menu.c 14.4 KB
Newer Older
1 2 3 4
/*
 * menu.c - the menu idle governor
 *
 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
5 6 7
 * Copyright (C) 2009 Intel Corporation
 * Author:
 *        Arjan van de Ven <arjan@linux.intel.com>
8
 *
9 10
 * This code is licenced under the GPL version 2 as described
 * in the COPYING file that acompanies the Linux Kernel.
11 12 13 14
 */

#include <linux/kernel.h>
#include <linux/cpuidle.h>
15
#include <linux/pm_qos.h>
16 17 18 19
#include <linux/time.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
20
#include <linux/sched.h>
21
#include <linux/math64.h>
22
#include <linux/module.h>
23

24
#define BUCKETS 12
25
#define INTERVALS 8
26
#define RESOLUTION 1024
27
#define DECAY 8
28
#define MAX_INTERESTING 50000
29 30
#define STDDEV_THRESH 400

31 32 33 34 35 36 37
/* 60 * 60 > STDDEV_THRESH * INTERVALS = 400 * 8 */
#define MAX_DEVIATION 60

static DEFINE_PER_CPU(struct hrtimer, menu_hrtimer);
static DEFINE_PER_CPU(int, hrtimer_status);
/* menu hrtimer mode */
enum {MENU_HRTIMER_STOP, MENU_HRTIMER_REPEAT};
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

/*
 * Concepts and ideas behind the menu governor
 *
 * For the menu governor, there are 3 decision factors for picking a C
 * state:
 * 1) Energy break even point
 * 2) Performance impact
 * 3) Latency tolerance (from pmqos infrastructure)
 * These these three factors are treated independently.
 *
 * Energy break even point
 * -----------------------
 * C state entry and exit have an energy cost, and a certain amount of time in
 * the  C state is required to actually break even on this cost. CPUIDLE
 * provides us this duration in the "target_residency" field. So all that we
 * need is a good prediction of how long we'll be idle. Like the traditional
 * menu governor, we start with the actual known "next timer event" time.
 *
 * Since there are other source of wakeups (interrupts for example) than
 * the next timer event, this estimation is rather optimistic. To get a
 * more realistic estimate, a correction factor is applied to the estimate,
 * that is based on historic behavior. For example, if in the past the actual
 * duration always was 50% of the next timer tick, the correction factor will
 * be 0.5.
 *
 * menu uses a running average for this correction factor, however it uses a
 * set of factors, not just a single factor. This stems from the realization
 * that the ratio is dependent on the order of magnitude of the expected
 * duration; if we expect 500 milliseconds of idle time the likelihood of
 * getting an interrupt very early is much higher than if we expect 50 micro
 * seconds of idle time. A second independent factor that has big impact on
 * the actual factor is if there is (disk) IO outstanding or not.
 * (as a special twist, we consider every sleep longer than 50 milliseconds
 * as perfect; there are no power gains for sleeping longer than this)
 *
 * For these two reasons we keep an array of 12 independent factors, that gets
 * indexed based on the magnitude of the expected duration as well as the
 * "is IO outstanding" property.
 *
78 79 80 81 82 83 84 85 86 87
 * Repeatable-interval-detector
 * ----------------------------
 * There are some cases where "next timer" is a completely unusable predictor:
 * Those cases where the interval is fixed, for example due to hardware
 * interrupt mitigation, but also due to fixed transfer rate devices such as
 * mice.
 * For this, we use a different predictor: We track the duration of the last 8
 * intervals and if the stand deviation of these 8 intervals is below a
 * threshold value, we use the average of these intervals as prediction.
 *
88 89 90
 * Limiting Performance Impact
 * ---------------------------
 * C states, especially those with large exit latencies, can have a real
L
Lucas De Marchi 已提交
91
 * noticeable impact on workloads, which is not acceptable for most sysadmins,
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
 * and in addition, less performance has a power price of its own.
 *
 * As a general rule of thumb, menu assumes that the following heuristic
 * holds:
 *     The busier the system, the less impact of C states is acceptable
 *
 * This rule-of-thumb is implemented using a performance-multiplier:
 * If the exit latency times the performance multiplier is longer than
 * the predicted duration, the C state is not considered a candidate
 * for selection due to a too high performance impact. So the higher
 * this multiplier is, the longer we need to be idle to pick a deep C
 * state, and thus the less likely a busy CPU will hit such a deep
 * C state.
 *
 * Two factors are used in determing this multiplier:
 * a value of 10 is added for each point of "per cpu load average" we have.
 * a value of 5 points is added for each process that is waiting for
 * IO on this CPU.
 * (these values are experimentally determined)
 *
 * The load average factor gives a longer term (few seconds) input to the
 * decision, while the iowait value gives a cpu local instantanious input.
 * The iowait factor may look low, but realize that this is also already
 * represented in the system load average.
 *
 */
118 119 120

struct menu_device {
	int		last_state_idx;
121
	int             needs_update;
122 123

	unsigned int	expected_us;
124
	u64		predicted_us;
125 126 127
	unsigned int	exit_us;
	unsigned int	bucket;
	u64		correction_factor[BUCKETS];
128 129
	u32		intervals[INTERVALS];
	int		interval_ptr;
130 131
};

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)

static int get_loadavg(void)
{
	unsigned long this = this_cpu_load();


	return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
}

static inline int which_bucket(unsigned int duration)
{
	int bucket = 0;

	/*
	 * We keep two groups of stats; one with no
	 * IO pending, one without.
	 * This allows us to calculate
	 * E(duration)|iowait
	 */
154
	if (nr_iowait_cpu(smp_processor_id()))
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
		bucket = BUCKETS/2;

	if (duration < 10)
		return bucket;
	if (duration < 100)
		return bucket + 1;
	if (duration < 1000)
		return bucket + 2;
	if (duration < 10000)
		return bucket + 3;
	if (duration < 100000)
		return bucket + 4;
	return bucket + 5;
}

/*
 * Return a multiplier for the exit latency that is intended
 * to take performance requirements into account.
 * The more performance critical we estimate the system
 * to be, the higher this multiplier, and thus the higher
 * the barrier to go to an expensive C state.
 */
static inline int performance_multiplier(void)
{
	int mult = 1;

	/* for higher loadavg, we are more reluctant */

	mult += 2 * get_loadavg();

	/* for IO wait tasks (per cpu!) we add 5x each */
186
	mult += 10 * nr_iowait_cpu(smp_processor_id());
187 188 189 190

	return mult;
}

191 192
static DEFINE_PER_CPU(struct menu_device, menu_devices);

193
static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
194

195 196 197 198 199 200
/* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
static u64 div_round64(u64 dividend, u32 divisor)
{
	return div_u64(dividend + (divisor / 2), divisor);
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
/* Cancel the hrtimer if it is not triggered yet */
void menu_hrtimer_cancel(void)
{
	int cpu = smp_processor_id();
	struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu);

	/* The timer is still not time out*/
	if (per_cpu(hrtimer_status, cpu)) {
		hrtimer_cancel(hrtmr);
		per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP;
	}
}
EXPORT_SYMBOL_GPL(menu_hrtimer_cancel);

/* Call back for hrtimer is triggered */
static enum hrtimer_restart menu_hrtimer_notify(struct hrtimer *hrtimer)
{
	int cpu = smp_processor_id();

	per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP;

	return HRTIMER_NORESTART;
}

225 226 227 228 229 230
/*
 * Try detecting repeating patterns by keeping track of the last 8
 * intervals, and checking if the standard deviation of that set
 * of points is below a threshold. If it is... then use the
 * average of these 8 points as the estimated value.
 */
231
static int detect_repeating_patterns(struct menu_device *data)
232 233 234 235
{
	int i;
	uint64_t avg = 0;
	uint64_t stddev = 0; /* contains the square of the std deviation */
236
	int ret = 0;
237 238 239 240 241 242 243 244

	/* first calculate average and standard deviation of the past */
	for (i = 0; i < INTERVALS; i++)
		avg += data->intervals[i];
	avg = avg / INTERVALS;

	/* if the avg is beyond the known next tick, it's worthless */
	if (avg > data->expected_us)
245
		return 0;
246 247 248 249 250 251 252 253 254 255 256 257

	for (i = 0; i < INTERVALS; i++)
		stddev += (data->intervals[i] - avg) *
			  (data->intervals[i] - avg);

	stddev = stddev / INTERVALS;

	/*
	 * now.. if stddev is small.. then assume we have a
	 * repeating pattern and predict we keep doing this.
	 */

258
	if (avg && stddev < STDDEV_THRESH) {
259
		data->predicted_us = avg;
260 261 262 263
		ret = 1;
	}

	return ret;
264 265
}

266 267
/**
 * menu_select - selects the next idle state to enter
268
 * @drv: cpuidle driver containing state data
269 270
 * @dev: the CPU
 */
271
static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
272 273
{
	struct menu_device *data = &__get_cpu_var(menu_devices);
M
Mark Gross 已提交
274
	int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
275
	int power_usage = -1;
276
	int i;
277
	int multiplier;
278
	struct timespec t;
279 280 281
	int repeat = 0, low_predicted = 0;
	int cpu = smp_processor_id();
	struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu);
282

283
	if (data->needs_update) {
284
		menu_update(drv, dev);
285 286 287
		data->needs_update = 0;
	}

288 289 290
	data->last_state_idx = 0;
	data->exit_us = 0;

291
	/* Special case when user has set very strict latency requirement */
292
	if (unlikely(latency_req == 0))
293 294
		return 0;

295
	/* determine the expected residency time, round up */
296
	t = ktime_to_timespec(tick_nohz_get_sleep_length());
297
	data->expected_us =
298
		t.tv_sec * USEC_PER_SEC + t.tv_nsec / NSEC_PER_USEC;
299 300 301 302 303 304 305 306 307 308 309 310 311 312


	data->bucket = which_bucket(data->expected_us);

	multiplier = performance_multiplier();

	/*
	 * if the correction factor is 0 (eg first time init or cpu hotplug
	 * etc), we actually want to start out with a unity factor.
	 */
	if (data->correction_factor[data->bucket] == 0)
		data->correction_factor[data->bucket] = RESOLUTION * DECAY;

	/* Make sure to round up for half microseconds */
313 314
	data->predicted_us = div_round64(data->expected_us * data->correction_factor[data->bucket],
					 RESOLUTION * DECAY);
315

316
	repeat = detect_repeating_patterns(data);
317

318 319 320 321
	/*
	 * We want to default to C1 (hlt), not to busy polling
	 * unless the timer is happening really really soon.
	 */
322
	if (data->expected_us > 5 &&
323
	    !drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
324
		dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
325
		data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
326

327 328 329 330
	/*
	 * Find the idle state with the lowest power while satisfying
	 * our constraints.
	 */
331 332
	for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
		struct cpuidle_state *s = &drv->states[i];
333
		struct cpuidle_state_usage *su = &dev->states_usage[i];
334

335
		if (s->disabled || su->disable)
336
			continue;
337 338
		if (s->target_residency > data->predicted_us) {
			low_predicted = 1;
339
			continue;
340
		}
341
		if (s->exit_latency > latency_req)
342
			continue;
343
		if (s->exit_latency * multiplier > data->predicted_us)
344 345 346 347 348 349 350
			continue;

		if (s->power_usage < power_usage) {
			power_usage = s->power_usage;
			data->last_state_idx = i;
			data->exit_us = s->exit_latency;
		}
351 352
	}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
	/* not deepest C-state chosen for low predicted residency */
	if (low_predicted) {
		unsigned int timer_us = 0;

		/*
		 * Set a timer to detect whether this sleep is much
		 * longer than repeat mode predicted.  If the timer
		 * triggers, the code will evaluate whether to put
		 * the CPU into a deeper C-state.
		 * The timer is cancelled on CPU wakeup.
		 */
		timer_us = 2 * (data->predicted_us + MAX_DEVIATION);

		if (repeat && (4 * timer_us < data->expected_us)) {
			hrtimer_start(hrtmr, ns_to_ktime(1000 * timer_us),
				HRTIMER_MODE_REL_PINNED);
			/* In repeat case, menu hrtimer is started */
			per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_REPEAT;
		}
	}

374
	return data->last_state_idx;
375 376 377
}

/**
378
 * menu_reflect - records that data structures need update
379
 * @dev: the CPU
380
 * @index: the index of actual entered state
381 382 383 384
 *
 * NOTE: it's important to be fast here because this operation will add to
 *       the overall exit latency.
 */
385
static void menu_reflect(struct cpuidle_device *dev, int index)
386 387
{
	struct menu_device *data = &__get_cpu_var(menu_devices);
388 389 390
	data->last_state_idx = index;
	if (index >= 0)
		data->needs_update = 1;
391 392 393 394
}

/**
 * menu_update - attempts to guess what happened after entry
395
 * @drv: cpuidle driver containing state data
396 397
 * @dev: the CPU
 */
398
static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
399 400 401
{
	struct menu_device *data = &__get_cpu_var(menu_devices);
	int last_idx = data->last_state_idx;
402
	unsigned int last_idle_us = cpuidle_get_last_residency(dev);
403
	struct cpuidle_state *target = &drv->states[last_idx];
404
	unsigned int measured_us;
405
	u64 new_factor;
406 407 408 409

	/*
	 * Ugh, this idle state doesn't support residency measurements, so we
	 * are basically lost in the dark.  As a compromise, assume we slept
410
	 * for the whole expected time.
411
	 */
412
	if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID)))
413 414 415 416
		last_idle_us = data->expected_us;


	measured_us = last_idle_us;
417

418
	/*
419 420
	 * We correct for the exit latency; we are assuming here that the
	 * exit latency happens after the event that we're interested in.
421
	 */
422 423 424 425 426 427 428 429 430
	if (measured_us > data->exit_us)
		measured_us -= data->exit_us;


	/* update our correction ratio */

	new_factor = data->correction_factor[data->bucket]
			* (DECAY - 1) / DECAY;

431
	if (data->expected_us > 0 && measured_us < MAX_INTERESTING)
432
		new_factor += RESOLUTION * measured_us / data->expected_us;
433
	else
434 435 436 437 438
		/*
		 * we were idle so long that we count it as a perfect
		 * prediction
		 */
		new_factor += RESOLUTION;
439

440 441 442 443 444 445
	/*
	 * We don't want 0 as factor; we always want at least
	 * a tiny bit of estimated time.
	 */
	if (new_factor == 0)
		new_factor = 1;
446

447
	data->correction_factor[data->bucket] = new_factor;
448 449 450 451 452

	/* update the repeating-pattern data */
	data->intervals[data->interval_ptr++] = last_idle_us;
	if (data->interval_ptr >= INTERVALS)
		data->interval_ptr = 0;
453 454 455 456
}

/**
 * menu_enable_device - scans a CPU's states and does setup
457
 * @drv: cpuidle driver
458 459
 * @dev: the CPU
 */
460 461
static int menu_enable_device(struct cpuidle_driver *drv,
				struct cpuidle_device *dev)
462 463
{
	struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
464 465 466
	struct hrtimer *t = &per_cpu(menu_hrtimer, dev->cpu);
	hrtimer_init(t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	t->function = menu_hrtimer_notify;
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

	memset(data, 0, sizeof(struct menu_device));

	return 0;
}

static struct cpuidle_governor menu_governor = {
	.name =		"menu",
	.rating =	20,
	.enable =	menu_enable_device,
	.select =	menu_select,
	.reflect =	menu_reflect,
	.owner =	THIS_MODULE,
};

/**
 * init_menu - initializes the governor
 */
static int __init init_menu(void)
{
	return cpuidle_register_governor(&menu_governor);
}

/**
 * exit_menu - exits the governor
 */
static void __exit exit_menu(void)
{
	cpuidle_unregister_governor(&menu_governor);
}

MODULE_LICENSE("GPL");
module_init(init_menu);
module_exit(exit_menu);