compaction.c 33.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17 18
#include "internal.h"

19 20
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

21 22 23
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

24 25 26 27 28 29 30 31 32 33 34 35 36 37
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

38 39 40 41 42 43 44 45 46 47
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

48 49 50 51 52
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
#ifdef CONFIG_COMPACTION
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
69
static void __reset_isolation_suitable(struct zone *zone)
70 71 72 73 74
{
	unsigned long start_pfn = zone->zone_start_pfn;
	unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
	unsigned long pfn;

75 76
	zone->compact_cached_migrate_pfn = start_pfn;
	zone->compact_cached_free_pfn = end_pfn;
77
	zone->compact_blockskip_flush = false;
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

111 112
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
113
 * future. The information is later cleared by __reset_isolation_suitable().
114
 */
115 116 117
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
118
{
119
	struct zone *zone = cc->zone;
120 121 122
	if (!page)
		return;

123 124
	if (!nr_isolated) {
		unsigned long pfn = page_to_pfn(page);
125
		set_pageblock_skip(page);
126 127 128 129 130 131 132 133 134 135 136 137

		/* Update where compaction should restart */
		if (migrate_scanner) {
			if (!cc->finished_update_migrate &&
			    pfn > zone->compact_cached_migrate_pfn)
				zone->compact_cached_migrate_pfn = pfn;
		} else {
			if (!cc->finished_update_free &&
			    pfn < zone->compact_cached_free_pfn)
				zone->compact_cached_free_pfn = pfn;
		}
	}
138 139 140 141 142 143 144 145
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

146 147 148
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
			bool migrate_scanner)
149 150 151 152
{
}
#endif /* CONFIG_COMPACTION */

153 154 155 156 157
static inline bool should_release_lock(spinlock_t *lock)
{
	return need_resched() || spin_is_contended(lock);
}

158 159 160 161 162 163 164 165 166 167 168 169
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. Check if the process needs to be scheduled or
 * if the lock is contended. For async compaction, back out in the event
 * if contention is severe. For sync compaction, schedule.
 *
 * Returns true if the lock is held.
 * Returns false if the lock is released and compaction should abort
 */
static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
				      bool locked, struct compact_control *cc)
{
170
	if (should_release_lock(lock)) {
171 172 173 174 175 176 177
		if (locked) {
			spin_unlock_irqrestore(lock, *flags);
			locked = false;
		}

		/* async aborts if taking too long or contended */
		if (!cc->sync) {
178
			cc->contended = true;
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
			return false;
		}

		cond_resched();
	}

	if (!locked)
		spin_lock_irqsave(lock, *flags);
	return true;
}

static inline bool compact_trylock_irqsave(spinlock_t *lock,
			unsigned long *flags, struct compact_control *cc)
{
	return compact_checklock_irqsave(lock, flags, false, cc);
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
	int migratetype = get_pageblock_migratetype(page);

	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
		return false;

	/* If the page is a large free page, then allow migration */
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
		return true;

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
	if (migrate_async_suitable(migratetype))
		return true;

	/* Otherwise skip the block */
	return false;
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
static void compact_capture_page(struct compact_control *cc)
{
	unsigned long flags;
	int mtype, mtype_low, mtype_high;

	if (!cc->page || *cc->page)
		return;

	/*
	 * For MIGRATE_MOVABLE allocations we capture a suitable page ASAP
	 * regardless of the migratetype of the freelist is is captured from.
	 * This is fine because the order for a high-order MIGRATE_MOVABLE
	 * allocation is typically at least a pageblock size and overall
	 * fragmentation is not impaired. Other allocation types must
	 * capture pages from their own migratelist because otherwise they
	 * could pollute other pageblocks like MIGRATE_MOVABLE with
	 * difficult to move pages and making fragmentation worse overall.
	 */
	if (cc->migratetype == MIGRATE_MOVABLE) {
		mtype_low = 0;
		mtype_high = MIGRATE_PCPTYPES;
	} else {
		mtype_low = cc->migratetype;
		mtype_high = cc->migratetype + 1;
	}

	/* Speculatively examine the free lists without zone lock */
	for (mtype = mtype_low; mtype < mtype_high; mtype++) {
		int order;
		for (order = cc->order; order < MAX_ORDER; order++) {
			struct page *page;
			struct free_area *area;
			area = &(cc->zone->free_area[order]);
			if (list_empty(&area->free_list[mtype]))
				continue;

			/* Take the lock and attempt capture of the page */
			if (!compact_trylock_irqsave(&cc->zone->lock, &flags, cc))
				return;
			if (!list_empty(&area->free_list[mtype])) {
				page = list_entry(area->free_list[mtype].next,
							struct page, lru);
				if (capture_free_page(page, cc->order, mtype)) {
					spin_unlock_irqrestore(&cc->zone->lock,
									flags);
					*cc->page = page;
					return;
				}
			}
			spin_unlock_irqrestore(&cc->zone->lock, flags);
		}
	}
}

271 272 273 274 275 276
/*
 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
 * pages inside of the pageblock (even though it may still end up isolating
 * some pages).
 */
277 278
static unsigned long isolate_freepages_block(struct compact_control *cc,
				unsigned long blockpfn,
279 280 281
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
282
{
283
	int nr_scanned = 0, total_isolated = 0;
284
	struct page *cursor, *valid_page = NULL;
285 286 287
	unsigned long nr_strict_required = end_pfn - blockpfn;
	unsigned long flags;
	bool locked = false;
288 289 290

	cursor = pfn_to_page(blockpfn);

291
	/* Isolate free pages. */
292 293 294 295
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

296
		nr_scanned++;
297 298
		if (!pfn_valid_within(blockpfn))
			continue;
299 300
		if (!valid_page)
			valid_page = page;
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
		if (!PageBuddy(page))
			continue;

		/*
		 * The zone lock must be held to isolate freepages.
		 * Unfortunately this is a very coarse lock and can be
		 * heavily contended if there are parallel allocations
		 * or parallel compactions. For async compaction do not
		 * spin on the lock and we acquire the lock as late as
		 * possible.
		 */
		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
								locked, cc);
		if (!locked)
			break;

		/* Recheck this is a suitable migration target under lock */
		if (!strict && !suitable_migration_target(page))
			break;
320

321 322
		/* Recheck this is a buddy page under lock */
		if (!PageBuddy(page))
323 324 325 326
			continue;

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
327
		if (!isolated && strict)
328
			break;
329 330 331 332 333 334 335 336 337 338 339 340 341
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
		}
	}

342
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
343 344 345 346 347 348 349 350 351 352 353 354

	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
	if (strict && nr_strict_required != total_isolated)
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

355 356
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
357
		update_pageblock_skip(cc, valid_page, total_isolated, false);
358

359 360 361
	return total_isolated;
}

362 363 364 365 366 367 368 369 370 371 372 373 374
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
375
unsigned long
376 377
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
378
{
379
	unsigned long isolated, pfn, block_end_pfn;
380 381 382
	LIST_HEAD(freelist);

	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
383
		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
384 385 386 387 388 389 390 391 392
			break;

		/*
		 * On subsequent iterations ALIGN() is actually not needed,
		 * but we keep it that we not to complicate the code.
		 */
		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
		block_end_pfn = min(block_end_pfn, end_pfn);

393
		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
						   &freelist, true);

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

424
/* Update the number of anon and file isolated pages in the zone */
425
static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
426 427
{
	struct page *page;
428
	unsigned int count[2] = { 0, };
429

430 431
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
432

433 434 435 436 437 438 439 440
	/* If locked we can use the interrupt unsafe versions */
	if (locked) {
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	} else {
		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
	}
441 442 443 444 445
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
446
	unsigned long active, inactive, isolated;
447 448 449

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
450 451
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
452 453 454
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

455
	return isolated > (inactive + active) / 2;
456 457
}

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
/**
 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 * @zone:	Zone pages are in.
 * @cc:		Compaction control structure.
 * @low_pfn:	The first PFN of the range.
 * @end_pfn:	The one-past-the-last PFN of the range.
 *
 * Isolate all pages that can be migrated from the range specified by
 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 * pending), otherwise PFN of the first page that was not scanned
 * (which may be both less, equal to or more then end_pfn).
 *
 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 * zero.
 *
 * Apart from cc->migratepages and cc->nr_migratetypes this function
 * does not modify any cc's fields, in particular it does not modify
 * (or read for that matter) cc->migrate_pfn.
476
 */
477
unsigned long
478 479
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
			   unsigned long low_pfn, unsigned long end_pfn)
480
{
481
	unsigned long last_pageblock_nr = 0, pageblock_nr;
482
	unsigned long nr_scanned = 0, nr_isolated = 0;
483
	struct list_head *migratelist = &cc->migratepages;
484
	isolate_mode_t mode = 0;
485
	struct lruvec *lruvec;
486
	unsigned long flags;
487
	bool locked = false;
488
	struct page *page = NULL, *valid_page = NULL;
489 490 491 492 493 494 495

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
496
		/* async migration should just abort */
497
		if (!cc->sync)
498
			return 0;
499

500 501 502
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
503
			return 0;
504 505 506
	}

	/* Time to isolate some pages for migration */
507
	cond_resched();
508
	for (; low_pfn < end_pfn; low_pfn++) {
509
		/* give a chance to irqs before checking need_resched() */
510 511 512 513 514
		if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
			if (should_release_lock(&zone->lru_lock)) {
				spin_unlock_irqrestore(&zone->lru_lock, flags);
				locked = false;
			}
515
		}
516

517 518 519 520 521 522 523 524 525 526 527 528 529
		/*
		 * migrate_pfn does not necessarily start aligned to a
		 * pageblock. Ensure that pfn_valid is called when moving
		 * into a new MAX_ORDER_NR_PAGES range in case of large
		 * memory holes within the zone
		 */
		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
			if (!pfn_valid(low_pfn)) {
				low_pfn += MAX_ORDER_NR_PAGES - 1;
				continue;
			}
		}

530 531
		if (!pfn_valid_within(low_pfn))
			continue;
532
		nr_scanned++;
533

534 535 536 537 538 539
		/*
		 * Get the page and ensure the page is within the same zone.
		 * See the comment in isolate_freepages about overlapping
		 * nodes. It is deliberate that the new zone lock is not taken
		 * as memory compaction should not move pages between nodes.
		 */
540
		page = pfn_to_page(low_pfn);
541 542 543
		if (page_zone(page) != zone)
			continue;

544 545 546 547 548 549 550 551
		if (!valid_page)
			valid_page = page;

		/* If isolation recently failed, do not retry */
		pageblock_nr = low_pfn >> pageblock_order;
		if (!isolation_suitable(cc, page))
			goto next_pageblock;

552
		/* Skip if free */
553 554 555
		if (PageBuddy(page))
			continue;

556 557 558 559 560
		/*
		 * For async migration, also only scan in MOVABLE blocks. Async
		 * migration is optimistic to see if the minimum amount of work
		 * satisfies the allocation
		 */
561
		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
562
		    !migrate_async_suitable(get_pageblock_migratetype(page))) {
563
			cc->finished_update_migrate = true;
564
			goto next_pageblock;
565 566
		}

567
		/* Check may be lockless but that's ok as we recheck later */
568 569 570 571
		if (!PageLRU(page))
			continue;

		/*
572 573 574 575 576 577 578 579
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
580
		 */
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
		if (PageTransHuge(page)) {
			if (!locked)
				goto next_pageblock;
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

		/* Check if it is ok to still hold the lock */
		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
								locked, cc);
		if (!locked || fatal_signal_pending(current))
			break;

		/* Recheck PageLRU and PageTransHuge under lock */
		if (!PageLRU(page))
			continue;
597 598 599 600 601
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

602
		if (!cc->sync)
603 604
			mode |= ISOLATE_ASYNC_MIGRATE;

605 606
		lruvec = mem_cgroup_page_lruvec(page, zone);

607
		/* Try isolate the page */
608
		if (__isolate_lru_page(page, mode) != 0)
609 610
			continue;

611 612
		VM_BUG_ON(PageTransCompound(page));

613
		/* Successfully isolated */
614
		cc->finished_update_migrate = true;
615
		del_page_from_lru_list(page, lruvec, page_lru(page));
616 617
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
618
		nr_isolated++;
619 620

		/* Avoid isolating too much */
621 622
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
623
			break;
624
		}
625 626 627 628 629 630 631

		continue;

next_pageblock:
		low_pfn += pageblock_nr_pages;
		low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
		last_pageblock_nr = pageblock_nr;
632 633
	}

634
	acct_isolated(zone, locked, cc);
635

636 637
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
638

639 640
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (low_pfn == end_pfn)
641
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
642

643 644
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

645 646 647
	return low_pfn;
}

648 649
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
650
/*
651 652
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
653
 */
654 655
static void isolate_freepages(struct zone *zone,
				struct compact_control *cc)
656
{
657 658 659 660
	struct page *page;
	unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
661

662 663 664 665 666 667 668
	/*
	 * Initialise the free scanner. The starting point is where we last
	 * scanned from (or the end of the zone if starting). The low point
	 * is the end of the pageblock the migration scanner is using.
	 */
	pfn = cc->free_pfn;
	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
669

670 671 672 673 674 675
	/*
	 * Take care that if the migration scanner is at the end of the zone
	 * that the free scanner does not accidentally move to the next zone
	 * in the next isolation cycle.
	 */
	high_pfn = min(low_pfn, pfn);
676

677
	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
678

679 680 681 682 683 684 685 686
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
					pfn -= pageblock_nr_pages) {
		unsigned long isolated;
687

688 689
		if (!pfn_valid(pfn))
			continue;
690

691 692 693 694 695 696 697 698 699 700 701 702
		/*
		 * Check for overlapping nodes/zones. It's possible on some
		 * configurations to have a setup like
		 * node0 node1 node0
		 * i.e. it's possible that all pages within a zones range of
		 * pages do not belong to a single zone.
		 */
		page = pfn_to_page(pfn);
		if (page_zone(page) != zone)
			continue;

		/* Check the block is suitable for migration */
703
		if (!suitable_migration_target(page))
704
			continue;
705

706 707 708 709
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

710
		/* Found a block suitable for isolating free pages from */
711
		isolated = 0;
712 713 714 715
		end_pfn = min(pfn + pageblock_nr_pages, zone_end_pfn);
		isolated = isolate_freepages_block(cc, pfn, end_pfn,
						   freelist, false);
		nr_freepages += isolated;
716 717 718 719 720 721

		/*
		 * Record the highest PFN we isolated pages from. When next
		 * looking for free pages, the search will restart here as
		 * page migration may have returned some pages to the allocator
		 */
722 723
		if (isolated) {
			cc->finished_update_free = true;
724
			high_pfn = max(high_pfn, pfn);
725
		}
726 727 728 729 730 731 732
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

	cc->free_pfn = high_pfn;
	cc->nr_freepages = nr_freepages;
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	/* Isolate free pages if necessary */
	if (list_empty(&cc->freepages)) {
		isolate_freepages(cc->zone, cc);

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
 * We cannot control nr_migratepages and nr_freepages fully when migration is
 * running as migrate_pages() has no knowledge of compact_control. When
 * migration is complete, we count the number of pages on the lists by hand.
 */
static void update_nr_listpages(struct compact_control *cc)
{
	int nr_migratepages = 0;
	int nr_freepages = 0;
	struct page *page;

	list_for_each_entry(page, &cc->migratepages, lru)
		nr_migratepages++;
	list_for_each_entry(page, &cc->freepages, lru)
		nr_freepages++;

	cc->nr_migratepages = nr_migratepages;
	cc->nr_freepages = nr_freepages;
}

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
 * Isolate all pages that can be migrated from the block pointed to by
 * the migrate scanner within compact_control.
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;

	/* Do not scan outside zone boundaries */
	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);

	/* Only scan within a pageblock boundary */
	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);

	/* Do not cross the free scanner or scan within a memory hole */
	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
		cc->migrate_pfn = end_pfn;
		return ISOLATE_NONE;
	}

	/* Perform the isolation */
	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn);
811
	if (!low_pfn || cc->contended)
812 813 814 815 816 817 818
		return ISOLATE_ABORT;

	cc->migrate_pfn = low_pfn;

	return ISOLATE_SUCCESS;
}

819
static int compact_finished(struct zone *zone,
820
			    struct compact_control *cc)
821
{
822
	unsigned long watermark;
823

824 825 826
	if (fatal_signal_pending(current))
		return COMPACT_PARTIAL;

827
	/* Compaction run completes if the migrate and free scanner meet */
828
	if (cc->free_pfn <= cc->migrate_pfn) {
829 830 831 832 833 834 835 836 837
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

838
		return COMPACT_COMPLETE;
839
	}
840

841 842 843 844
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
845 846 847
	if (cc->order == -1)
		return COMPACT_CONTINUE;

848 849 850 851 852 853 854
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

855
	/* Direct compactor: Is a suitable page free? */
856 857 858
	if (cc->page) {
		/* Was a suitable page captured? */
		if (*cc->page)
859
			return COMPACT_PARTIAL;
860 861 862 863 864 865 866 867 868 869 870 871
	} else {
		unsigned int order;
		for (order = cc->order; order < MAX_ORDER; order++) {
			struct free_area *area = &zone->free_area[cc->order];
			/* Job done if page is free of the right migratetype */
			if (!list_empty(&area->free_list[cc->migratetype]))
				return COMPACT_PARTIAL;

			/* Job done if allocation would set block type */
			if (cc->order >= pageblock_order && area->nr_free)
				return COMPACT_PARTIAL;
		}
872 873
	}

874 875 876
	return COMPACT_CONTINUE;
}

877 878 879 880 881 882 883 884 885 886 887 888
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

889 890 891 892 893 894 895
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

896 897 898 899 900 901 902 903 904 905 906 907 908
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
909 910
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
911 912 913 914 915 916 917 918 919
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

920 921
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
922 923 924 925 926
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

927 928 929
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
930 931
	unsigned long start_pfn = zone->zone_start_pfn;
	unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
932

933 934 935 936 937 938 939 940 941 942 943
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
	}
959

960 961 962 963 964 965 966
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);
967

968 969 970 971
	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
		unsigned long nr_migrate, nr_remaining;
972
		int err;
973

974 975 976
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
977 978
			putback_lru_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
979 980
			goto out;
		case ISOLATE_NONE:
981
			continue;
982 983 984
		case ISOLATE_SUCCESS:
			;
		}
985 986

		nr_migrate = cc->nr_migratepages;
987
		err = migrate_pages(&cc->migratepages, compaction_alloc,
988 989
				(unsigned long)cc, false,
				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
990 991 992 993 994 995 996
		update_nr_listpages(cc);
		nr_remaining = cc->nr_migratepages;

		count_vm_event(COMPACTBLOCKS);
		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
		if (nr_remaining)
			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
997 998
		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
						nr_remaining);
999 1000

		/* Release LRU pages not migrated */
1001
		if (err) {
1002 1003
			putback_lru_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
1004 1005 1006 1007
			if (err == -ENOMEM) {
				ret = COMPACT_PARTIAL;
				goto out;
			}
1008
		}
1009 1010 1011

		/* Capture a page now if it is a suitable size */
		compact_capture_page(cc);
1012 1013
	}

1014
out:
1015 1016 1017 1018 1019 1020
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

	return ret;
}
1021

1022
static unsigned long compact_zone_order(struct zone *zone,
1023
				 int order, gfp_t gfp_mask,
1024 1025
				 bool sync, bool *contended,
				 struct page **page)
1026
{
1027
	unsigned long ret;
1028 1029 1030 1031 1032 1033
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
1034
		.sync = sync,
1035
		.page = page,
1036 1037 1038 1039
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1040 1041 1042 1043 1044 1045 1046
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1047 1048
}

1049 1050
int sysctl_extfrag_threshold = 500;

1051 1052 1053 1054 1055 1056
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
1057
 * @sync: Whether migration is synchronous or not
1058 1059
 * @contended: Return value that is true if compaction was aborted due to lock contention
 * @page: Optionally capture a free page of the requested order during compaction
1060 1061 1062 1063
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
1064
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1065
			bool sync, bool *contended, struct page **page)
1066 1067 1068 1069 1070 1071 1072
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
	int rc = COMPACT_SKIPPED;
1073
	int alloc_flags = 0;
1074

1075
	/* Check if the GFP flags allow compaction */
1076
	if (!order || !may_enter_fs || !may_perform_io)
1077 1078 1079 1080
		return rc;

	count_vm_event(COMPACTSTALL);

1081 1082 1083 1084
#ifdef CONFIG_CMA
	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
		alloc_flags |= ALLOC_CMA;
#endif
1085 1086 1087 1088 1089
	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;

1090
		status = compact_zone_order(zone, order, gfp_mask, sync,
1091
						contended, page);
1092 1093
		rc = max(status, rc);

1094
		/* If a normal allocation would succeed, stop compacting */
1095 1096
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
				      alloc_flags))
1097 1098 1099 1100 1101 1102 1103
			break;
	}

	return rc;
}


1104
/* Compact all zones within a node */
1105
static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1116 1117 1118 1119 1120
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1121

1122
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1123
			compact_zone(zone, cc);
1124

1125 1126 1127
		if (cc->order > 0) {
			int ok = zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0);
1128
			if (ok && cc->order >= zone->compact_order_failed)
1129 1130
				zone->compact_order_failed = cc->order + 1;
			/* Currently async compaction is never deferred. */
1131
			else if (!ok && cc->sync)
1132 1133 1134
				defer_compaction(zone, cc->order);
		}

1135 1136
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1137 1138 1139 1140 1141
	}

	return 0;
}

1142 1143 1144 1145
int compact_pgdat(pg_data_t *pgdat, int order)
{
	struct compact_control cc = {
		.order = order,
1146
		.sync = false,
1147
		.page = NULL,
1148 1149 1150 1151 1152 1153 1154 1155 1156
	};

	return __compact_pgdat(pgdat, &cc);
}

static int compact_node(int nid)
{
	struct compact_control cc = {
		.order = -1,
1157
		.sync = true,
1158
		.page = NULL,
1159 1160
	};

1161
	return __compact_pgdat(NODE_DATA(nid), &cc);
1162 1163
}

1164 1165 1166 1167 1168
/* Compact all nodes in the system */
static int compact_nodes(void)
{
	int nid;

1169 1170 1171
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	for_each_online_node(nid)
		compact_node(nid);

	return COMPACT_COMPLETE;
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
		return compact_nodes();

	return 0;
}
1190

1191 1192 1193 1194 1195 1196 1197 1198
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1199
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1200 1201
ssize_t sysfs_compact_node(struct device *dev,
			struct device_attribute *attr,
1202 1203
			const char *buf, size_t count)
{
1204 1205 1206 1207 1208 1209 1210 1211
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1212 1213 1214

	return count;
}
1215
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1216 1217 1218

int compaction_register_node(struct node *node)
{
1219
	return device_create_file(&node->dev, &dev_attr_compact);
1220 1221 1222 1223
}

void compaction_unregister_node(struct node *node)
{
1224
	return device_remove_file(&node->dev, &dev_attr_compact);
1225 1226
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1227 1228

#endif /* CONFIG_COMPACTION */