44x_tlb.c 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright IBM Corp. 2007
 *
 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
22
#include <linux/kvm.h>
23 24
#include <linux/kvm_host.h>
#include <linux/highmem.h>
25 26

#include <asm/tlbflush.h>
27 28
#include <asm/mmu-44x.h>
#include <asm/kvm_ppc.h>
29
#include <asm/kvm_44x.h>
30
#include "timing.h"
31 32 33

#include "44x_tlb.h"

34 35 36 37 38 39 40
#ifndef PPC44x_TLBE_SIZE
#define PPC44x_TLBE_SIZE	PPC44x_TLB_4K
#endif

#define PAGE_SIZE_4K (1<<12)
#define PAGE_MASK_4K (~(PAGE_SIZE_4K - 1))

41 42
#define PPC44x_TLB_UATTR_MASK \
	(PPC44x_TLB_U0|PPC44x_TLB_U1|PPC44x_TLB_U2|PPC44x_TLB_U3)
43 44 45
#define PPC44x_TLB_USER_PERM_MASK (PPC44x_TLB_UX|PPC44x_TLB_UR|PPC44x_TLB_UW)
#define PPC44x_TLB_SUPER_PERM_MASK (PPC44x_TLB_SX|PPC44x_TLB_SR|PPC44x_TLB_SW)

46 47 48 49 50 51 52 53 54 55
#ifdef DEBUG
void kvmppc_dump_tlbs(struct kvm_vcpu *vcpu)
{
	struct kvmppc_44x_tlbe *tlbe;
	int i;

	printk("vcpu %d TLB dump:\n", vcpu->vcpu_id);
	printk("| %2s | %3s | %8s | %8s | %8s |\n",
			"nr", "tid", "word0", "word1", "word2");

56
	for (i = 0; i < ARRAY_SIZE(vcpu_44x->guest_tlb); i++) {
57
		tlbe = &vcpu_44x->guest_tlb[i];
58 59 60 61 62 63 64 65
		if (tlbe->word0 & PPC44x_TLB_VALID)
			printk(" G%2d |  %02X | %08X | %08X | %08X |\n",
			       i, tlbe->tid, tlbe->word0, tlbe->word1,
			       tlbe->word2);
	}
}
#endif

66 67 68 69 70 71 72 73 74 75 76
static inline void kvmppc_44x_tlbie(unsigned int index)
{
	/* 0 <= index < 64, so the V bit is clear and we can use the index as
	 * word0. */
	asm volatile(
		"tlbwe %[index], %[index], 0\n"
	:
	: [index] "r"(index)
	);
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
static inline void kvmppc_44x_tlbre(unsigned int index,
                                    struct kvmppc_44x_tlbe *tlbe)
{
	asm volatile(
		"tlbre %[word0], %[index], 0\n"
		"mfspr %[tid], %[sprn_mmucr]\n"
		"andi. %[tid], %[tid], 0xff\n"
		"tlbre %[word1], %[index], 1\n"
		"tlbre %[word2], %[index], 2\n"
		: [word0] "=r"(tlbe->word0),
		  [word1] "=r"(tlbe->word1),
		  [word2] "=r"(tlbe->word2),
		  [tid]   "=r"(tlbe->tid)
		: [index] "r"(index),
		  [sprn_mmucr] "i"(SPRN_MMUCR)
		: "cc"
	);
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
static inline void kvmppc_44x_tlbwe(unsigned int index,
                                    struct kvmppc_44x_tlbe *stlbe)
{
	unsigned long tmp;

	asm volatile(
		"mfspr %[tmp], %[sprn_mmucr]\n"
		"rlwimi %[tmp], %[tid], 0, 0xff\n"
		"mtspr %[sprn_mmucr], %[tmp]\n"
		"tlbwe %[word0], %[index], 0\n"
		"tlbwe %[word1], %[index], 1\n"
		"tlbwe %[word2], %[index], 2\n"
		: [tmp]   "=&r"(tmp)
		: [word0] "r"(stlbe->word0),
		  [word1] "r"(stlbe->word1),
		  [word2] "r"(stlbe->word2),
		  [tid]   "r"(stlbe->tid),
		  [index] "r"(index),
		  [sprn_mmucr] "i"(SPRN_MMUCR)
	);
}

118 119
static u32 kvmppc_44x_tlb_shadow_attrib(u32 attrib, int usermode)
{
120 121
	/* We only care about the guest's permission and user bits. */
	attrib &= PPC44x_TLB_PERM_MASK|PPC44x_TLB_UATTR_MASK;
122 123 124 125 126 127 128 129 130 131 132

	if (!usermode) {
		/* Guest is in supervisor mode, so we need to translate guest
		 * supervisor permissions into user permissions. */
		attrib &= ~PPC44x_TLB_USER_PERM_MASK;
		attrib |= (attrib & PPC44x_TLB_SUPER_PERM_MASK) << 3;
	}

	/* Make sure host can always access this memory. */
	attrib |= PPC44x_TLB_SX|PPC44x_TLB_SR|PPC44x_TLB_SW;

133 134 135
	/* WIMGE = 0b00100 */
	attrib |= PPC44x_TLB_M;

136 137 138
	return attrib;
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/* Load shadow TLB back into hardware. */
void kvmppc_44x_tlb_load(struct kvm_vcpu *vcpu)
{
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
	int i;

	for (i = 0; i <= tlb_44x_hwater; i++) {
		struct kvmppc_44x_tlbe *stlbe = &vcpu_44x->shadow_tlb[i];

		if (get_tlb_v(stlbe) && get_tlb_ts(stlbe))
			kvmppc_44x_tlbwe(i, stlbe);
	}
}

static void kvmppc_44x_tlbe_set_modified(struct kvmppc_vcpu_44x *vcpu_44x,
                                         unsigned int i)
{
	vcpu_44x->shadow_tlb_mod[i] = 1;
}

/* Save hardware TLB to the vcpu, and invalidate all guest mappings. */
void kvmppc_44x_tlb_put(struct kvm_vcpu *vcpu)
{
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
	int i;

	for (i = 0; i <= tlb_44x_hwater; i++) {
		struct kvmppc_44x_tlbe *stlbe = &vcpu_44x->shadow_tlb[i];

		if (vcpu_44x->shadow_tlb_mod[i])
			kvmppc_44x_tlbre(i, stlbe);

		if (get_tlb_v(stlbe) && get_tlb_ts(stlbe))
			kvmppc_44x_tlbie(i);
	}
}


177 178 179 180
/* Search the guest TLB for a matching entry. */
int kvmppc_44x_tlb_index(struct kvm_vcpu *vcpu, gva_t eaddr, unsigned int pid,
                         unsigned int as)
{
181
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
182 183 184
	int i;

	/* XXX Replace loop with fancy data structures. */
185
	for (i = 0; i < ARRAY_SIZE(vcpu_44x->guest_tlb); i++) {
186
		struct kvmppc_44x_tlbe *tlbe = &vcpu_44x->guest_tlb[i];
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
		unsigned int tid;

		if (eaddr < get_tlb_eaddr(tlbe))
			continue;

		if (eaddr > get_tlb_end(tlbe))
			continue;

		tid = get_tlb_tid(tlbe);
		if (tid && (tid != pid))
			continue;

		if (!get_tlb_v(tlbe))
			continue;

		if (get_tlb_ts(tlbe) != as)
			continue;

		return i;
	}

	return -1;
}

211 212 213 214 215 216 217 218 219 220
gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int gtlb_index,
                       gva_t eaddr)
{
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
	struct kvmppc_44x_tlbe *gtlbe = &vcpu_44x->guest_tlb[gtlb_index];
	unsigned int pgmask = get_tlb_bytes(gtlbe) - 1;

	return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
}

221
int kvmppc_44x_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
222 223 224
{
	unsigned int as = !!(vcpu->arch.msr & MSR_IS);

225
	return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as);
226 227
}

228
int kvmppc_44x_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
229 230 231
{
	unsigned int as = !!(vcpu->arch.msr & MSR_DS);

232
	return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as);
233 234
}

235 236
static void kvmppc_44x_shadow_release(struct kvmppc_vcpu_44x *vcpu_44x,
                                      unsigned int stlb_index)
237
{
238
	struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[stlb_index];
239

240 241
	if (!ref->page)
		return;
242

243 244 245 246
	/* Discard from the TLB. */
	/* Note: we could actually invalidate a host mapping, if the host overwrote
	 * this TLB entry since we inserted a guest mapping. */
	kvmppc_44x_tlbie(stlb_index);
247

248 249 250 251 252
	/* Now release the page. */
	if (ref->writeable)
		kvm_release_page_dirty(ref->page);
	else
		kvm_release_page_clean(ref->page);
253

254 255 256 257 258
	ref->page = NULL;

	/* XXX set tlb_44x_index to stlb_index? */

	KVMTRACE_1D(STLB_INVAL, &vcpu_44x->vcpu, stlb_index, handler);
259 260
}

261
void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
262
{
263
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
264
	int i;
265

266 267
	for (i = 0; i <= tlb_44x_hwater; i++)
		kvmppc_44x_shadow_release(vcpu_44x, i);
268 269
}

270 271 272 273 274 275 276 277 278 279 280 281
/**
 * kvmppc_mmu_map -- create a host mapping for guest memory
 *
 * If the guest wanted a larger page than the host supports, only the first
 * host page is mapped here and the rest are demand faulted.
 *
 * If the guest wanted a smaller page than the host page size, we map only the
 * guest-size page (i.e. not a full host page mapping).
 *
 * Caller must ensure that the specified guest TLB entry is safe to insert into
 * the shadow TLB.
 */
282 283
void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 gvaddr, gpa_t gpaddr,
                    unsigned int gtlb_index)
284
{
285
	struct kvmppc_44x_tlbe stlbe;
286
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
287
	struct kvmppc_44x_tlbe *gtlbe = &vcpu_44x->guest_tlb[gtlb_index];
288
	struct kvmppc_44x_shadow_ref *ref;
289 290
	struct page *new_page;
	hpa_t hpaddr;
291
	gfn_t gfn;
292 293 294
	u32 asid = gtlbe->tid;
	u32 flags = gtlbe->word2;
	u32 max_bytes = get_tlb_bytes(gtlbe);
295 296
	unsigned int victim;

297 298 299 300 301 302 303 304
	/* Select TLB entry to clobber. Indirectly guard against races with the TLB
	 * miss handler by disabling interrupts. */
	local_irq_disable();
	victim = ++tlb_44x_index;
	if (victim > tlb_44x_hwater)
		victim = 0;
	tlb_44x_index = victim;
	local_irq_enable();
305 306

	/* Get reference to new page. */
307
	gfn = gpaddr >> PAGE_SHIFT;
308 309
	new_page = gfn_to_page(vcpu->kvm, gfn);
	if (is_error_page(new_page)) {
H
Hollis Blanchard 已提交
310
		printk(KERN_ERR "Couldn't get guest page for gfn %lx!\n", gfn);
311 312 313 314 315
		kvm_release_page_clean(new_page);
		return;
	}
	hpaddr = page_to_phys(new_page);

316 317
	/* Invalidate any previous shadow mappings. */
	kvmppc_44x_shadow_release(vcpu_44x, victim);
318 319 320 321 322 323 324 325

	/* XXX Make sure (va, size) doesn't overlap any other
	 * entries. 440x6 user manual says the result would be
	 * "undefined." */

	/* XXX what about AS? */

	/* Force TS=1 for all guest mappings. */
326
	stlbe.word0 = PPC44x_TLB_VALID | PPC44x_TLB_TS;
327 328 329 330

	if (max_bytes >= PAGE_SIZE) {
		/* Guest mapping is larger than or equal to host page size. We can use
		 * a "native" host mapping. */
331
		stlbe.word0 |= (gvaddr & PAGE_MASK) | PPC44x_TLBE_SIZE;
332 333 334 335 336
	} else {
		/* Guest mapping is smaller than host page size. We must restrict the
		 * size of the mapping to be at most the smaller of the two, but for
		 * simplicity we fall back to a 4K mapping (this is probably what the
		 * guest is using anyways). */
337
		stlbe.word0 |= (gvaddr & PAGE_MASK_4K) | PPC44x_TLB_4K;
338 339 340 341 342 343 344

		/* 'hpaddr' is a host page, which is larger than the mapping we're
		 * inserting here. To compensate, we must add the in-page offset to the
		 * sub-page. */
		hpaddr |= gpaddr & (PAGE_MASK ^ PAGE_MASK_4K);
	}

345 346
	stlbe.word1 = (hpaddr & 0xfffffc00) | ((hpaddr >> 32) & 0xf);
	stlbe.word2 = kvmppc_44x_tlb_shadow_attrib(flags,
347
	                                            vcpu->arch.msr & MSR_PR);
348 349 350 351 352 353 354 355 356 357
	stlbe.tid = !(asid & 0xff);

	/* Keep track of the reference so we can properly release it later. */
	ref = &vcpu_44x->shadow_refs[victim];
	ref->page = new_page;
	ref->gtlb_index = gtlb_index;
	ref->writeable = !!(stlbe.word2 & PPC44x_TLB_UW);
	ref->tid = stlbe.tid;

	/* Insert shadow mapping into hardware TLB. */
358
	kvmppc_44x_tlbe_set_modified(vcpu_44x, victim);
359 360 361
	kvmppc_44x_tlbwe(victim, &stlbe);
	KVMTRACE_5D(STLB_WRITE, vcpu, victim, stlbe.tid, stlbe.word0, stlbe.word1,
	            stlbe.word2, handler);
362 363
}

364 365 366 367
/* For a particular guest TLB entry, invalidate the corresponding host TLB
 * mappings and release the host pages. */
static void kvmppc_44x_invalidate(struct kvm_vcpu *vcpu,
                                  unsigned int gtlb_index)
368
{
369
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
370 371
	int i;

372 373 374 375
	for (i = 0; i < ARRAY_SIZE(vcpu_44x->shadow_refs); i++) {
		struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[i];
		if (ref->gtlb_index == gtlb_index)
			kvmppc_44x_shadow_release(vcpu_44x, i);
376 377 378 379
	}
}

void kvmppc_mmu_priv_switch(struct kvm_vcpu *vcpu, int usermode)
380 381 382 383 384
{
	vcpu->arch.shadow_pid = !usermode;
}

void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 new_pid)
385
{
386
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
387 388
	int i;

389 390 391 392 393 394 395 396 397
	if (unlikely(vcpu->arch.pid == new_pid))
		return;

	vcpu->arch.pid = new_pid;

	/* Guest userspace runs with TID=0 mappings and PID=0, to make sure it
	 * can't access guest kernel mappings (TID=1). When we switch to a new
	 * guest PID, which will also use host PID=0, we must discard the old guest
	 * userspace mappings. */
398 399 400 401 402
	for (i = 0; i < ARRAY_SIZE(vcpu_44x->shadow_refs); i++) {
		struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[i];

		if (ref->tid == 0)
			kvmppc_44x_shadow_release(vcpu_44x, i);
403 404
	}
}
405 406

static int tlbe_is_host_safe(const struct kvm_vcpu *vcpu,
407
                             const struct kvmppc_44x_tlbe *tlbe)
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
{
	gpa_t gpa;

	if (!get_tlb_v(tlbe))
		return 0;

	/* Does it match current guest AS? */
	/* XXX what about IS != DS? */
	if (get_tlb_ts(tlbe) != !!(vcpu->arch.msr & MSR_IS))
		return 0;

	gpa = get_tlb_raddr(tlbe);
	if (!gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT))
		/* Mapping is not for RAM. */
		return 0;

	return 1;
}

427
int kvmppc_44x_emul_tlbwe(struct kvm_vcpu *vcpu, u8 ra, u8 rs, u8 ws)
428
{
429
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
430
	struct kvmppc_44x_tlbe *tlbe;
431
	unsigned int gtlb_index;
432

433 434 435
	gtlb_index = vcpu->arch.gpr[ra];
	if (gtlb_index > KVM44x_GUEST_TLB_SIZE) {
		printk("%s: index %d\n", __func__, gtlb_index);
436 437 438 439
		kvmppc_dump_vcpu(vcpu);
		return EMULATE_FAIL;
	}

440
	tlbe = &vcpu_44x->guest_tlb[gtlb_index];
441

442 443 444
	/* Invalidate shadow mappings for the about-to-be-clobbered TLB entry. */
	if (tlbe->word0 & PPC44x_TLB_VALID)
		kvmppc_44x_invalidate(vcpu, gtlb_index);
445 446 447

	switch (ws) {
	case PPC44x_TLB_PAGEID:
448
		tlbe->tid = get_mmucr_stid(vcpu);
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
		tlbe->word0 = vcpu->arch.gpr[rs];
		break;

	case PPC44x_TLB_XLAT:
		tlbe->word1 = vcpu->arch.gpr[rs];
		break;

	case PPC44x_TLB_ATTRIB:
		tlbe->word2 = vcpu->arch.gpr[rs];
		break;

	default:
		return EMULATE_FAIL;
	}

	if (tlbe_is_host_safe(vcpu, tlbe)) {
465
		gva_t eaddr;
466 467 468
		gpa_t gpaddr;
		u32 bytes;

469
		eaddr = get_tlb_eaddr(tlbe);
470 471 472 473 474 475 476
		gpaddr = get_tlb_raddr(tlbe);

		/* Use the advertised page size to mask effective and real addrs. */
		bytes = get_tlb_bytes(tlbe);
		eaddr &= ~(bytes - 1);
		gpaddr &= ~(bytes - 1);

477
		kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index);
478 479
	}

480 481
	KVMTRACE_5D(GTLB_WRITE, vcpu, gtlb_index, tlbe->tid, tlbe->word0,
	            tlbe->word1, tlbe->word2, handler);
482

483
	kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
484 485 486
	return EMULATE_DONE;
}

487
int kvmppc_44x_emul_tlbsx(struct kvm_vcpu *vcpu, u8 rt, u8 ra, u8 rb, u8 rc)
488 489
{
	u32 ea;
490
	int gtlb_index;
491 492 493 494 495 496 497
	unsigned int as = get_mmucr_sts(vcpu);
	unsigned int pid = get_mmucr_stid(vcpu);

	ea = vcpu->arch.gpr[rb];
	if (ra)
		ea += vcpu->arch.gpr[ra];

498
	gtlb_index = kvmppc_44x_tlb_index(vcpu, ea, pid, as);
499
	if (rc) {
500
		if (gtlb_index < 0)
501 502 503 504
			vcpu->arch.cr &= ~0x20000000;
		else
			vcpu->arch.cr |= 0x20000000;
	}
505
	vcpu->arch.gpr[rt] = gtlb_index;
506

507
	kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
508 509
	return EMULATE_DONE;
}