menu.c 16.3 KB
Newer Older
1 2 3 4
/*
 * menu.c - the menu idle governor
 *
 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
5 6 7
 * Copyright (C) 2009 Intel Corporation
 * Author:
 *        Arjan van de Ven <arjan@linux.intel.com>
8
 *
9 10
 * This code is licenced under the GPL version 2 as described
 * in the COPYING file that acompanies the Linux Kernel.
11 12 13 14
 */

#include <linux/kernel.h>
#include <linux/cpuidle.h>
15
#include <linux/pm_qos.h>
16 17 18 19
#include <linux/time.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
20
#include <linux/sched.h>
21
#include <linux/math64.h>
22
#include <linux/module.h>
23

24
#define BUCKETS 12
25
#define INTERVALS 8
26
#define RESOLUTION 1024
27
#define DECAY 8
28
#define MAX_INTERESTING 50000
29 30
#define STDDEV_THRESH 400

31 32 33 34 35 36
/* 60 * 60 > STDDEV_THRESH * INTERVALS = 400 * 8 */
#define MAX_DEVIATION 60

static DEFINE_PER_CPU(struct hrtimer, menu_hrtimer);
static DEFINE_PER_CPU(int, hrtimer_status);
/* menu hrtimer mode */
37
enum {MENU_HRTIMER_STOP, MENU_HRTIMER_REPEAT, MENU_HRTIMER_GENERAL};
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

/*
 * Concepts and ideas behind the menu governor
 *
 * For the menu governor, there are 3 decision factors for picking a C
 * state:
 * 1) Energy break even point
 * 2) Performance impact
 * 3) Latency tolerance (from pmqos infrastructure)
 * These these three factors are treated independently.
 *
 * Energy break even point
 * -----------------------
 * C state entry and exit have an energy cost, and a certain amount of time in
 * the  C state is required to actually break even on this cost. CPUIDLE
 * provides us this duration in the "target_residency" field. So all that we
 * need is a good prediction of how long we'll be idle. Like the traditional
 * menu governor, we start with the actual known "next timer event" time.
 *
 * Since there are other source of wakeups (interrupts for example) than
 * the next timer event, this estimation is rather optimistic. To get a
 * more realistic estimate, a correction factor is applied to the estimate,
 * that is based on historic behavior. For example, if in the past the actual
 * duration always was 50% of the next timer tick, the correction factor will
 * be 0.5.
 *
 * menu uses a running average for this correction factor, however it uses a
 * set of factors, not just a single factor. This stems from the realization
 * that the ratio is dependent on the order of magnitude of the expected
 * duration; if we expect 500 milliseconds of idle time the likelihood of
 * getting an interrupt very early is much higher than if we expect 50 micro
 * seconds of idle time. A second independent factor that has big impact on
 * the actual factor is if there is (disk) IO outstanding or not.
 * (as a special twist, we consider every sleep longer than 50 milliseconds
 * as perfect; there are no power gains for sleeping longer than this)
 *
 * For these two reasons we keep an array of 12 independent factors, that gets
 * indexed based on the magnitude of the expected duration as well as the
 * "is IO outstanding" property.
 *
78 79 80 81 82 83 84 85 86 87
 * Repeatable-interval-detector
 * ----------------------------
 * There are some cases where "next timer" is a completely unusable predictor:
 * Those cases where the interval is fixed, for example due to hardware
 * interrupt mitigation, but also due to fixed transfer rate devices such as
 * mice.
 * For this, we use a different predictor: We track the duration of the last 8
 * intervals and if the stand deviation of these 8 intervals is below a
 * threshold value, we use the average of these intervals as prediction.
 *
88 89 90
 * Limiting Performance Impact
 * ---------------------------
 * C states, especially those with large exit latencies, can have a real
L
Lucas De Marchi 已提交
91
 * noticeable impact on workloads, which is not acceptable for most sysadmins,
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
 * and in addition, less performance has a power price of its own.
 *
 * As a general rule of thumb, menu assumes that the following heuristic
 * holds:
 *     The busier the system, the less impact of C states is acceptable
 *
 * This rule-of-thumb is implemented using a performance-multiplier:
 * If the exit latency times the performance multiplier is longer than
 * the predicted duration, the C state is not considered a candidate
 * for selection due to a too high performance impact. So the higher
 * this multiplier is, the longer we need to be idle to pick a deep C
 * state, and thus the less likely a busy CPU will hit such a deep
 * C state.
 *
 * Two factors are used in determing this multiplier:
 * a value of 10 is added for each point of "per cpu load average" we have.
 * a value of 5 points is added for each process that is waiting for
 * IO on this CPU.
 * (these values are experimentally determined)
 *
 * The load average factor gives a longer term (few seconds) input to the
 * decision, while the iowait value gives a cpu local instantanious input.
 * The iowait factor may look low, but realize that this is also already
 * represented in the system load average.
 *
 */
118

119 120 121 122 123 124 125
/*
 * The C-state residency is so long that is is worthwhile to exit
 * from the shallow C-state and re-enter into a deeper C-state.
 */
static unsigned int perfect_cstate_ms __read_mostly = 30;
module_param(perfect_cstate_ms, uint, 0000);

126 127
struct menu_device {
	int		last_state_idx;
128
	int             needs_update;
129 130

	unsigned int	expected_us;
131
	u64		predicted_us;
132 133 134
	unsigned int	exit_us;
	unsigned int	bucket;
	u64		correction_factor[BUCKETS];
135 136
	u32		intervals[INTERVALS];
	int		interval_ptr;
137 138
};

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)

static int get_loadavg(void)
{
	unsigned long this = this_cpu_load();


	return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
}

static inline int which_bucket(unsigned int duration)
{
	int bucket = 0;

	/*
	 * We keep two groups of stats; one with no
	 * IO pending, one without.
	 * This allows us to calculate
	 * E(duration)|iowait
	 */
161
	if (nr_iowait_cpu(smp_processor_id()))
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
		bucket = BUCKETS/2;

	if (duration < 10)
		return bucket;
	if (duration < 100)
		return bucket + 1;
	if (duration < 1000)
		return bucket + 2;
	if (duration < 10000)
		return bucket + 3;
	if (duration < 100000)
		return bucket + 4;
	return bucket + 5;
}

/*
 * Return a multiplier for the exit latency that is intended
 * to take performance requirements into account.
 * The more performance critical we estimate the system
 * to be, the higher this multiplier, and thus the higher
 * the barrier to go to an expensive C state.
 */
static inline int performance_multiplier(void)
{
	int mult = 1;

	/* for higher loadavg, we are more reluctant */

	mult += 2 * get_loadavg();

	/* for IO wait tasks (per cpu!) we add 5x each */
193
	mult += 10 * nr_iowait_cpu(smp_processor_id());
194 195 196 197

	return mult;
}

198 199
static DEFINE_PER_CPU(struct menu_device, menu_devices);

200
static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
201

202 203 204 205 206 207
/* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
static u64 div_round64(u64 dividend, u32 divisor)
{
	return div_u64(dividend + (divisor / 2), divisor);
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
/* Cancel the hrtimer if it is not triggered yet */
void menu_hrtimer_cancel(void)
{
	int cpu = smp_processor_id();
	struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu);

	/* The timer is still not time out*/
	if (per_cpu(hrtimer_status, cpu)) {
		hrtimer_cancel(hrtmr);
		per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP;
	}
}
EXPORT_SYMBOL_GPL(menu_hrtimer_cancel);

/* Call back for hrtimer is triggered */
static enum hrtimer_restart menu_hrtimer_notify(struct hrtimer *hrtimer)
{
	int cpu = smp_processor_id();
226 227 228 229 230 231 232 233 234 235
	struct menu_device *data = &per_cpu(menu_devices, cpu);

	/* In general case, the expected residency is much larger than
	 *  deepest C-state target residency, but prediction logic still
	 *  predicts a small predicted residency, so the prediction
	 *  history is totally broken if the timer is triggered.
	 *  So reset the correction factor.
	 */
	if (per_cpu(hrtimer_status, cpu) == MENU_HRTIMER_GENERAL)
		data->correction_factor[data->bucket] = RESOLUTION * DECAY;
236 237 238 239 240 241

	per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP;

	return HRTIMER_NORESTART;
}

242 243 244 245 246 247
/*
 * Try detecting repeating patterns by keeping track of the last 8
 * intervals, and checking if the standard deviation of that set
 * of points is below a threshold. If it is... then use the
 * average of these 8 points as the estimated value.
 */
248
static u32 get_typical_interval(struct menu_device *data)
249
{
250 251 252 253
	int i = 0, divisor = 0;
	uint64_t max = 0, avg = 0, stddev = 0;
	int64_t thresh = LLONG_MAX; /* Discard outliers above this value. */
	unsigned int ret = 0;
254

255
again:
256

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	/* first calculate average and standard deviation of the past */
	max = avg = divisor = stddev = 0;
	for (i = 0; i < INTERVALS; i++) {
		int64_t value = data->intervals[i];
		if (value <= thresh) {
			avg += value;
			divisor++;
			if (value > max)
				max = value;
		}
	}
	do_div(avg, divisor);

	for (i = 0; i < INTERVALS; i++) {
		int64_t value = data->intervals[i];
		if (value <= thresh) {
			int64_t diff = value - avg;
			stddev += diff * diff;
		}
	}
	do_div(stddev, divisor);
	stddev = int_sqrt(stddev);
279
	/*
280 281 282 283 284 285 286 287 288 289
	 * If we have outliers to the upside in our distribution, discard
	 * those by setting the threshold to exclude these outliers, then
	 * calculate the average and standard deviation again. Once we get
	 * down to the bottom 3/4 of our samples, stop excluding samples.
	 *
	 * This can deal with workloads that have long pauses interspersed
	 * with sporadic activity with a bunch of short pauses.
	 *
	 * The typical interval is obtained when standard deviation is small
	 * or standard deviation is small compared to the average interval.
290
	 */
291 292
	if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3))
							|| stddev <= 20) {
293
		data->predicted_us = avg;
294
		ret = 1;
295 296 297 298 299 300
		return ret;

	} else if ((divisor * 4) > INTERVALS * 3) {
		/* Exclude the max interval */
		thresh = max - 1;
		goto again;
301 302 303
	}

	return ret;
304 305
}

306 307
/**
 * menu_select - selects the next idle state to enter
308
 * @drv: cpuidle driver containing state data
309 310
 * @dev: the CPU
 */
311
static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
312 313
{
	struct menu_device *data = &__get_cpu_var(menu_devices);
M
Mark Gross 已提交
314
	int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
315
	int i;
316
	int multiplier;
317
	struct timespec t;
318 319 320
	int repeat = 0, low_predicted = 0;
	int cpu = smp_processor_id();
	struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu);
321

322
	if (data->needs_update) {
323
		menu_update(drv, dev);
324 325 326
		data->needs_update = 0;
	}

327 328 329
	data->last_state_idx = 0;
	data->exit_us = 0;

330
	/* Special case when user has set very strict latency requirement */
331
	if (unlikely(latency_req == 0))
332 333
		return 0;

334
	/* determine the expected residency time, round up */
335
	t = ktime_to_timespec(tick_nohz_get_sleep_length());
336
	data->expected_us =
337
		t.tv_sec * USEC_PER_SEC + t.tv_nsec / NSEC_PER_USEC;
338 339 340 341 342 343 344 345 346 347 348 349 350 351


	data->bucket = which_bucket(data->expected_us);

	multiplier = performance_multiplier();

	/*
	 * if the correction factor is 0 (eg first time init or cpu hotplug
	 * etc), we actually want to start out with a unity factor.
	 */
	if (data->correction_factor[data->bucket] == 0)
		data->correction_factor[data->bucket] = RESOLUTION * DECAY;

	/* Make sure to round up for half microseconds */
352 353
	data->predicted_us = div_round64(data->expected_us * data->correction_factor[data->bucket],
					 RESOLUTION * DECAY);
354

355
	repeat = get_typical_interval(data);
356

357 358 359 360
	/*
	 * We want to default to C1 (hlt), not to busy polling
	 * unless the timer is happening really really soon.
	 */
361
	if (data->expected_us > 5 &&
362
	    !drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
363
		dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
364
		data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
365

366 367 368 369
	/*
	 * Find the idle state with the lowest power while satisfying
	 * our constraints.
	 */
370 371
	for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
		struct cpuidle_state *s = &drv->states[i];
372
		struct cpuidle_state_usage *su = &dev->states_usage[i];
373

374
		if (s->disabled || su->disable)
375
			continue;
376 377
		if (s->target_residency > data->predicted_us) {
			low_predicted = 1;
378
			continue;
379
		}
380
		if (s->exit_latency > latency_req)
381
			continue;
382
		if (s->exit_latency * multiplier > data->predicted_us)
383 384
			continue;

385 386
		data->last_state_idx = i;
		data->exit_us = s->exit_latency;
387 388
	}

389 390 391
	/* not deepest C-state chosen for low predicted residency */
	if (low_predicted) {
		unsigned int timer_us = 0;
392
		unsigned int perfect_us = 0;
393 394 395 396 397 398 399 400 401 402

		/*
		 * Set a timer to detect whether this sleep is much
		 * longer than repeat mode predicted.  If the timer
		 * triggers, the code will evaluate whether to put
		 * the CPU into a deeper C-state.
		 * The timer is cancelled on CPU wakeup.
		 */
		timer_us = 2 * (data->predicted_us + MAX_DEVIATION);

403 404
		perfect_us = perfect_cstate_ms * 1000;

405
		if (repeat && (4 * timer_us < data->expected_us)) {
406 407 408
			RCU_NONIDLE(hrtimer_start(hrtmr,
				ns_to_ktime(1000 * timer_us),
				HRTIMER_MODE_REL_PINNED));
409 410
			/* In repeat case, menu hrtimer is started */
			per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_REPEAT;
411 412 413 414 415 416 417
		} else if (perfect_us < data->expected_us) {
			/*
			 * The next timer is long. This could be because
			 * we did not make a useful prediction.
			 * In that case, it makes sense to re-enter
			 * into a deeper C-state after some time.
			 */
418 419 420
			RCU_NONIDLE(hrtimer_start(hrtmr,
				ns_to_ktime(1000 * timer_us),
				HRTIMER_MODE_REL_PINNED));
421 422
			/* In general case, menu hrtimer is started */
			per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_GENERAL;
423
		}
424

425 426
	}

427
	return data->last_state_idx;
428 429 430
}

/**
431
 * menu_reflect - records that data structures need update
432
 * @dev: the CPU
433
 * @index: the index of actual entered state
434 435 436 437
 *
 * NOTE: it's important to be fast here because this operation will add to
 *       the overall exit latency.
 */
438
static void menu_reflect(struct cpuidle_device *dev, int index)
439 440
{
	struct menu_device *data = &__get_cpu_var(menu_devices);
441 442 443
	data->last_state_idx = index;
	if (index >= 0)
		data->needs_update = 1;
444 445 446 447
}

/**
 * menu_update - attempts to guess what happened after entry
448
 * @drv: cpuidle driver containing state data
449 450
 * @dev: the CPU
 */
451
static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
452 453 454
{
	struct menu_device *data = &__get_cpu_var(menu_devices);
	int last_idx = data->last_state_idx;
455
	unsigned int last_idle_us = cpuidle_get_last_residency(dev);
456
	struct cpuidle_state *target = &drv->states[last_idx];
457
	unsigned int measured_us;
458
	u64 new_factor;
459 460 461 462

	/*
	 * Ugh, this idle state doesn't support residency measurements, so we
	 * are basically lost in the dark.  As a compromise, assume we slept
463
	 * for the whole expected time.
464
	 */
465
	if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID)))
466 467 468 469
		last_idle_us = data->expected_us;


	measured_us = last_idle_us;
470

471
	/*
472 473
	 * We correct for the exit latency; we are assuming here that the
	 * exit latency happens after the event that we're interested in.
474
	 */
475 476 477 478 479 480 481 482 483
	if (measured_us > data->exit_us)
		measured_us -= data->exit_us;


	/* update our correction ratio */

	new_factor = data->correction_factor[data->bucket]
			* (DECAY - 1) / DECAY;

484
	if (data->expected_us > 0 && measured_us < MAX_INTERESTING)
485
		new_factor += RESOLUTION * measured_us / data->expected_us;
486
	else
487 488 489 490 491
		/*
		 * we were idle so long that we count it as a perfect
		 * prediction
		 */
		new_factor += RESOLUTION;
492

493 494 495 496 497 498
	/*
	 * We don't want 0 as factor; we always want at least
	 * a tiny bit of estimated time.
	 */
	if (new_factor == 0)
		new_factor = 1;
499

500
	data->correction_factor[data->bucket] = new_factor;
501 502 503 504 505

	/* update the repeating-pattern data */
	data->intervals[data->interval_ptr++] = last_idle_us;
	if (data->interval_ptr >= INTERVALS)
		data->interval_ptr = 0;
506 507 508 509
}

/**
 * menu_enable_device - scans a CPU's states and does setup
510
 * @drv: cpuidle driver
511 512
 * @dev: the CPU
 */
513 514
static int menu_enable_device(struct cpuidle_driver *drv,
				struct cpuidle_device *dev)
515 516
{
	struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
517 518 519
	struct hrtimer *t = &per_cpu(menu_hrtimer, dev->cpu);
	hrtimer_init(t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	t->function = menu_hrtimer_notify;
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553

	memset(data, 0, sizeof(struct menu_device));

	return 0;
}

static struct cpuidle_governor menu_governor = {
	.name =		"menu",
	.rating =	20,
	.enable =	menu_enable_device,
	.select =	menu_select,
	.reflect =	menu_reflect,
	.owner =	THIS_MODULE,
};

/**
 * init_menu - initializes the governor
 */
static int __init init_menu(void)
{
	return cpuidle_register_governor(&menu_governor);
}

/**
 * exit_menu - exits the governor
 */
static void __exit exit_menu(void)
{
	cpuidle_unregister_governor(&menu_governor);
}

MODULE_LICENSE("GPL");
module_init(init_menu);
module_exit(exit_menu);