rhashtable.c 25.3 KB
Newer Older
1 2 3
/*
 * Resizable, Scalable, Concurrent Hash Table
 *
4
 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
 *
 * Based on the following paper:
 * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf
 *
 * Code partially derived from nft_hash
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/log2.h>
E
Eric Dumazet 已提交
20
#include <linux/sched.h>
21 22 23
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
24
#include <linux/jhash.h>
25 26
#include <linux/random.h>
#include <linux/rhashtable.h>
27
#include <linux/err.h>
28 29 30

#define HASH_DEFAULT_SIZE	64UL
#define HASH_MIN_SIZE		4UL
31 32
#define BUCKET_LOCKS_PER_CPU   128UL

33 34 35
/* Base bits plus 1 bit for nulls marker */
#define HASH_RESERVED_SPACE	(RHT_BASE_BITS + 1)

36 37 38 39 40 41 42 43
enum {
	RHT_LOCK_NORMAL,
	RHT_LOCK_NESTED,
};

/* The bucket lock is selected based on the hash and protects mutations
 * on a group of hash buckets.
 *
44 45 46 47 48 49
 * A maximum of tbl->size/2 bucket locks is allocated. This ensures that
 * a single lock always covers both buckets which may both contains
 * entries which link to the same bucket of the old table during resizing.
 * This allows to simplify the locking as locking the bucket in both
 * tables during resize always guarantee protection.
 *
50 51 52 53 54 55 56 57
 * IMPORTANT: When holding the bucket lock of both the old and new table
 * during expansions and shrinking, the old bucket lock must always be
 * acquired first.
 */
static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash)
{
	return &tbl->locks[hash & tbl->locks_mask];
}
58

59
static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he)
60 61 62 63
{
	return (void *) he - ht->p.head_offset;
}

64
static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash)
65
{
H
Herbert Xu 已提交
66
	return (hash >> HASH_RESERVED_SPACE) & (tbl->size - 1);
67 68
}

69
static u32 key_hashfn(struct rhashtable *ht, const struct bucket_table *tbl,
70
		      const void *key)
71
{
72
	return rht_bucket_index(tbl, ht->p.hashfn(key, ht->p.key_len,
H
Herbert Xu 已提交
73
						  tbl->hash_rnd));
74 75
}

76
static u32 head_hashfn(struct rhashtable *ht,
77 78
		       const struct bucket_table *tbl,
		       const struct rhash_head *he)
79
{
H
Herbert Xu 已提交
80 81 82 83 84
	const char *ptr = rht_obj(ht, he);

	return likely(ht->p.key_len) ?
	       key_hashfn(ht, tbl, ptr + ht->p.key_offset) :
	       rht_bucket_index(tbl, ht->p.obj_hashfn(ptr, tbl->hash_rnd));
85 86
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
#ifdef CONFIG_PROVE_LOCKING
#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))

int lockdep_rht_mutex_is_held(struct rhashtable *ht)
{
	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);

int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
{
	spinlock_t *lock = bucket_lock(tbl, hash);

	return (debug_locks) ? lockdep_is_held(lock) : 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
#else
#define ASSERT_RHT_MUTEX(HT)
#endif


108 109 110 111 112 113 114 115 116 117 118 119
static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl)
{
	unsigned int i, size;
#if defined(CONFIG_PROVE_LOCKING)
	unsigned int nr_pcpus = 2;
#else
	unsigned int nr_pcpus = num_possible_cpus();
#endif

	nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);

120 121
	/* Never allocate more than 0.5 locks per bucket */
	size = min_t(unsigned int, size, tbl->size >> 1);
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

	if (sizeof(spinlock_t) != 0) {
#ifdef CONFIG_NUMA
		if (size * sizeof(spinlock_t) > PAGE_SIZE)
			tbl->locks = vmalloc(size * sizeof(spinlock_t));
		else
#endif
		tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
					   GFP_KERNEL);
		if (!tbl->locks)
			return -ENOMEM;
		for (i = 0; i < size; i++)
			spin_lock_init(&tbl->locks[i]);
	}
	tbl->locks_mask = size - 1;

	return 0;
}

static void bucket_table_free(const struct bucket_table *tbl)
{
	if (tbl)
		kvfree(tbl->locks);

	kvfree(tbl);
}

static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
150
					       size_t nbuckets, u32 hash_rnd)
151
{
152
	struct bucket_table *tbl = NULL;
153
	size_t size;
154
	int i;
155 156

	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
157 158
	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER))
		tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
159 160 161 162 163 164
	if (tbl == NULL)
		tbl = vzalloc(size);
	if (tbl == NULL)
		return NULL;

	tbl->size = nbuckets;
165 166
	tbl->shift = ilog2(nbuckets);
	tbl->hash_rnd = hash_rnd;
167

168 169 170 171
	if (alloc_bucket_locks(ht, tbl) < 0) {
		bucket_table_free(tbl);
		return NULL;
	}
172

173 174 175
	for (i = 0; i < nbuckets; i++)
		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);

176
	return tbl;
177 178 179 180 181
}

/**
 * rht_grow_above_75 - returns true if nelems > 0.75 * table-size
 * @ht:		hash table
182
 * @tbl:	current table
183
 */
184 185
static bool rht_grow_above_75(const struct rhashtable *ht,
			      const struct bucket_table *tbl)
186 187
{
	/* Expand table when exceeding 75% load */
188 189
	return atomic_read(&ht->nelems) > (tbl->size / 4 * 3) &&
	       (!ht->p.max_shift || tbl->shift < ht->p.max_shift);
190 191 192 193 194
}

/**
 * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size
 * @ht:		hash table
195
 * @tbl:	current table
196
 */
197 198
static bool rht_shrink_below_30(const struct rhashtable *ht,
				const struct bucket_table *tbl)
199 200
{
	/* Shrink table beneath 30% load */
201 202
	return atomic_read(&ht->nelems) < (tbl->size * 3 / 10) &&
	       tbl->shift > ht->p.min_shift;
203 204
}

205
static int rhashtable_rehash_one(struct rhashtable *ht, unsigned old_hash)
206
{
207 208 209 210 211 212 213 214 215 216 217 218 219 220
	struct bucket_table *new_tbl = rht_dereference(ht->future_tbl, ht);
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
	int err = -ENOENT;
	struct rhash_head *head, *next, *entry;
	spinlock_t *new_bucket_lock;
	unsigned new_hash;

	rht_for_each(entry, old_tbl, old_hash) {
		err = 0;
		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);

		if (rht_is_a_nulls(next))
			break;
221

222 223
		pprev = &entry->next;
	}
224

225 226
	if (err)
		goto out;
227

228
	new_hash = head_hashfn(ht, new_tbl, entry);
229

230
	new_bucket_lock = bucket_lock(new_tbl, new_hash);
231

232
	spin_lock_nested(new_bucket_lock, RHT_LOCK_NESTED);
233 234
	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
				      new_tbl, new_hash);
235

236 237 238 239
	if (rht_is_a_nulls(head))
		INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash);
	else
		RCU_INIT_POINTER(entry->next, head);
240

241 242
	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
	spin_unlock(new_bucket_lock);
243

244
	rcu_assign_pointer(*pprev, next);
245

246 247 248
out:
	return err;
}
249

250 251 252 253 254 255
static void rhashtable_rehash_chain(struct rhashtable *ht, unsigned old_hash)
{
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	spinlock_t *old_bucket_lock;

	old_bucket_lock = bucket_lock(old_tbl, old_hash);
256

257 258 259 260
	spin_lock_bh(old_bucket_lock);
	while (!rhashtable_rehash_one(ht, old_hash))
		;
	spin_unlock_bh(old_bucket_lock);
261 262
}

263 264
static void rhashtable_rehash(struct rhashtable *ht,
			      struct bucket_table *new_tbl)
265
{
266 267
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	unsigned old_hash;
268

269 270 271 272 273 274 275 276 277
	get_random_bytes(&new_tbl->hash_rnd, sizeof(new_tbl->hash_rnd));

	/* Make insertions go into the new, empty table right away. Deletions
	 * and lookups will be attempted in both tables until we synchronize.
	 * The synchronize_rcu() guarantees for the new table to be picked up
	 * so no new additions go into the old table while we relink.
	 */
	rcu_assign_pointer(ht->future_tbl, new_tbl);

H
Herbert Xu 已提交
278 279 280
	/* Ensure the new table is visible to readers. */
	smp_wmb();

281 282 283 284 285 286 287 288 289 290 291 292 293
	for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
		rhashtable_rehash_chain(ht, old_hash);

	/* Publish the new table pointer. */
	rcu_assign_pointer(ht->tbl, new_tbl);

	/* Wait for readers. All new readers will see the new
	 * table, and thus no references to the old table will
	 * remain.
	 */
	synchronize_rcu();

	bucket_table_free(old_tbl);
294 295 296 297 298 299
}

/**
 * rhashtable_expand - Expand hash table while allowing concurrent lookups
 * @ht:		the hash table to expand
 *
300
 * A secondary bucket array is allocated and the hash entries are migrated.
301 302 303 304
 *
 * This function may only be called in a context where it is safe to call
 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
 *
305 306 307 308 309
 * The caller must ensure that no concurrent resizing occurs by holding
 * ht->mutex.
 *
 * It is valid to have concurrent insertions and deletions protected by per
 * bucket locks or concurrent RCU protected lookups and traversals.
310
 */
311
int rhashtable_expand(struct rhashtable *ht)
312 313 314 315 316
{
	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);

	ASSERT_RHT_MUTEX(ht);

317
	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, old_tbl->hash_rnd);
318 319 320
	if (new_tbl == NULL)
		return -ENOMEM;

321
	rhashtable_rehash(ht, new_tbl);
322 323 324 325 326 327 328 329 330 331 332
	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_expand);

/**
 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
 * @ht:		the hash table to shrink
 *
 * This function may only be called in a context where it is safe to call
 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
 *
333 334 335
 * The caller must ensure that no concurrent resizing occurs by holding
 * ht->mutex.
 *
336 337
 * The caller must ensure that no concurrent table mutations take place.
 * It is however valid to have concurrent lookups if they are RCU protected.
338 339 340
 *
 * It is valid to have concurrent insertions and deletions protected by per
 * bucket locks or concurrent RCU protected lookups and traversals.
341
 */
342
int rhashtable_shrink(struct rhashtable *ht)
343
{
344
	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
345 346 347

	ASSERT_RHT_MUTEX(ht);

348
	new_tbl = bucket_table_alloc(ht, old_tbl->size / 2, old_tbl->hash_rnd);
349
	if (new_tbl == NULL)
350 351
		return -ENOMEM;

352
	rhashtable_rehash(ht, new_tbl);
353 354 355 356
	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_shrink);

357 358 359 360
static void rht_deferred_worker(struct work_struct *work)
{
	struct rhashtable *ht;
	struct bucket_table *tbl;
361
	struct rhashtable_walker *walker;
362

363
	ht = container_of(work, struct rhashtable, run_work);
364
	mutex_lock(&ht->mutex);
365 366 367
	if (ht->being_destroyed)
		goto unlock;

368 369
	tbl = rht_dereference(ht->tbl, ht);

370 371 372
	list_for_each_entry(walker, &ht->walkers, list)
		walker->resize = true;

373
	if (rht_grow_above_75(ht, tbl))
374
		rhashtable_expand(ht);
375
	else if (rht_shrink_below_30(ht, tbl))
376
		rhashtable_shrink(ht);
377
unlock:
378 379 380
	mutex_unlock(&ht->mutex);
}

381 382
static bool __rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj,
				bool (*compare)(void *, void *), void *arg)
383
{
384
	struct bucket_table *tbl, *old_tbl;
385
	struct rhash_head *head;
386 387 388 389 390 391 392
	bool no_resize_running;
	unsigned hash;
	bool success = true;

	rcu_read_lock();

	old_tbl = rht_dereference_rcu(ht->tbl, ht);
393
	hash = head_hashfn(ht, old_tbl, obj);
394 395 396 397 398 399 400 401 402 403 404

	spin_lock_bh(bucket_lock(old_tbl, hash));

	/* Because we have already taken the bucket lock in old_tbl,
	 * if we find that future_tbl is not yet visible then that
	 * guarantees all other insertions of the same entry will
	 * also grab the bucket lock in old_tbl because until the
	 * rehash completes ht->tbl won't be changed.
	 */
	tbl = rht_dereference_rcu(ht->future_tbl, ht);
	if (tbl != old_tbl) {
405
		hash = head_hashfn(ht, tbl, obj);
406
		spin_lock_nested(bucket_lock(tbl, hash), RHT_LOCK_NESTED);
407 408 409 410 411 412 413 414 415 416
	}

	if (compare &&
	    rhashtable_lookup_compare(ht, rht_obj(ht, obj) + ht->p.key_offset,
				      compare, arg)) {
		success = false;
		goto exit;
	}

	no_resize_running = tbl == old_tbl;
417 418

	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
419 420 421 422 423 424 425 426 427

	if (rht_is_a_nulls(head))
		INIT_RHT_NULLS_HEAD(obj->next, ht, hash);
	else
		RCU_INIT_POINTER(obj->next, head);

	rcu_assign_pointer(tbl->buckets[hash], obj);

	atomic_inc(&ht->nelems);
428
	if (no_resize_running && rht_grow_above_75(ht, tbl))
429
		schedule_work(&ht->run_work);
430 431 432

exit:
	if (tbl != old_tbl) {
433
		hash = head_hashfn(ht, tbl, obj);
434 435 436
		spin_unlock(bucket_lock(tbl, hash));
	}

437
	hash = head_hashfn(ht, old_tbl, obj);
438 439 440 441 442
	spin_unlock_bh(bucket_lock(old_tbl, hash));

	rcu_read_unlock();

	return success;
443 444
}

445
/**
446
 * rhashtable_insert - insert object into hash table
447 448 449
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 *
450 451 452
 * Will take a per bucket spinlock to protect against mutual mutations
 * on the same bucket. Multiple insertions may occur in parallel unless
 * they map to the same bucket lock.
453
 *
454 455 456 457 458
 * It is safe to call this function from atomic context.
 *
 * Will trigger an automatic deferred table resizing if the size grows
 * beyond the watermark indicated by grow_decision() which can be passed
 * to rhashtable_init().
459
 */
460
void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj)
461
{
462 463 464 465 466 467 468 469 470 471 472
	__rhashtable_insert(ht, obj, NULL, NULL);
}
EXPORT_SYMBOL_GPL(rhashtable_insert);

static bool __rhashtable_remove(struct rhashtable *ht,
				struct bucket_table *tbl,
				struct rhash_head *obj)
{
	struct rhash_head __rcu **pprev;
	struct rhash_head *he;
	spinlock_t * lock;
473
	unsigned hash;
474
	bool ret = false;
475

476
	hash = head_hashfn(ht, tbl, obj);
477
	lock = bucket_lock(tbl, hash);
478

479
	spin_lock_bh(lock);
480

481 482 483 484 485 486
	pprev = &tbl->buckets[hash];
	rht_for_each(he, tbl, hash) {
		if (he != obj) {
			pprev = &he->next;
			continue;
		}
487

488 489 490 491 492 493 494 495
		rcu_assign_pointer(*pprev, obj->next);
		ret = true;
		break;
	}

	spin_unlock_bh(lock);

	return ret;
496 497 498 499 500 501 502 503 504 505 506
}

/**
 * rhashtable_remove - remove object from hash table
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 *
 * Since the hash chain is single linked, the removal operation needs to
 * walk the bucket chain upon removal. The removal operation is thus
 * considerable slow if the hash table is not correctly sized.
 *
507
 * Will automatically shrink the table via rhashtable_expand() if the
508 509 510 511 512
 * shrink_decision function specified at rhashtable_init() returns true.
 *
 * The caller must ensure that no concurrent table mutations occur. It is
 * however valid to have concurrent lookups if they are RCU protected.
 */
513
bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj)
514
{
515 516
	struct bucket_table *tbl, *old_tbl;
	bool ret;
517

518
	rcu_read_lock();
519

520 521
	old_tbl = rht_dereference_rcu(ht->tbl, ht);
	ret = __rhashtable_remove(ht, old_tbl, obj);
522

523 524 525 526
	/* Because we have already taken (and released) the bucket
	 * lock in old_tbl, if we find that future_tbl is not yet
	 * visible then that guarantees the entry to still be in
	 * old_tbl if it exists.
527
	 */
528 529 530
	tbl = rht_dereference_rcu(ht->future_tbl, ht);
	if (!ret && old_tbl != tbl)
		ret = __rhashtable_remove(ht, tbl, obj);
531 532

	if (ret) {
533
		bool no_resize_running = tbl == old_tbl;
534

535
		atomic_dec(&ht->nelems);
536
		if (no_resize_running && rht_shrink_below_30(ht, tbl))
537
			schedule_work(&ht->run_work);
538 539
	}

540 541
	rcu_read_unlock();

542
	return ret;
543 544 545
}
EXPORT_SYMBOL_GPL(rhashtable_remove);

546 547 548 549 550 551 552 553 554 555 556 557 558
struct rhashtable_compare_arg {
	struct rhashtable *ht;
	const void *key;
};

static bool rhashtable_compare(void *ptr, void *arg)
{
	struct rhashtable_compare_arg *x = arg;
	struct rhashtable *ht = x->ht;

	return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len);
}

559 560 561 562 563 564 565 566 567
/**
 * rhashtable_lookup - lookup key in hash table
 * @ht:		hash table
 * @key:	pointer to key
 *
 * Computes the hash value for the key and traverses the bucket chain looking
 * for a entry with an identical key. The first matching entry is returned.
 *
 * This lookup function may only be used for fixed key hash table (key_len
568
 * parameter set). It will BUG() if used inappropriately.
569
 *
570
 * Lookups may occur in parallel with hashtable mutations and resizing.
571
 */
572
void *rhashtable_lookup(struct rhashtable *ht, const void *key)
573
{
574 575 576 577
	struct rhashtable_compare_arg arg = {
		.ht = ht,
		.key = key,
	};
578 579 580

	BUG_ON(!ht->p.key_len);

581
	return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg);
582 583 584 585 586 587
}
EXPORT_SYMBOL_GPL(rhashtable_lookup);

/**
 * rhashtable_lookup_compare - search hash table with compare function
 * @ht:		hash table
588
 * @key:	the pointer to the key
589 590 591 592 593 594
 * @compare:	compare function, must return true on match
 * @arg:	argument passed on to compare function
 *
 * Traverses the bucket chain behind the provided hash value and calls the
 * specified compare function for each entry.
 *
595
 * Lookups may occur in parallel with hashtable mutations and resizing.
596 597 598
 *
 * Returns the first entry on which the compare function returned true.
 */
599
void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key,
600 601
				bool (*compare)(void *, void *), void *arg)
{
602
	const struct bucket_table *tbl, *old_tbl;
603
	struct rhash_head *he;
604
	u32 hash;
605

606 607
	rcu_read_lock();

608
	tbl = rht_dereference_rcu(ht->tbl, ht);
609
	hash = key_hashfn(ht, tbl, key);
610
restart:
611
	rht_for_each_rcu(he, tbl, hash) {
612 613
		if (!compare(rht_obj(ht, he), arg))
			continue;
614
		rcu_read_unlock();
615
		return rht_obj(ht, he);
616 617
	}

H
Herbert Xu 已提交
618 619 620
	/* Ensure we see any new tables. */
	smp_rmb();

621 622 623
	old_tbl = tbl;
	tbl = rht_dereference_rcu(ht->future_tbl, ht);
	if (unlikely(tbl != old_tbl))
624 625 626
		goto restart;
	rcu_read_unlock();

627 628 629 630
	return NULL;
}
EXPORT_SYMBOL_GPL(rhashtable_lookup_compare);

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
/**
 * rhashtable_lookup_insert - lookup and insert object into hash table
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 *
 * Locks down the bucket chain in both the old and new table if a resize
 * is in progress to ensure that writers can't remove from the old table
 * and can't insert to the new table during the atomic operation of search
 * and insertion. Searches for duplicates in both the old and new table if
 * a resize is in progress.
 *
 * This lookup function may only be used for fixed key hash table (key_len
 * parameter set). It will BUG() if used inappropriately.
 *
 * It is safe to call this function from atomic context.
 *
 * Will trigger an automatic deferred table resizing if the size grows
 * beyond the watermark indicated by grow_decision() which can be passed
 * to rhashtable_init().
 */
bool rhashtable_lookup_insert(struct rhashtable *ht, struct rhash_head *obj)
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
{
	struct rhashtable_compare_arg arg = {
		.ht = ht,
		.key = rht_obj(ht, obj) + ht->p.key_offset,
	};

	BUG_ON(!ht->p.key_len);

	return rhashtable_lookup_compare_insert(ht, obj, &rhashtable_compare,
						&arg);
}
EXPORT_SYMBOL_GPL(rhashtable_lookup_insert);

/**
 * rhashtable_lookup_compare_insert - search and insert object to hash table
 *                                    with compare function
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 * @compare:	compare function, must return true on match
 * @arg:	argument passed on to compare function
 *
 * Locks down the bucket chain in both the old and new table if a resize
 * is in progress to ensure that writers can't remove from the old table
 * and can't insert to the new table during the atomic operation of search
 * and insertion. Searches for duplicates in both the old and new table if
 * a resize is in progress.
 *
 * Lookups may occur in parallel with hashtable mutations and resizing.
 *
 * Will trigger an automatic deferred table resizing if the size grows
 * beyond the watermark indicated by grow_decision() which can be passed
 * to rhashtable_init().
 */
bool rhashtable_lookup_compare_insert(struct rhashtable *ht,
				      struct rhash_head *obj,
				      bool (*compare)(void *, void *),
				      void *arg)
689 690 691
{
	BUG_ON(!ht->p.key_len);

692
	return __rhashtable_insert(ht, obj, compare, arg);
693
}
694
EXPORT_SYMBOL_GPL(rhashtable_lookup_compare_insert);
695

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/**
 * rhashtable_walk_init - Initialise an iterator
 * @ht:		Table to walk over
 * @iter:	Hash table Iterator
 *
 * This function prepares a hash table walk.
 *
 * Note that if you restart a walk after rhashtable_walk_stop you
 * may see the same object twice.  Also, you may miss objects if
 * there are removals in between rhashtable_walk_stop and the next
 * call to rhashtable_walk_start.
 *
 * For a completely stable walk you should construct your own data
 * structure outside the hash table.
 *
 * This function may sleep so you must not call it from interrupt
 * context or with spin locks held.
 *
 * You must call rhashtable_walk_exit if this function returns
 * successfully.
 */
int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
{
	iter->ht = ht;
	iter->p = NULL;
	iter->slot = 0;
	iter->skip = 0;

	iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
	if (!iter->walker)
		return -ENOMEM;

728 729 730
	INIT_LIST_HEAD(&iter->walker->list);
	iter->walker->resize = false;

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	mutex_lock(&ht->mutex);
	list_add(&iter->walker->list, &ht->walkers);
	mutex_unlock(&ht->mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_init);

/**
 * rhashtable_walk_exit - Free an iterator
 * @iter:	Hash table Iterator
 *
 * This function frees resources allocated by rhashtable_walk_init.
 */
void rhashtable_walk_exit(struct rhashtable_iter *iter)
{
	mutex_lock(&iter->ht->mutex);
	list_del(&iter->walker->list);
	mutex_unlock(&iter->ht->mutex);
	kfree(iter->walker);
}
EXPORT_SYMBOL_GPL(rhashtable_walk_exit);

/**
 * rhashtable_walk_start - Start a hash table walk
 * @iter:	Hash table iterator
 *
 * Start a hash table walk.  Note that we take the RCU lock in all
 * cases including when we return an error.  So you must always call
 * rhashtable_walk_stop to clean up.
 *
 * Returns zero if successful.
 *
 * Returns -EAGAIN if resize event occured.  Note that the iterator
 * will rewind back to the beginning and you may use it immediately
 * by calling rhashtable_walk_next.
 */
int rhashtable_walk_start(struct rhashtable_iter *iter)
{
	rcu_read_lock();

	if (iter->walker->resize) {
		iter->slot = 0;
		iter->skip = 0;
		iter->walker->resize = false;
		return -EAGAIN;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_start);

/**
 * rhashtable_walk_next - Return the next object and advance the iterator
 * @iter:	Hash table iterator
 *
 * Note that you must call rhashtable_walk_stop when you are finished
 * with the walk.
 *
 * Returns the next object or NULL when the end of the table is reached.
 *
 * Returns -EAGAIN if resize event occured.  Note that the iterator
 * will rewind back to the beginning and you may continue to use it.
 */
void *rhashtable_walk_next(struct rhashtable_iter *iter)
{
	const struct bucket_table *tbl;
	struct rhashtable *ht = iter->ht;
	struct rhash_head *p = iter->p;
	void *obj = NULL;

	tbl = rht_dereference_rcu(ht->tbl, ht);

	if (p) {
		p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
		goto next;
	}

	for (; iter->slot < tbl->size; iter->slot++) {
		int skip = iter->skip;

		rht_for_each_rcu(p, tbl, iter->slot) {
			if (!skip)
				break;
			skip--;
		}

next:
		if (!rht_is_a_nulls(p)) {
			iter->skip++;
			iter->p = p;
			obj = rht_obj(ht, p);
			goto out;
		}

		iter->skip = 0;
	}

	iter->p = NULL;

out:
	if (iter->walker->resize) {
		iter->p = NULL;
		iter->slot = 0;
		iter->skip = 0;
		iter->walker->resize = false;
		return ERR_PTR(-EAGAIN);
	}

	return obj;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_next);

/**
 * rhashtable_walk_stop - Finish a hash table walk
 * @iter:	Hash table iterator
 *
 * Finish a hash table walk.
 */
void rhashtable_walk_stop(struct rhashtable_iter *iter)
{
	rcu_read_unlock();
	iter->p = NULL;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_stop);

857
static size_t rounded_hashtable_size(struct rhashtable_params *params)
858
{
859 860
	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
		   1UL << params->min_shift);
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
}

/**
 * rhashtable_init - initialize a new hash table
 * @ht:		hash table to be initialized
 * @params:	configuration parameters
 *
 * Initializes a new hash table based on the provided configuration
 * parameters. A table can be configured either with a variable or
 * fixed length key:
 *
 * Configuration Example 1: Fixed length keys
 * struct test_obj {
 *	int			key;
 *	void *			my_member;
 *	struct rhash_head	node;
 * };
 *
 * struct rhashtable_params params = {
 *	.head_offset = offsetof(struct test_obj, node),
 *	.key_offset = offsetof(struct test_obj, key),
 *	.key_len = sizeof(int),
883
 *	.hashfn = jhash,
884
 *	.nulls_base = (1U << RHT_BASE_SHIFT),
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
 * };
 *
 * Configuration Example 2: Variable length keys
 * struct test_obj {
 *	[...]
 *	struct rhash_head	node;
 * };
 *
 * u32 my_hash_fn(const void *data, u32 seed)
 * {
 *	struct test_obj *obj = data;
 *
 *	return [... hash ...];
 * }
 *
 * struct rhashtable_params params = {
 *	.head_offset = offsetof(struct test_obj, node),
902
 *	.hashfn = jhash,
903 904 905 906 907 908 909
 *	.obj_hashfn = my_hash_fn,
 * };
 */
int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params)
{
	struct bucket_table *tbl;
	size_t size;
910
	u32 hash_rnd;
911 912 913 914 915 916 917

	size = HASH_DEFAULT_SIZE;

	if ((params->key_len && !params->hashfn) ||
	    (!params->key_len && !params->obj_hashfn))
		return -EINVAL;

918 919 920
	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
		return -EINVAL;

921 922 923
	params->min_shift = max_t(size_t, params->min_shift,
				  ilog2(HASH_MIN_SIZE));

924
	if (params->nelem_hint)
925
		size = rounded_hashtable_size(params);
926

927 928 929
	memset(ht, 0, sizeof(*ht));
	mutex_init(&ht->mutex);
	memcpy(&ht->p, params, sizeof(*params));
930
	INIT_LIST_HEAD(&ht->walkers);
931 932 933 934 935 936

	if (params->locks_mul)
		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
	else
		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;

937 938 939
	get_random_bytes(&hash_rnd, sizeof(hash_rnd));

	tbl = bucket_table_alloc(ht, size, hash_rnd);
940 941 942
	if (tbl == NULL)
		return -ENOMEM;

943
	atomic_set(&ht->nelems, 0);
944

945
	RCU_INIT_POINTER(ht->tbl, tbl);
946
	RCU_INIT_POINTER(ht->future_tbl, tbl);
947

948
	INIT_WORK(&ht->run_work, rht_deferred_worker);
949

950 951 952 953 954 955 956 957
	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_init);

/**
 * rhashtable_destroy - destroy hash table
 * @ht:		the hash table to destroy
 *
958 959 960
 * Frees the bucket array. This function is not rcu safe, therefore the caller
 * has to make sure that no resizing may happen by unpublishing the hashtable
 * and waiting for the quiescent cycle before releasing the bucket array.
961
 */
962
void rhashtable_destroy(struct rhashtable *ht)
963
{
964 965
	ht->being_destroyed = true;

966
	cancel_work_sync(&ht->run_work);
967

968
	mutex_lock(&ht->mutex);
969 970
	bucket_table_free(rht_dereference(ht->tbl, ht));
	mutex_unlock(&ht->mutex);
971 972
}
EXPORT_SYMBOL_GPL(rhashtable_destroy);