kvmppc_vcpu_44x *vcpu_44x,
                                      unsigned int stlb_index)
247
{
248
	struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[stlb_index];
249

250 251
	if (!ref->page)
		return;
252

253 254 255 256
	/* Discard from the TLB. */
	/* Note: we could actually invalidate a host mapping, if the host overwrote
	 * this TLB entry since we inserted a guest mapping. */
	kvmppc_44x_tlbie(stlb_index);
257

258 259 260 261 262
	/* Now release the page. */
	if (ref->writeable)
		kvm_release_page_dirty(ref->page);
	else
		kvm_release_page_clean(ref->page);
263

264 265 266 267
	ref->page = NULL;

	/* XXX set tlb_44x_index to stlb_index? */

268
	trace_kvm_stlb_inval(stlb_index);
269 270
}

271
void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
272
{
273
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
274
	int i;
275

276 277
	for (i = 0; i <= tlb_44x_hwater; i++)
		kvmppc_44x_shadow_release(vcpu_44x, i);
278 279
}

280 281 282 283 284 285 286 287 288 289 290 291
/**
 * kvmppc_mmu_map -- create a host mapping for guest memory
 *
 * If the guest wanted a larger page than the host supports, only the first
 * host page is mapped here and the rest are demand faulted.
 *
 * If the guest wanted a smaller page than the host page size, we map only the
 * guest-size page (i.e. not a full host page mapping).
 *
 * Caller must ensure that the specified guest TLB entry is safe to insert into
 * the shadow TLB.
 */
292 293
void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 gvaddr, gpa_t gpaddr,
                    unsigned int gtlb_index)
294
{
295
	struct kvmppc_44x_tlbe stlbe;
296
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
297
	struct kvmppc_44x_tlbe *gtlbe = &vcpu_44x->guest_tlb[gtlb_index];
298
	struct kvmppc_44x_shadow_ref *ref;
299 300
	struct page *new_page;
	hpa_t hpaddr;
301
	gfn_t gfn;
302 303 304
	u32 asid = gtlbe->tid;
	u32 flags = gtlbe->word2;
	u32 max_bytes = get_tlb_bytes(gtlbe);
305 306
	unsigned int victim;

307 308 309 310 311 312 313 314
	/* Select TLB entry to clobber. Indirectly guard against races with the TLB
	 * miss handler by disabling interrupts. */
	local_irq_disable();
	victim = ++tlb_44x_index;
	if (victim > tlb_44x_hwater)
		victim = 0;
	tlb_44x_index = victim;
	local_irq_enable();
315 316

	/* Get reference to new page. */
317
	gfn = gpaddr >> PAGE_SHIFT;
318 319
	new_page = gfn_to_page(vcpu->kvm, gfn);
	if (is_error_page(new_page)) {
J
Joerg Roedel 已提交
320 321
		printk(KERN_ERR "Couldn't get guest page for gfn %llx!\n",
			(unsigned long long)gfn);
322 323 324 325
		return;
	}
	hpaddr = page_to_phys(new_page);

326 327
	/* Invalidate any previous shadow mappings. */
	kvmppc_44x_shadow_release(vcpu_44x, victim);
328 329 330 331 332 333 334 335

	/* XXX Make sure (va, size) doesn't overlap any other
	 * entries. 440x6 user manual says the result would be
	 * "undefined." */

	/* XXX what about AS? */

	/* Force TS=1 for all guest mappings. */
336
	stlbe.word0 = PPC44x_TLB_VALID | PPC44x_TLB_TS;
337 338 339 340

	if (max_bytes >= PAGE_SIZE) {
		/* Guest mapping is larger than or equal to host page size. We can use
		 * a "native" host mapping. */
341
		stlbe.word0 |= (gvaddr & PAGE_MASK) | PPC44x_TLBE_SIZE;
342 343 344 345 346
	} else {
		/* Guest mapping is smaller than host page size. We must restrict the
		 * size of the mapping to be at most the smaller of the two, but for
		 * simplicity we fall back to a 4K mapping (this is probably what the
		 * guest is using anyways). */
347
		stlbe.word0 |= (gvaddr & PAGE_MASK_4K) | PPC44x_TLB_4K;
348 349 350 351 352 353 354

		/* 'hpaddr' is a host page, which is larger than the mapping we're
		 * inserting here. To compensate, we must add the in-page offset to the
		 * sub-page. */
		hpaddr |= gpaddr & (PAGE_MASK ^ PAGE_MASK_4K);
	}

355 356
	stlbe.word1 = (hpaddr & 0xfffffc00) | ((hpaddr >> 32) & 0xf);
	stlbe.word2 = kvmppc_44x_tlb_shadow_attrib(flags,
357
	                                            vcpu->arch.shared->msr & MSR_PR);
358 359 360 361 362 363 364 365 366 367
	stlbe.tid = !(asid & 0xff);

	/* Keep track of the reference so we can properly release it later. */
	ref = &vcpu_44x->shadow_refs[victim];
	ref->page = new_page;
	ref->gtlb_index = gtlb_index;
	ref->writeable = !!(stlbe.word2 & PPC44x_TLB_UW);
	ref->tid = stlbe.tid;

	/* Insert shadow mapping into hardware TLB. */
368
	kvmppc_44x_tlbe_set_modified(vcpu_44x, victim);
369
	kvmppc_44x_tlbwe(victim, &stlbe);
370 371
	trace_kvm_stlb_write(victim, stlbe.tid, stlbe.word0, stlbe.word1,
			     stlbe.word2);
372 373
}

374 375 376 377
/* For a particular guest TLB entry, invalidate the corresponding host TLB
 * mappings and release the host pages. */
static void kvmppc_44x_invalidate(struct kvm_vcpu *vcpu,
                                  unsigned int gtlb_index)
378
{
379
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
380 381
	int i;

382 383 384 385
	for (i = 0; i < ARRAY_SIZE(vcpu_44x->shadow_refs); i++) {
		struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[i];
		if (ref->gtlb_index == gtlb_index)
			kvmppc_44x_shadow_release(vcpu_44x, i);
386 387 388
	}
}

L
Liu Yu 已提交
389
void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
390
{
L
Liu Yu 已提交
391 392
	int usermode = vcpu->arch.shared->msr & MSR_PR;

393 394 395 396
	vcpu->arch.shadow_pid = !usermode;
}

void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 new_pid)
397
{
398
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
399 400
	int i;

401 402 403 404 405 406 407 408 409
	if (unlikely(vcpu->arch.pid == new_pid))
		return;

	vcpu->arch.pid = new_pid;

	/* Guest userspace runs with TID=0 mappings and PID=0, to make sure it
	 * can't access guest kernel mappings (TID=1). When we switch to a new
	 * guest PID, which will also use host PID=0, we must discard the old guest
	 * userspace mappings. */
410 411 412 413 414
	for (i = 0; i < ARRAY_SIZE(vcpu_44x->shadow_refs); i++) {
		struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[i];

		if (ref->tid == 0)
			kvmppc_44x_shadow_release(vcpu_44x, i);
415 416
	}
}
417 418

static int tlbe_is_host_safe(const struct kvm_vcpu *vcpu,
419
                             const struct kvmppc_44x_tlbe *tlbe)
420 421 422 423 424 425 426 427
{
	gpa_t gpa;

	if (!get_tlb_v(tlbe))
		return 0;

	/* Does it match current guest AS? */
	/* XXX what about IS != DS? */
428
	if (get_tlb_ts(tlbe) != !!(vcpu->arch.shared->msr & MSR_IS))
429 430 431 432 433 434 435 436 437 438
		return 0;

	gpa = get_tlb_raddr(tlbe);
	if (!gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT))
		/* Mapping is not for RAM. */
		return 0;

	return 1;
}

439
int kvmppc_44x_emul_tlbwe(struct kvm_vcpu *vcpu, u8 ra, u8 rs, u8 ws)
440
{
441
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
442
	struct kvmppc_44x_tlbe *tlbe;
443
	unsigned int gtlb_index;
444
	int idx;
445

446
	gtlb_index = kvmppc_get_gpr(vcpu, ra);
447
	if (gtlb_index >= KVM44x_GUEST_TLB_SIZE) {
448
		printk("%s: index %d\n", __func__, gtlb_index);
449 450 451 452
		kvmppc_dump_vcpu(vcpu);
		return EMULATE_FAIL;
	}

453
	tlbe = &vcpu_44x->guest_tlb[gtlb_index];
454

455 456 457
	/* Invalidate shadow mappings for the about-to-be-clobbered TLB entry. */
	if (tlbe->word0 & PPC44x_TLB_VALID)
		kvmppc_44x_invalidate(vcpu, gtlb_index);
458 459 460

	switch (ws) {
	case PPC44x_TLB_PAGEID:
461
		tlbe->tid = get_mmucr_stid(vcpu);
462
		tlbe->word0 = kvmppc_get_gpr(vcpu, rs);
463 464 465
		break;

	case PPC44x_TLB_XLAT:
466
		tlbe->word1 = kvmppc_get_gpr(vcpu, rs);
467 468 469
		break;

	case PPC44x_TLB_ATTRIB:
470
		tlbe->word2 = kvmppc_get_gpr(vcpu, rs);
471 472 473 474 475 476
		break;

	default:
		return EMULATE_FAIL;
	}

477 478
	idx = srcu_read_lock(&vcpu->kvm->srcu);

479
	if (tlbe_is_host_safe(vcpu, tlbe)) {
480
		gva_t eaddr;
481 482 483
		gpa_t gpaddr;
		u32 bytes;

484
		eaddr = get_tlb_eaddr(tlbe);
485 486 487 488 489 490 491
		gpaddr = get_tlb_raddr(tlbe);

		/* Use the advertised page size to mask effective and real addrs. */
		bytes = get_tlb_bytes(tlbe);
		eaddr &= ~(bytes - 1);
		gpaddr &= ~(bytes - 1);

492
		kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index);
493 494
	}

495 496
	srcu_read_unlock(&vcpu->kvm->srcu, idx);

497 498
	trace_kvm_gtlb_write(gtlb_index, tlbe->tid, tlbe->word0, tlbe->word1,
			     tlbe->word2);
499

500
	kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
501 502 503
	return EMULATE_DONE;
}

504
int kvmppc_44x_emul_tlbsx(struct kvm_vcpu *vcpu, u8 rt, u8 ra, u8 rb, u8 rc)
505 506
{
	u32 ea;
507
	int gtlb_index;
508 509 510
	unsigned int as = get_mmucr_sts(vcpu);
	unsigned int pid = get_mmucr_stid(vcpu);

511
	ea = kvmppc_get_gpr(vcpu, rb);
512
	if (ra)
513
		ea += kvmppc_get_gpr(vcpu, ra);
514

515
	gtlb_index = kvmppc_44x_tlb_index(vcpu, ea, pid, as);
516
	if (rc) {
517 518
		u32 cr = kvmppc_get_cr(vcpu);

519
		if (gtlb_index < 0)
520
			kvmppc_set_cr(vcpu, cr & ~0x20000000);
521
		else
522
			kvmppc_set_cr(vcpu, cr | 0x20000000);
523
	}
524
	kvmppc_set_gpr(vcpu, rt, gtlb_index);
525

526
	kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
527 528
	return EMULATE_DONE;
}