44x_tlb.c 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright IBM Corp. 2007
 *
 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
22
#include <linux/kvm.h>
23 24
#include <linux/kvm_host.h>
#include <linux/highmem.h>
25 26

#include <asm/tlbflush.h>
27 28
#include <asm/mmu-44x.h>
#include <asm/kvm_ppc.h>
29
#include <asm/kvm_44x.h>
30
#include "timing.h"
31 32

#include "44x_tlb.h"
33
#include "trace.h"
34

35 36 37 38 39 40 41
#ifndef PPC44x_TLBE_SIZE
#define PPC44x_TLBE_SIZE	PPC44x_TLB_4K
#endif

#define PAGE_SIZE_4K (1<<12)
#define PAGE_MASK_4K (~(PAGE_SIZE_4K - 1))

42 43
#define PPC44x_TLB_UATTR_MASK \
	(PPC44x_TLB_U0|PPC44x_TLB_U1|PPC44x_TLB_U2|PPC44x_TLB_U3)
44 45 46
#define PPC44x_TLB_USER_PERM_MASK (PPC44x_TLB_UX|PPC44x_TLB_UR|PPC44x_TLB_UW)
#define PPC44x_TLB_SUPER_PERM_MASK (PPC44x_TLB_SX|PPC44x_TLB_SR|PPC44x_TLB_SW)

47 48 49 50 51 52 53 54 55 56
#ifdef DEBUG
void kvmppc_dump_tlbs(struct kvm_vcpu *vcpu)
{
	struct kvmppc_44x_tlbe *tlbe;
	int i;

	printk("vcpu %d TLB dump:\n", vcpu->vcpu_id);
	printk("| %2s | %3s | %8s | %8s | %8s |\n",
			"nr", "tid", "word0", "word1", "word2");

57
	for (i = 0; i < ARRAY_SIZE(vcpu_44x->guest_tlb); i++) {
58
		tlbe = &vcpu_44x->guest_tlb[i];
59 60 61 62 63 64 65 66
		if (tlbe->word0 & PPC44x_TLB_VALID)
			printk(" G%2d |  %02X | %08X | %08X | %08X |\n",
			       i, tlbe->tid, tlbe->word0, tlbe->word1,
			       tlbe->word2);
	}
}
#endif

67 68 69 70 71 72 73 74 75 76 77
static inline void kvmppc_44x_tlbie(unsigned int index)
{
	/* 0 <= index < 64, so the V bit is clear and we can use the index as
	 * word0. */
	asm volatile(
		"tlbwe %[index], %[index], 0\n"
	:
	: [index] "r"(index)
	);
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
static inline void kvmppc_44x_tlbre(unsigned int index,
                                    struct kvmppc_44x_tlbe *tlbe)
{
	asm volatile(
		"tlbre %[word0], %[index], 0\n"
		"mfspr %[tid], %[sprn_mmucr]\n"
		"andi. %[tid], %[tid], 0xff\n"
		"tlbre %[word1], %[index], 1\n"
		"tlbre %[word2], %[index], 2\n"
		: [word0] "=r"(tlbe->word0),
		  [word1] "=r"(tlbe->word1),
		  [word2] "=r"(tlbe->word2),
		  [tid]   "=r"(tlbe->tid)
		: [index] "r"(index),
		  [sprn_mmucr] "i"(SPRN_MMUCR)
		: "cc"
	);
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
static inline void kvmppc_44x_tlbwe(unsigned int index,
                                    struct kvmppc_44x_tlbe *stlbe)
{
	unsigned long tmp;

	asm volatile(
		"mfspr %[tmp], %[sprn_mmucr]\n"
		"rlwimi %[tmp], %[tid], 0, 0xff\n"
		"mtspr %[sprn_mmucr], %[tmp]\n"
		"tlbwe %[word0], %[index], 0\n"
		"tlbwe %[word1], %[index], 1\n"
		"tlbwe %[word2], %[index], 2\n"
		: [tmp]   "=&r"(tmp)
		: [word0] "r"(stlbe->word0),
		  [word1] "r"(stlbe->word1),
		  [word2] "r"(stlbe->word2),
		  [tid]   "r"(stlbe->tid),
		  [index] "r"(index),
		  [sprn_mmucr] "i"(SPRN_MMUCR)
	);
}

119 120
static u32 kvmppc_44x_tlb_shadow_attrib(u32 attrib, int usermode)
{
121 122
	/* We only care about the guest's permission and user bits. */
	attrib &= PPC44x_TLB_PERM_MASK|PPC44x_TLB_UATTR_MASK;
123 124 125 126 127 128 129 130 131 132 133

	if (!usermode) {
		/* Guest is in supervisor mode, so we need to translate guest
		 * supervisor permissions into user permissions. */
		attrib &= ~PPC44x_TLB_USER_PERM_MASK;
		attrib |= (attrib & PPC44x_TLB_SUPER_PERM_MASK) << 3;
	}

	/* Make sure host can always access this memory. */
	attrib |= PPC44x_TLB_SX|PPC44x_TLB_SR|PPC44x_TLB_SW;

134 135 136
	/* WIMGE = 0b00100 */
	attrib |= PPC44x_TLB_M;

137 138 139
	return attrib;
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
/* Load shadow TLB back into hardware. */
void kvmppc_44x_tlb_load(struct kvm_vcpu *vcpu)
{
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
	int i;

	for (i = 0; i <= tlb_44x_hwater; i++) {
		struct kvmppc_44x_tlbe *stlbe = &vcpu_44x->shadow_tlb[i];

		if (get_tlb_v(stlbe) && get_tlb_ts(stlbe))
			kvmppc_44x_tlbwe(i, stlbe);
	}
}

static void kvmppc_44x_tlbe_set_modified(struct kvmppc_vcpu_44x *vcpu_44x,
                                         unsigned int i)
{
	vcpu_44x->shadow_tlb_mod[i] = 1;
}

/* Save hardware TLB to the vcpu, and invalidate all guest mappings. */
void kvmppc_44x_tlb_put(struct kvm_vcpu *vcpu)
{
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
	int i;

	for (i = 0; i <= tlb_44x_hwater; i++) {
		struct kvmppc_44x_tlbe *stlbe = &vcpu_44x->shadow_tlb[i];

		if (vcpu_44x->shadow_tlb_mod[i])
			kvmppc_44x_tlbre(i, stlbe);

		if (get_tlb_v(stlbe) && get_tlb_ts(stlbe))
			kvmppc_44x_tlbie(i);
	}
}


178 179 180 181
/* Search the guest TLB for a matching entry. */
int kvmppc_44x_tlb_index(struct kvm_vcpu *vcpu, gva_t eaddr, unsigned int pid,
                         unsigned int as)
{
182
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
183 184 185
	int i;

	/* XXX Replace loop with fancy data structures. */
186
	for (i = 0; i < ARRAY_SIZE(vcpu_44x->guest_tlb); i++) {
187
		struct kvmppc_44x_tlbe *tlbe = &vcpu_44x->guest_tlb[i];
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
		unsigned int tid;

		if (eaddr < get_tlb_eaddr(tlbe))
			continue;

		if (eaddr > get_tlb_end(tlbe))
			continue;

		tid = get_tlb_tid(tlbe);
		if (tid && (tid != pid))
			continue;

		if (!get_tlb_v(tlbe))
			continue;

		if (get_tlb_ts(tlbe) != as)
			continue;

		return i;
	}

	return -1;
}

212 213 214 215 216 217 218 219 220 221
gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int gtlb_index,
                       gva_t eaddr)
{
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
	struct kvmppc_44x_tlbe *gtlbe = &vcpu_44x->guest_tlb[gtlb_index];
	unsigned int pgmask = get_tlb_bytes(gtlbe) - 1;

	return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
}

222
int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
223 224 225
{
	unsigned int as = !!(vcpu->arch.msr & MSR_IS);

226
	return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as);
227 228
}

229
int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
230 231 232
{
	unsigned int as = !!(vcpu->arch.msr & MSR_DS);

233
	return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as);
234 235
}

236 237 238 239 240 241 242 243
void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
{
}

void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
{
}

244 245
static void kvmppc_44x_shadow_release(struct kvmppc_vcpu_44x *vcpu_44x,
                                      unsigned int stlb_index)
246
{
247
	struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[stlb_index];
248

249 250
	if (!ref->page)
		return;
251

252 253 254 255
	/* Discard from the TLB. */
	/* Note: we could actually invalidate a host mapping, if the host overwrote
	 * this TLB entry since we inserted a guest mapping. */
	kvmppc_44x_tlbie(stlb_index);
256

257 258 259 260 261
	/* Now release the page. */
	if (ref->writeable)
		kvm_release_page_dirty(ref->page);
	else
		kvm_release_page_clean(ref->page);
262

263 264 265 266
	ref->page = NULL;

	/* XXX set tlb_44x_index to stlb_index? */

267
	trace_kvm_stlb_inval(stlb_index);
268 269
}

270
void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
271
{
272
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
273
	int i;
274

275 276
	for (i = 0; i <= tlb_44x_hwater; i++)
		kvmppc_44x_shadow_release(vcpu_44x, i);
277 278
}

279 280 281 282 283 284 285 286 287 288 289 290
/**
 * kvmppc_mmu_map -- create a host mapping for guest memory
 *
 * If the guest wanted a larger page than the host supports, only the first
 * host page is mapped here and the rest are demand faulted.
 *
 * If the guest wanted a smaller page than the host page size, we map only the
 * guest-size page (i.e. not a full host page mapping).
 *
 * Caller must ensure that the specified guest TLB entry is safe to insert into
 * the shadow TLB.
 */
291 292
void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 gvaddr, gpa_t gpaddr,
                    unsigned int gtlb_index)
293
{
294
	struct kvmppc_44x_tlbe stlbe;
295
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
296
	struct kvmppc_44x_tlbe *gtlbe = &vcpu_44x->guest_tlb[gtlb_index];
297
	struct kvmppc_44x_shadow_ref *ref;
298 299
	struct page *new_page;
	hpa_t hpaddr;
300
	gfn_t gfn;
301 302 303
	u32 asid = gtlbe->tid;
	u32 flags = gtlbe->word2;
	u32 max_bytes = get_tlb_bytes(gtlbe);
304 305
	unsigned int victim;

306 307 308 309 310 311 312 313
	/* Select TLB entry to clobber. Indirectly guard against races with the TLB
	 * miss handler by disabling interrupts. */
	local_irq_disable();
	victim = ++tlb_44x_index;
	if (victim > tlb_44x_hwater)
		victim = 0;
	tlb_44x_index = victim;
	local_irq_enable();
314 315

	/* Get reference to new page. */
316
	gfn = gpaddr >> PAGE_SHIFT;
317 318
	new_page = gfn_to_page(vcpu->kvm, gfn);
	if (is_error_page(new_page)) {
J
Joerg Roedel 已提交
319 320
		printk(KERN_ERR "Couldn't get guest page for gfn %llx!\n",
			(unsigned long long)gfn);
321 322 323 324 325
		kvm_release_page_clean(new_page);
		return;
	}
	hpaddr = page_to_phys(new_page);

326 327
	/* Invalidate any previous shadow mappings. */
	kvmppc_44x_shadow_release(vcpu_44x, victim);
328 329 330 331 332 333 334 335

	/* XXX Make sure (va, size) doesn't overlap any other
	 * entries. 440x6 user manual says the result would be
	 * "undefined." */

	/* XXX what about AS? */

	/* Force TS=1 for all guest mappings. */
336
	stlbe.word0 = PPC44x_TLB_VALID | PPC44x_TLB_TS;
337 338 339 340

	if (max_bytes >= PAGE_SIZE) {
		/* Guest mapping is larger than or equal to host page size. We can use
		 * a "native" host mapping. */
341
		stlbe.word0 |= (gvaddr & PAGE_MASK) | PPC44x_TLBE_SIZE;
342 343 344 345 346
	} else {
		/* Guest mapping is smaller than host page size. We must restrict the
		 * size of the mapping to be at most the smaller of the two, but for
		 * simplicity we fall back to a 4K mapping (this is probably what the
		 * guest is using anyways). */
347
		stlbe.word0 |= (gvaddr & PAGE_MASK_4K) | PPC44x_TLB_4K;
348 349 350 351 352 353 354

		/* 'hpaddr' is a host page, which is larger than the mapping we're
		 * inserting here. To compensate, we must add the in-page offset to the
		 * sub-page. */
		hpaddr |= gpaddr & (PAGE_MASK ^ PAGE_MASK_4K);
	}

355 356
	stlbe.word1 = (hpaddr & 0xfffffc00) | ((hpaddr >> 32) & 0xf);
	stlbe.word2 = kvmppc_44x_tlb_shadow_attrib(flags,
357
	                                            vcpu->arch.msr & MSR_PR);
358 359 360 361 362 363 364 365 366 367
	stlbe.tid = !(asid & 0xff);

	/* Keep track of the reference so we can properly release it later. */
	ref = &vcpu_44x->shadow_refs[victim];
	ref->page = new_page;
	ref->gtlb_index = gtlb_index;
	ref->writeable = !!(stlbe.word2 & PPC44x_TLB_UW);
	ref->tid = stlbe.tid;

	/* Insert shadow mapping into hardware TLB. */
368
	kvmppc_44x_tlbe_set_modified(vcpu_44x, victim);
369
	kvmppc_44x_tlbwe(victim, &stlbe);
370 371
	trace_kvm_stlb_write(victim, stlbe.tid, stlbe.word0, stlbe.word1,
			     stlbe.word2);
372 373
}

374 375 376 377
/* For a particular guest TLB entry, invalidate the corresponding host TLB
 * mappings and release the host pages. */
static void kvmppc_44x_invalidate(struct kvm_vcpu *vcpu,
                                  unsigned int gtlb_index)
378
{
379
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
380 381
	int i;

382 383 384 385
	for (i = 0; i < ARRAY_SIZE(vcpu_44x->shadow_refs); i++) {
		struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[i];
		if (ref->gtlb_index == gtlb_index)
			kvmppc_44x_shadow_release(vcpu_44x, i);
386 387 388 389
	}
}

void kvmppc_mmu_priv_switch(struct kvm_vcpu *vcpu, int usermode)
390 391 392 393 394
{
	vcpu->arch.shadow_pid = !usermode;
}

void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 new_pid)
395
{
396
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
397 398
	int i;

399 400 401 402 403 404 405 406 407
	if (unlikely(vcpu->arch.pid == new_pid))
		return;

	vcpu->arch.pid = new_pid;

	/* Guest userspace runs with TID=0 mappings and PID=0, to make sure it
	 * can't access guest kernel mappings (TID=1). When we switch to a new
	 * guest PID, which will also use host PID=0, we must discard the old guest
	 * userspace mappings. */
408 409 410 411 412
	for (i = 0; i < ARRAY_SIZE(vcpu_44x->shadow_refs); i++) {
		struct kvmppc_44x_shadow_ref *ref = &vcpu_44x->shadow_refs[i];

		if (ref->tid == 0)
			kvmppc_44x_shadow_release(vcpu_44x, i);
413 414
	}
}
415 416

static int tlbe_is_host_safe(const struct kvm_vcpu *vcpu,
417
                             const struct kvmppc_44x_tlbe *tlbe)
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
{
	gpa_t gpa;

	if (!get_tlb_v(tlbe))
		return 0;

	/* Does it match current guest AS? */
	/* XXX what about IS != DS? */
	if (get_tlb_ts(tlbe) != !!(vcpu->arch.msr & MSR_IS))
		return 0;

	gpa = get_tlb_raddr(tlbe);
	if (!gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT))
		/* Mapping is not for RAM. */
		return 0;

	return 1;
}

437
int kvmppc_44x_emul_tlbwe(struct kvm_vcpu *vcpu, u8 ra, u8 rs, u8 ws)
438
{
439
	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
440
	struct kvmppc_44x_tlbe *tlbe;
441
	unsigned int gtlb_index;
442

443
	gtlb_index = kvmppc_get_gpr(vcpu, ra);
444
	if (gtlb_index >= KVM44x_GUEST_TLB_SIZE) {
445
		printk("%s: index %d\n", __func__, gtlb_index);
446 447 448 449
		kvmppc_dump_vcpu(vcpu);
		return EMULATE_FAIL;
	}

450
	tlbe = &vcpu_44x->guest_tlb[gtlb_index];
451

452 453 454
	/* Invalidate shadow mappings for the about-to-be-clobbered TLB entry. */
	if (tlbe->word0 & PPC44x_TLB_VALID)
		kvmppc_44x_invalidate(vcpu, gtlb_index);
455 456 457

	switch (ws) {
	case PPC44x_TLB_PAGEID:
458
		tlbe->tid = get_mmucr_stid(vcpu);
459
		tlbe->word0 = kvmppc_get_gpr(vcpu, rs);
460 461 462
		break;

	case PPC44x_TLB_XLAT:
463
		tlbe->word1 = kvmppc_get_gpr(vcpu, rs);
464 465 466
		break;

	case PPC44x_TLB_ATTRIB:
467
		tlbe->word2 = kvmppc_get_gpr(vcpu, rs);
468 469 470 471 472 473 474
		break;

	default:
		return EMULATE_FAIL;
	}

	if (tlbe_is_host_safe(vcpu, tlbe)) {
475
		gva_t eaddr;
476 477 478
		gpa_t gpaddr;
		u32 bytes;

479
		eaddr = get_tlb_eaddr(tlbe);
480 481 482 483 484 485 486
		gpaddr = get_tlb_raddr(tlbe);

		/* Use the advertised page size to mask effective and real addrs. */
		bytes = get_tlb_bytes(tlbe);
		eaddr &= ~(bytes - 1);
		gpaddr &= ~(bytes - 1);

487
		kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index);
488 489
	}

490 491
	trace_kvm_gtlb_write(gtlb_index, tlbe->tid, tlbe->word0, tlbe->word1,
			     tlbe->word2);
492

493
	kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
494 495 496
	return EMULATE_DONE;
}

497
int kvmppc_44x_emul_tlbsx(struct kvm_vcpu *vcpu, u8 rt, u8 ra, u8 rb, u8 rc)
498 499
{
	u32 ea;
500
	int gtlb_index;
501 502 503
	unsigned int as = get_mmucr_sts(vcpu);
	unsigned int pid = get_mmucr_stid(vcpu);

504
	ea = kvmppc_get_gpr(vcpu, rb);
505
	if (ra)
506
		ea += kvmppc_get_gpr(vcpu, ra);
507

508
	gtlb_index = kvmppc_44x_tlb_index(vcpu, ea, pid, as);
509
	if (rc) {
510 511
		u32 cr = kvmppc_get_cr(vcpu);

512
		if (gtlb_index < 0)
513
			kvmppc_set_cr(vcpu, cr & ~0x20000000);
514
		else
515
			kvmppc_set_cr(vcpu, cr | 0x20000000);
516
	}
517
	kvmppc_set_gpr(vcpu, rt, gtlb_index);
518

519
	kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
520 521
	return EMULATE_DONE;
}