rhashtable.c 25.4 KB
Newer Older
1 2 3
/*
 * Resizable, Scalable, Concurrent Hash Table
 *
4
 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
 *
 * Based on the following paper:
 * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf
 *
 * Code partially derived from nft_hash
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/log2.h>
E
Eric Dumazet 已提交
20
#include <linux/sched.h>
21 22 23
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
24
#include <linux/jhash.h>
25 26
#include <linux/random.h>
#include <linux/rhashtable.h>
27
#include <linux/err.h>
28 29

#define HASH_DEFAULT_SIZE	64UL
30
#define HASH_MIN_SIZE		4U
31 32
#define BUCKET_LOCKS_PER_CPU   128UL

33 34 35
/* Base bits plus 1 bit for nulls marker */
#define HASH_RESERVED_SPACE	(RHT_BASE_BITS + 1)

36 37 38
/* The bucket lock is selected based on the hash and protects mutations
 * on a group of hash buckets.
 *
39 40 41 42 43 44
 * A maximum of tbl->size/2 bucket locks is allocated. This ensures that
 * a single lock always covers both buckets which may both contains
 * entries which link to the same bucket of the old table during resizing.
 * This allows to simplify the locking as locking the bucket in both
 * tables during resize always guarantee protection.
 *
45 46 47 48 49 50 51 52
 * IMPORTANT: When holding the bucket lock of both the old and new table
 * during expansions and shrinking, the old bucket lock must always be
 * acquired first.
 */
static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash)
{
	return &tbl->locks[hash & tbl->locks_mask];
}
53

54
static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he)
55 56 57 58
{
	return (void *) he - ht->p.head_offset;
}

59
static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash)
60
{
H
Herbert Xu 已提交
61
	return (hash >> HASH_RESERVED_SPACE) & (tbl->size - 1);
62 63
}

64
static u32 key_hashfn(struct rhashtable *ht, const struct bucket_table *tbl,
65
		      const void *key)
66
{
67
	return rht_bucket_index(tbl, ht->p.hashfn(key, ht->p.key_len,
H
Herbert Xu 已提交
68
						  tbl->hash_rnd));
69 70
}

71
static u32 head_hashfn(struct rhashtable *ht,
72 73
		       const struct bucket_table *tbl,
		       const struct rhash_head *he)
74
{
H
Herbert Xu 已提交
75 76 77 78 79
	const char *ptr = rht_obj(ht, he);

	return likely(ht->p.key_len) ?
	       key_hashfn(ht, tbl, ptr + ht->p.key_offset) :
	       rht_bucket_index(tbl, ht->p.obj_hashfn(ptr, tbl->hash_rnd));
80 81
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
#ifdef CONFIG_PROVE_LOCKING
#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))

int lockdep_rht_mutex_is_held(struct rhashtable *ht)
{
	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);

int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
{
	spinlock_t *lock = bucket_lock(tbl, hash);

	return (debug_locks) ? lockdep_is_held(lock) : 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
#else
#define ASSERT_RHT_MUTEX(HT)
#endif


103 104 105 106 107 108 109 110 111 112 113 114
static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl)
{
	unsigned int i, size;
#if defined(CONFIG_PROVE_LOCKING)
	unsigned int nr_pcpus = 2;
#else
	unsigned int nr_pcpus = num_possible_cpus();
#endif

	nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);

115 116
	/* Never allocate more than 0.5 locks per bucket */
	size = min_t(unsigned int, size, tbl->size >> 1);
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

	if (sizeof(spinlock_t) != 0) {
#ifdef CONFIG_NUMA
		if (size * sizeof(spinlock_t) > PAGE_SIZE)
			tbl->locks = vmalloc(size * sizeof(spinlock_t));
		else
#endif
		tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
					   GFP_KERNEL);
		if (!tbl->locks)
			return -ENOMEM;
		for (i = 0; i < size; i++)
			spin_lock_init(&tbl->locks[i]);
	}
	tbl->locks_mask = size - 1;

	return 0;
}

static void bucket_table_free(const struct bucket_table *tbl)
{
	if (tbl)
		kvfree(tbl->locks);

	kvfree(tbl);
}

144 145 146 147 148
static void bucket_table_free_rcu(struct rcu_head *head)
{
	bucket_table_free(container_of(head, struct bucket_table, rcu));
}

149
static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
150
					       size_t nbuckets)
151
{
152
	struct bucket_table *tbl = NULL;
153
	size_t size;
154
	int i;
155 156

	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
157 158
	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER))
		tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
159 160 161 162 163 164 165
	if (tbl == NULL)
		tbl = vzalloc(size);
	if (tbl == NULL)
		return NULL;

	tbl->size = nbuckets;

166 167 168 169
	if (alloc_bucket_locks(ht, tbl) < 0) {
		bucket_table_free(tbl);
		return NULL;
	}
170

171 172
	INIT_LIST_HEAD(&tbl->walkers);

173 174
	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));

175 176 177
	for (i = 0; i < nbuckets; i++)
		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);

178
	return tbl;
179 180 181 182 183
}

/**
 * rht_grow_above_75 - returns true if nelems > 0.75 * table-size
 * @ht:		hash table
184
 * @tbl:	current table
185
 */
186 187
static bool rht_grow_above_75(const struct rhashtable *ht,
			      const struct bucket_table *tbl)
188 189
{
	/* Expand table when exceeding 75% load */
190
	return atomic_read(&ht->nelems) > (tbl->size / 4 * 3) &&
191
	       (!ht->p.max_size || tbl->size < ht->p.max_size);
192 193 194 195 196
}

/**
 * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size
 * @ht:		hash table
197
 * @tbl:	current table
198
 */
199 200
static bool rht_shrink_below_30(const struct rhashtable *ht,
				const struct bucket_table *tbl)
201 202
{
	/* Shrink table beneath 30% load */
203
	return atomic_read(&ht->nelems) < (tbl->size * 3 / 10) &&
204
	       tbl->size > ht->p.min_size;
205 206
}

207
static int rhashtable_rehash_one(struct rhashtable *ht, unsigned old_hash)
208
{
209
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
210 211
	struct bucket_table *new_tbl =
		rht_dereference(old_tbl->future_tbl, ht) ?: old_tbl;
212 213 214 215 216 217 218 219 220 221 222 223
	struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
	int err = -ENOENT;
	struct rhash_head *head, *next, *entry;
	spinlock_t *new_bucket_lock;
	unsigned new_hash;

	rht_for_each(entry, old_tbl, old_hash) {
		err = 0;
		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);

		if (rht_is_a_nulls(next))
			break;
224

225 226
		pprev = &entry->next;
	}
227

228 229
	if (err)
		goto out;
230

231
	new_hash = head_hashfn(ht, new_tbl, entry);
232

233
	new_bucket_lock = bucket_lock(new_tbl, new_hash);
234

235
	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
236 237
	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
				      new_tbl, new_hash);
238

239 240 241 242
	if (rht_is_a_nulls(head))
		INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash);
	else
		RCU_INIT_POINTER(entry->next, head);
243

244 245
	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
	spin_unlock(new_bucket_lock);
246

247
	rcu_assign_pointer(*pprev, next);
248

249 250 251
out:
	return err;
}
252

253 254 255 256 257 258
static void rhashtable_rehash_chain(struct rhashtable *ht, unsigned old_hash)
{
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	spinlock_t *old_bucket_lock;

	old_bucket_lock = bucket_lock(old_tbl, old_hash);
259

260 261 262
	spin_lock_bh(old_bucket_lock);
	while (!rhashtable_rehash_one(ht, old_hash))
		;
263
	old_tbl->rehash++;
264
	spin_unlock_bh(old_bucket_lock);
265 266
}

267 268
static void rhashtable_rehash(struct rhashtable *ht,
			      struct bucket_table *new_tbl)
269
{
270
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
271
	struct rhashtable_walker *walker;
272
	unsigned old_hash;
273

274 275 276
	/* Make insertions go into the new, empty table right away. Deletions
	 * and lookups will be attempted in both tables until we synchronize.
	 */
277
	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
278

H
Herbert Xu 已提交
279 280 281
	/* Ensure the new table is visible to readers. */
	smp_wmb();

282 283 284 285 286 287
	for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
		rhashtable_rehash_chain(ht, old_hash);

	/* Publish the new table pointer. */
	rcu_assign_pointer(ht->tbl, new_tbl);

288 289 290
	list_for_each_entry(walker, &old_tbl->walkers, list)
		walker->tbl = NULL;

291 292 293 294
	/* Wait for readers. All new readers will see the new
	 * table, and thus no references to the old table will
	 * remain.
	 */
295
	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
296 297 298 299 300 301
}

/**
 * rhashtable_expand - Expand hash table while allowing concurrent lookups
 * @ht:		the hash table to expand
 *
302
 * A secondary bucket array is allocated and the hash entries are migrated.
303 304 305 306
 *
 * This function may only be called in a context where it is safe to call
 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
 *
307 308 309 310 311
 * The caller must ensure that no concurrent resizing occurs by holding
 * ht->mutex.
 *
 * It is valid to have concurrent insertions and deletions protected by per
 * bucket locks or concurrent RCU protected lookups and traversals.
312
 */
313
int rhashtable_expand(struct rhashtable *ht)
314 315 316 317 318
{
	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);

	ASSERT_RHT_MUTEX(ht);

319
	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2);
320 321 322
	if (new_tbl == NULL)
		return -ENOMEM;

323
	rhashtable_rehash(ht, new_tbl);
324 325 326 327 328 329 330 331 332 333 334
	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_expand);

/**
 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
 * @ht:		the hash table to shrink
 *
 * This function may only be called in a context where it is safe to call
 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
 *
335 336 337
 * The caller must ensure that no concurrent resizing occurs by holding
 * ht->mutex.
 *
338 339
 * The caller must ensure that no concurrent table mutations take place.
 * It is however valid to have concurrent lookups if they are RCU protected.
340 341 342
 *
 * It is valid to have concurrent insertions and deletions protected by per
 * bucket locks or concurrent RCU protected lookups and traversals.
343
 */
344
int rhashtable_shrink(struct rhashtable *ht)
345
{
346
	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
347 348 349

	ASSERT_RHT_MUTEX(ht);

350
	new_tbl = bucket_table_alloc(ht, old_tbl->size / 2);
351
	if (new_tbl == NULL)
352 353
		return -ENOMEM;

354
	rhashtable_rehash(ht, new_tbl);
355 356 357 358
	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_shrink);

359 360 361 362 363
static void rht_deferred_worker(struct work_struct *work)
{
	struct rhashtable *ht;
	struct bucket_table *tbl;

364
	ht = container_of(work, struct rhashtable, run_work);
365
	mutex_lock(&ht->mutex);
366 367 368
	if (ht->being_destroyed)
		goto unlock;

369 370
	tbl = rht_dereference(ht->tbl, ht);

371
	if (rht_grow_above_75(ht, tbl))
372
		rhashtable_expand(ht);
373
	else if (rht_shrink_below_30(ht, tbl))
374
		rhashtable_shrink(ht);
375
unlock:
376 377 378
	mutex_unlock(&ht->mutex);
}

379 380
static bool __rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj,
				bool (*compare)(void *, void *), void *arg)
381
{
382
	struct bucket_table *tbl, *old_tbl;
383
	struct rhash_head *head;
384 385
	bool no_resize_running;
	unsigned hash;
386
	spinlock_t *old_lock;
387 388 389 390 391
	bool success = true;

	rcu_read_lock();

	old_tbl = rht_dereference_rcu(ht->tbl, ht);
392
	hash = head_hashfn(ht, old_tbl, obj);
393
	old_lock = bucket_lock(old_tbl, hash);
394

395
	spin_lock_bh(old_lock);
396 397 398 399 400 401 402

	/* Because we have already taken the bucket lock in old_tbl,
	 * if we find that future_tbl is not yet visible then that
	 * guarantees all other insertions of the same entry will
	 * also grab the bucket lock in old_tbl because until the
	 * rehash completes ht->tbl won't be changed.
	 */
403
	tbl = rht_dereference_rcu(old_tbl->future_tbl, ht) ?: old_tbl;
404
	if (tbl != old_tbl) {
405
		hash = head_hashfn(ht, tbl, obj);
406
		spin_lock_nested(bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
407 408 409 410 411 412 413 414 415 416
	}

	if (compare &&
	    rhashtable_lookup_compare(ht, rht_obj(ht, obj) + ht->p.key_offset,
				      compare, arg)) {
		success = false;
		goto exit;
	}

	no_resize_running = tbl == old_tbl;
417 418

	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
419 420 421 422 423 424 425 426 427

	if (rht_is_a_nulls(head))
		INIT_RHT_NULLS_HEAD(obj->next, ht, hash);
	else
		RCU_INIT_POINTER(obj->next, head);

	rcu_assign_pointer(tbl->buckets[hash], obj);

	atomic_inc(&ht->nelems);
428
	if (no_resize_running && rht_grow_above_75(ht, tbl))
429
		schedule_work(&ht->run_work);
430 431

exit:
432
	if (tbl != old_tbl)
433 434
		spin_unlock(bucket_lock(tbl, hash));

435
	spin_unlock_bh(old_lock);
436 437 438 439

	rcu_read_unlock();

	return success;
440 441
}

442
/**
443
 * rhashtable_insert - insert object into hash table
444 445 446
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 *
447 448 449
 * Will take a per bucket spinlock to protect against mutual mutations
 * on the same bucket. Multiple insertions may occur in parallel unless
 * they map to the same bucket lock.
450
 *
451 452 453 454 455
 * It is safe to call this function from atomic context.
 *
 * Will trigger an automatic deferred table resizing if the size grows
 * beyond the watermark indicated by grow_decision() which can be passed
 * to rhashtable_init().
456
 */
457
void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj)
458
{
459 460 461 462 463 464 465 466 467 468 469
	__rhashtable_insert(ht, obj, NULL, NULL);
}
EXPORT_SYMBOL_GPL(rhashtable_insert);

static bool __rhashtable_remove(struct rhashtable *ht,
				struct bucket_table *tbl,
				struct rhash_head *obj)
{
	struct rhash_head __rcu **pprev;
	struct rhash_head *he;
	spinlock_t * lock;
470
	unsigned hash;
471
	bool ret = false;
472

473
	hash = head_hashfn(ht, tbl, obj);
474
	lock = bucket_lock(tbl, hash);
475

476
	spin_lock_bh(lock);
477

478 479 480 481 482 483
	pprev = &tbl->buckets[hash];
	rht_for_each(he, tbl, hash) {
		if (he != obj) {
			pprev = &he->next;
			continue;
		}
484

485 486 487 488 489 490 491 492
		rcu_assign_pointer(*pprev, obj->next);
		ret = true;
		break;
	}

	spin_unlock_bh(lock);

	return ret;
493 494 495 496 497 498 499 500 501 502 503
}

/**
 * rhashtable_remove - remove object from hash table
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 *
 * Since the hash chain is single linked, the removal operation needs to
 * walk the bucket chain upon removal. The removal operation is thus
 * considerable slow if the hash table is not correctly sized.
 *
504
 * Will automatically shrink the table via rhashtable_expand() if the
505 506 507 508 509
 * shrink_decision function specified at rhashtable_init() returns true.
 *
 * The caller must ensure that no concurrent table mutations occur. It is
 * however valid to have concurrent lookups if they are RCU protected.
 */
510
bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj)
511
{
512
	struct bucket_table *tbl;
513
	bool ret;
514

515
	rcu_read_lock();
516

517
	tbl = rht_dereference_rcu(ht->tbl, ht);
518

519 520 521
	/* Because we have already taken (and released) the bucket
	 * lock in old_tbl, if we find that future_tbl is not yet
	 * visible then that guarantees the entry to still be in
522
	 * the old tbl if it exists.
523
	 */
524 525 526
	while (!(ret = __rhashtable_remove(ht, tbl, obj)) &&
	       (tbl = rht_dereference_rcu(tbl->future_tbl, ht)))
		;
527 528 529

	if (ret) {
		atomic_dec(&ht->nelems);
530
		if (rht_shrink_below_30(ht, tbl))
531
			schedule_work(&ht->run_work);
532 533
	}

534 535
	rcu_read_unlock();

536
	return ret;
537 538 539
}
EXPORT_SYMBOL_GPL(rhashtable_remove);

540 541 542 543 544 545 546 547 548 549 550 551 552
struct rhashtable_compare_arg {
	struct rhashtable *ht;
	const void *key;
};

static bool rhashtable_compare(void *ptr, void *arg)
{
	struct rhashtable_compare_arg *x = arg;
	struct rhashtable *ht = x->ht;

	return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len);
}

553 554 555 556 557 558 559 560 561
/**
 * rhashtable_lookup - lookup key in hash table
 * @ht:		hash table
 * @key:	pointer to key
 *
 * Computes the hash value for the key and traverses the bucket chain looking
 * for a entry with an identical key. The first matching entry is returned.
 *
 * This lookup function may only be used for fixed key hash table (key_len
562
 * parameter set). It will BUG() if used inappropriately.
563
 *
564
 * Lookups may occur in parallel with hashtable mutations and resizing.
565
 */
566
void *rhashtable_lookup(struct rhashtable *ht, const void *key)
567
{
568 569 570 571
	struct rhashtable_compare_arg arg = {
		.ht = ht,
		.key = key,
	};
572 573 574

	BUG_ON(!ht->p.key_len);

575
	return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg);
576 577 578 579 580 581
}
EXPORT_SYMBOL_GPL(rhashtable_lookup);

/**
 * rhashtable_lookup_compare - search hash table with compare function
 * @ht:		hash table
582
 * @key:	the pointer to the key
583 584 585 586 587 588
 * @compare:	compare function, must return true on match
 * @arg:	argument passed on to compare function
 *
 * Traverses the bucket chain behind the provided hash value and calls the
 * specified compare function for each entry.
 *
589
 * Lookups may occur in parallel with hashtable mutations and resizing.
590 591 592
 *
 * Returns the first entry on which the compare function returned true.
 */
593
void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key,
594 595
				bool (*compare)(void *, void *), void *arg)
{
596
	const struct bucket_table *tbl;
597
	struct rhash_head *he;
598
	u32 hash;
599

600 601
	rcu_read_lock();

602
	tbl = rht_dereference_rcu(ht->tbl, ht);
603
restart:
604
	hash = key_hashfn(ht, tbl, key);
605
	rht_for_each_rcu(he, tbl, hash) {
606 607
		if (!compare(rht_obj(ht, he), arg))
			continue;
608
		rcu_read_unlock();
609
		return rht_obj(ht, he);
610 611
	}

H
Herbert Xu 已提交
612 613 614
	/* Ensure we see any new tables. */
	smp_rmb();

615 616
	tbl = rht_dereference_rcu(tbl->future_tbl, ht);
	if (unlikely(tbl))
617 618 619
		goto restart;
	rcu_read_unlock();

620 621 622 623
	return NULL;
}
EXPORT_SYMBOL_GPL(rhashtable_lookup_compare);

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
/**
 * rhashtable_lookup_insert - lookup and insert object into hash table
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 *
 * Locks down the bucket chain in both the old and new table if a resize
 * is in progress to ensure that writers can't remove from the old table
 * and can't insert to the new table during the atomic operation of search
 * and insertion. Searches for duplicates in both the old and new table if
 * a resize is in progress.
 *
 * This lookup function may only be used for fixed key hash table (key_len
 * parameter set). It will BUG() if used inappropriately.
 *
 * It is safe to call this function from atomic context.
 *
 * Will trigger an automatic deferred table resizing if the size grows
 * beyond the watermark indicated by grow_decision() which can be passed
 * to rhashtable_init().
 */
bool rhashtable_lookup_insert(struct rhashtable *ht, struct rhash_head *obj)
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
{
	struct rhashtable_compare_arg arg = {
		.ht = ht,
		.key = rht_obj(ht, obj) + ht->p.key_offset,
	};

	BUG_ON(!ht->p.key_len);

	return rhashtable_lookup_compare_insert(ht, obj, &rhashtable_compare,
						&arg);
}
EXPORT_SYMBOL_GPL(rhashtable_lookup_insert);

/**
 * rhashtable_lookup_compare_insert - search and insert object to hash table
 *                                    with compare function
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 * @compare:	compare function, must return true on match
 * @arg:	argument passed on to compare function
 *
 * Locks down the bucket chain in both the old and new table if a resize
 * is in progress to ensure that writers can't remove from the old table
 * and can't insert to the new table during the atomic operation of search
 * and insertion. Searches for duplicates in both the old and new table if
 * a resize is in progress.
 *
 * Lookups may occur in parallel with hashtable mutations and resizing.
 *
 * Will trigger an automatic deferred table resizing if the size grows
 * beyond the watermark indicated by grow_decision() which can be passed
 * to rhashtable_init().
 */
bool rhashtable_lookup_compare_insert(struct rhashtable *ht,
				      struct rhash_head *obj,
				      bool (*compare)(void *, void *),
				      void *arg)
682 683 684
{
	BUG_ON(!ht->p.key_len);

685
	return __rhashtable_insert(ht, obj, compare, arg);
686
}
687
EXPORT_SYMBOL_GPL(rhashtable_lookup_compare_insert);
688

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
/**
 * rhashtable_walk_init - Initialise an iterator
 * @ht:		Table to walk over
 * @iter:	Hash table Iterator
 *
 * This function prepares a hash table walk.
 *
 * Note that if you restart a walk after rhashtable_walk_stop you
 * may see the same object twice.  Also, you may miss objects if
 * there are removals in between rhashtable_walk_stop and the next
 * call to rhashtable_walk_start.
 *
 * For a completely stable walk you should construct your own data
 * structure outside the hash table.
 *
 * This function may sleep so you must not call it from interrupt
 * context or with spin locks held.
 *
 * You must call rhashtable_walk_exit if this function returns
 * successfully.
 */
int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
{
	iter->ht = ht;
	iter->p = NULL;
	iter->slot = 0;
	iter->skip = 0;

	iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
	if (!iter->walker)
		return -ENOMEM;

	mutex_lock(&ht->mutex);
722 723
	iter->walker->tbl = rht_dereference(ht->tbl, ht);
	list_add(&iter->walker->list, &iter->walker->tbl->walkers);
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	mutex_unlock(&ht->mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_init);

/**
 * rhashtable_walk_exit - Free an iterator
 * @iter:	Hash table Iterator
 *
 * This function frees resources allocated by rhashtable_walk_init.
 */
void rhashtable_walk_exit(struct rhashtable_iter *iter)
{
	mutex_lock(&iter->ht->mutex);
739 740
	if (iter->walker->tbl)
		list_del(&iter->walker->list);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	mutex_unlock(&iter->ht->mutex);
	kfree(iter->walker);
}
EXPORT_SYMBOL_GPL(rhashtable_walk_exit);

/**
 * rhashtable_walk_start - Start a hash table walk
 * @iter:	Hash table iterator
 *
 * Start a hash table walk.  Note that we take the RCU lock in all
 * cases including when we return an error.  So you must always call
 * rhashtable_walk_stop to clean up.
 *
 * Returns zero if successful.
 *
 * Returns -EAGAIN if resize event occured.  Note that the iterator
 * will rewind back to the beginning and you may use it immediately
 * by calling rhashtable_walk_next.
 */
int rhashtable_walk_start(struct rhashtable_iter *iter)
761
	__acquires(RCU)
762
{
763 764 765 766 767 768 769
	struct rhashtable *ht = iter->ht;

	mutex_lock(&ht->mutex);

	if (iter->walker->tbl)
		list_del(&iter->walker->list);

770 771
	rcu_read_lock();

772 773 774 775
	mutex_unlock(&ht->mutex);

	if (!iter->walker->tbl) {
		iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
		return -EAGAIN;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_start);

/**
 * rhashtable_walk_next - Return the next object and advance the iterator
 * @iter:	Hash table iterator
 *
 * Note that you must call rhashtable_walk_stop when you are finished
 * with the walk.
 *
 * Returns the next object or NULL when the end of the table is reached.
 *
 * Returns -EAGAIN if resize event occured.  Note that the iterator
 * will rewind back to the beginning and you may continue to use it.
 */
void *rhashtable_walk_next(struct rhashtable_iter *iter)
{
797
	struct bucket_table *tbl = iter->walker->tbl;
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	struct rhashtable *ht = iter->ht;
	struct rhash_head *p = iter->p;
	void *obj = NULL;

	if (p) {
		p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
		goto next;
	}

	for (; iter->slot < tbl->size; iter->slot++) {
		int skip = iter->skip;

		rht_for_each_rcu(p, tbl, iter->slot) {
			if (!skip)
				break;
			skip--;
		}

next:
		if (!rht_is_a_nulls(p)) {
			iter->skip++;
			iter->p = p;
			obj = rht_obj(ht, p);
			goto out;
		}

		iter->skip = 0;
	}

827 828
	iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
	if (iter->walker->tbl) {
829 830 831 832 833
		iter->slot = 0;
		iter->skip = 0;
		return ERR_PTR(-EAGAIN);
	}

834 835 836 837
	iter->p = NULL;

out:

838 839 840 841 842 843 844 845 846 847 848
	return obj;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_next);

/**
 * rhashtable_walk_stop - Finish a hash table walk
 * @iter:	Hash table iterator
 *
 * Finish a hash table walk.
 */
void rhashtable_walk_stop(struct rhashtable_iter *iter)
849
	__releases(RCU)
850
{
851 852 853 854
	struct rhashtable *ht;
	struct bucket_table *tbl = iter->walker->tbl;

	if (!tbl)
855
		goto out;
856 857 858 859

	ht = iter->ht;

	mutex_lock(&ht->mutex);
860
	if (tbl->rehash < tbl->size)
861 862 863 864 865
		list_add(&iter->walker->list, &tbl->walkers);
	else
		iter->walker->tbl = NULL;
	mutex_unlock(&ht->mutex);

866
	iter->p = NULL;
867 868 869

out:
	rcu_read_unlock();
870 871 872
}
EXPORT_SYMBOL_GPL(rhashtable_walk_stop);

873
static size_t rounded_hashtable_size(struct rhashtable_params *params)
874
{
875
	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
876
		   (unsigned long)params->min_size);
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
}

/**
 * rhashtable_init - initialize a new hash table
 * @ht:		hash table to be initialized
 * @params:	configuration parameters
 *
 * Initializes a new hash table based on the provided configuration
 * parameters. A table can be configured either with a variable or
 * fixed length key:
 *
 * Configuration Example 1: Fixed length keys
 * struct test_obj {
 *	int			key;
 *	void *			my_member;
 *	struct rhash_head	node;
 * };
 *
 * struct rhashtable_params params = {
 *	.head_offset = offsetof(struct test_obj, node),
 *	.key_offset = offsetof(struct test_obj, key),
 *	.key_len = sizeof(int),
899
 *	.hashfn = jhash,
900
 *	.nulls_base = (1U << RHT_BASE_SHIFT),
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
 * };
 *
 * Configuration Example 2: Variable length keys
 * struct test_obj {
 *	[...]
 *	struct rhash_head	node;
 * };
 *
 * u32 my_hash_fn(const void *data, u32 seed)
 * {
 *	struct test_obj *obj = data;
 *
 *	return [... hash ...];
 * }
 *
 * struct rhashtable_params params = {
 *	.head_offset = offsetof(struct test_obj, node),
918
 *	.hashfn = jhash,
919 920 921 922 923 924 925 926 927 928 929 930 931 932
 *	.obj_hashfn = my_hash_fn,
 * };
 */
int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params)
{
	struct bucket_table *tbl;
	size_t size;

	size = HASH_DEFAULT_SIZE;

	if ((params->key_len && !params->hashfn) ||
	    (!params->key_len && !params->obj_hashfn))
		return -EINVAL;

933 934 935
	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
		return -EINVAL;

936
	if (params->nelem_hint)
937
		size = rounded_hashtable_size(params);
938

939 940 941 942
	memset(ht, 0, sizeof(*ht));
	mutex_init(&ht->mutex);
	memcpy(&ht->p, params, sizeof(*params));

943 944 945 946 947 948 949 950
	if (params->min_size)
		ht->p.min_size = roundup_pow_of_two(params->min_size);

	if (params->max_size)
		ht->p.max_size = rounddown_pow_of_two(params->max_size);

	ht->p.min_size = max(params->min_size, HASH_MIN_SIZE);

951 952 953 954 955
	if (params->locks_mul)
		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
	else
		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;

956
	tbl = bucket_table_alloc(ht, size);
957 958 959
	if (tbl == NULL)
		return -ENOMEM;

960
	atomic_set(&ht->nelems, 0);
961

962 963
	RCU_INIT_POINTER(ht->tbl, tbl);

964
	INIT_WORK(&ht->run_work, rht_deferred_worker);
965

966 967 968 969 970 971 972 973
	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_init);

/**
 * rhashtable_destroy - destroy hash table
 * @ht:		the hash table to destroy
 *
974 975 976
 * Frees the bucket array. This function is not rcu safe, therefore the caller
 * has to make sure that no resizing may happen by unpublishing the hashtable
 * and waiting for the quiescent cycle before releasing the bucket array.
977
 */
978
void rhashtable_destroy(struct rhashtable *ht)
979
{
980 981
	ht->being_destroyed = true;

982
	cancel_work_sync(&ht->run_work);
983

984
	mutex_lock(&ht->mutex);
985 986
	bucket_table_free(rht_dereference(ht->tbl, ht));
	mutex_unlock(&ht->mutex);
987 988
}
EXPORT_SYMBOL_GPL(rhashtable_destroy);