rhashtable.c 25.2 KB
Newer Older
1 2 3
/*
 * Resizable, Scalable, Concurrent Hash Table
 *
4
 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
 *
 * Based on the following paper:
 * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf
 *
 * Code partially derived from nft_hash
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/log2.h>
E
Eric Dumazet 已提交
20
#include <linux/sched.h>
21 22 23
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
24
#include <linux/jhash.h>
25 26
#include <linux/random.h>
#include <linux/rhashtable.h>
27
#include <linux/err.h>
28 29 30

#define HASH_DEFAULT_SIZE	64UL
#define HASH_MIN_SIZE		4UL
31 32
#define BUCKET_LOCKS_PER_CPU   128UL

33 34 35
/* Base bits plus 1 bit for nulls marker */
#define HASH_RESERVED_SPACE	(RHT_BASE_BITS + 1)

36 37 38 39 40 41 42 43
enum {
	RHT_LOCK_NORMAL,
	RHT_LOCK_NESTED,
};

/* The bucket lock is selected based on the hash and protects mutations
 * on a group of hash buckets.
 *
44 45 46 47 48 49
 * A maximum of tbl->size/2 bucket locks is allocated. This ensures that
 * a single lock always covers both buckets which may both contains
 * entries which link to the same bucket of the old table during resizing.
 * This allows to simplify the locking as locking the bucket in both
 * tables during resize always guarantee protection.
 *
50 51 52 53 54 55 56 57
 * IMPORTANT: When holding the bucket lock of both the old and new table
 * during expansions and shrinking, the old bucket lock must always be
 * acquired first.
 */
static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash)
{
	return &tbl->locks[hash & tbl->locks_mask];
}
58

59
static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he)
60 61 62 63
{
	return (void *) he - ht->p.head_offset;
}

64
static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash)
65
{
H
Herbert Xu 已提交
66
	return (hash >> HASH_RESERVED_SPACE) & (tbl->size - 1);
67 68
}

69
static u32 key_hashfn(struct rhashtable *ht, const struct bucket_table *tbl,
70
		      const void *key)
71
{
72
	return rht_bucket_index(tbl, ht->p.hashfn(key, ht->p.key_len,
H
Herbert Xu 已提交
73
						  tbl->hash_rnd));
74 75
}

76
static u32 head_hashfn(struct rhashtable *ht,
77 78
		       const struct bucket_table *tbl,
		       const struct rhash_head *he)
79
{
H
Herbert Xu 已提交
80 81 82 83 84
	const char *ptr = rht_obj(ht, he);

	return likely(ht->p.key_len) ?
	       key_hashfn(ht, tbl, ptr + ht->p.key_offset) :
	       rht_bucket_index(tbl, ht->p.obj_hashfn(ptr, tbl->hash_rnd));
85 86
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
#ifdef CONFIG_PROVE_LOCKING
#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))

int lockdep_rht_mutex_is_held(struct rhashtable *ht)
{
	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);

int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
{
	spinlock_t *lock = bucket_lock(tbl, hash);

	return (debug_locks) ? lockdep_is_held(lock) : 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
#else
#define ASSERT_RHT_MUTEX(HT)
#endif


108 109 110 111 112 113 114 115 116 117 118 119
static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl)
{
	unsigned int i, size;
#if defined(CONFIG_PROVE_LOCKING)
	unsigned int nr_pcpus = 2;
#else
	unsigned int nr_pcpus = num_possible_cpus();
#endif

	nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);

120 121
	/* Never allocate more than 0.5 locks per bucket */
	size = min_t(unsigned int, size, tbl->size >> 1);
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

	if (sizeof(spinlock_t) != 0) {
#ifdef CONFIG_NUMA
		if (size * sizeof(spinlock_t) > PAGE_SIZE)
			tbl->locks = vmalloc(size * sizeof(spinlock_t));
		else
#endif
		tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
					   GFP_KERNEL);
		if (!tbl->locks)
			return -ENOMEM;
		for (i = 0; i < size; i++)
			spin_lock_init(&tbl->locks[i]);
	}
	tbl->locks_mask = size - 1;

	return 0;
}

static void bucket_table_free(const struct bucket_table *tbl)
{
	if (tbl)
		kvfree(tbl->locks);

	kvfree(tbl);
}

static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
					       size_t nbuckets)
151
{
152
	struct bucket_table *tbl = NULL;
153
	size_t size;
154
	int i;
155 156

	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
157 158
	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER))
		tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
159 160 161 162 163 164 165
	if (tbl == NULL)
		tbl = vzalloc(size);
	if (tbl == NULL)
		return NULL;

	tbl->size = nbuckets;

166 167 168 169
	if (alloc_bucket_locks(ht, tbl) < 0) {
		bucket_table_free(tbl);
		return NULL;
	}
170

171 172 173
	for (i = 0; i < nbuckets; i++)
		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);

174
	return tbl;
175 176 177 178 179 180 181
}

/**
 * rht_grow_above_75 - returns true if nelems > 0.75 * table-size
 * @ht:		hash table
 * @new_size:	new table size
 */
182
static bool rht_grow_above_75(const struct rhashtable *ht, size_t new_size)
183 184
{
	/* Expand table when exceeding 75% load */
185
	return atomic_read(&ht->nelems) > (new_size / 4 * 3) &&
186
	       (!ht->p.max_shift || atomic_read(&ht->shift) < ht->p.max_shift);
187 188 189 190 191 192 193
}

/**
 * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size
 * @ht:		hash table
 * @new_size:	new table size
 */
194
static bool rht_shrink_below_30(const struct rhashtable *ht, size_t new_size)
195 196
{
	/* Shrink table beneath 30% load */
197 198
	return atomic_read(&ht->nelems) < (new_size * 3 / 10) &&
	       (atomic_read(&ht->shift) > ht->p.min_shift);
199 200
}

201
static int rhashtable_rehash_one(struct rhashtable *ht, unsigned old_hash)
202
{
203 204 205 206 207 208 209 210 211 212 213 214 215 216
	struct bucket_table *new_tbl = rht_dereference(ht->future_tbl, ht);
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
	int err = -ENOENT;
	struct rhash_head *head, *next, *entry;
	spinlock_t *new_bucket_lock;
	unsigned new_hash;

	rht_for_each(entry, old_tbl, old_hash) {
		err = 0;
		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);

		if (rht_is_a_nulls(next))
			break;
217

218 219
		pprev = &entry->next;
	}
220

221 222
	if (err)
		goto out;
223

224
	new_hash = head_hashfn(ht, new_tbl, entry);
225

226
	new_bucket_lock = bucket_lock(new_tbl, new_hash);
227

228
	spin_lock_nested(new_bucket_lock, RHT_LOCK_NESTED);
229 230
	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
				      new_tbl, new_hash);
231

232 233 234 235
	if (rht_is_a_nulls(head))
		INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash);
	else
		RCU_INIT_POINTER(entry->next, head);
236

237 238
	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
	spin_unlock(new_bucket_lock);
239

240
	rcu_assign_pointer(*pprev, next);
241

242 243 244
out:
	return err;
}
245

246 247 248 249 250 251
static void rhashtable_rehash_chain(struct rhashtable *ht, unsigned old_hash)
{
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	spinlock_t *old_bucket_lock;

	old_bucket_lock = bucket_lock(old_tbl, old_hash);
252

253 254 255 256
	spin_lock_bh(old_bucket_lock);
	while (!rhashtable_rehash_one(ht, old_hash))
		;
	spin_unlock_bh(old_bucket_lock);
257 258
}

259 260
static void rhashtable_rehash(struct rhashtable *ht,
			      struct bucket_table *new_tbl)
261
{
262 263
	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
	unsigned old_hash;
264

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	get_random_bytes(&new_tbl->hash_rnd, sizeof(new_tbl->hash_rnd));

	/* Make insertions go into the new, empty table right away. Deletions
	 * and lookups will be attempted in both tables until we synchronize.
	 * The synchronize_rcu() guarantees for the new table to be picked up
	 * so no new additions go into the old table while we relink.
	 */
	rcu_assign_pointer(ht->future_tbl, new_tbl);

	for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
		rhashtable_rehash_chain(ht, old_hash);

	/* Publish the new table pointer. */
	rcu_assign_pointer(ht->tbl, new_tbl);

	/* Wait for readers. All new readers will see the new
	 * table, and thus no references to the old table will
	 * remain.
	 */
	synchronize_rcu();

	bucket_table_free(old_tbl);
287 288 289 290 291 292
}

/**
 * rhashtable_expand - Expand hash table while allowing concurrent lookups
 * @ht:		the hash table to expand
 *
293
 * A secondary bucket array is allocated and the hash entries are migrated.
294 295 296 297
 *
 * This function may only be called in a context where it is safe to call
 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
 *
298 299 300 301 302
 * The caller must ensure that no concurrent resizing occurs by holding
 * ht->mutex.
 *
 * It is valid to have concurrent insertions and deletions protected by per
 * bucket locks or concurrent RCU protected lookups and traversals.
303
 */
304
int rhashtable_expand(struct rhashtable *ht)
305 306 307 308 309
{
	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);

	ASSERT_RHT_MUTEX(ht);

310
	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2);
311 312 313
	if (new_tbl == NULL)
		return -ENOMEM;

314 315
	new_tbl->hash_rnd = old_tbl->hash_rnd;

316
	atomic_inc(&ht->shift);
317

318
	rhashtable_rehash(ht, new_tbl);
319 320 321 322 323 324 325 326 327 328 329 330

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_expand);

/**
 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
 * @ht:		the hash table to shrink
 *
 * This function may only be called in a context where it is safe to call
 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
 *
331 332 333
 * The caller must ensure that no concurrent resizing occurs by holding
 * ht->mutex.
 *
334 335
 * The caller must ensure that no concurrent table mutations take place.
 * It is however valid to have concurrent lookups if they are RCU protected.
336 337 338
 *
 * It is valid to have concurrent insertions and deletions protected by per
 * bucket locks or concurrent RCU protected lookups and traversals.
339
 */
340
int rhashtable_shrink(struct rhashtable *ht)
341
{
342
	struct bucket_table *new_tbl, *tbl = rht_dereference(ht->tbl, ht);
343 344 345

	ASSERT_RHT_MUTEX(ht);

346 347
	new_tbl = bucket_table_alloc(ht, tbl->size / 2);
	if (new_tbl == NULL)
348 349
		return -ENOMEM;

350 351
	new_tbl->hash_rnd = tbl->hash_rnd;

352
	atomic_dec(&ht->shift);
353

354
	rhashtable_rehash(ht, new_tbl);
355 356 357 358 359

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_shrink);

360 361 362 363
static void rht_deferred_worker(struct work_struct *work)
{
	struct rhashtable *ht;
	struct bucket_table *tbl;
364
	struct rhashtable_walker *walker;
365

366
	ht = container_of(work, struct rhashtable, run_work);
367
	mutex_lock(&ht->mutex);
368 369 370
	if (ht->being_destroyed)
		goto unlock;

371 372
	tbl = rht_dereference(ht->tbl, ht);

373 374 375
	list_for_each_entry(walker, &ht->walkers, list)
		walker->resize = true;

376
	if (rht_grow_above_75(ht, tbl->size))
377
		rhashtable_expand(ht);
378
	else if (rht_shrink_below_30(ht, tbl->size))
379
		rhashtable_shrink(ht);
380
unlock:
381 382 383
	mutex_unlock(&ht->mutex);
}

384 385
static bool __rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj,
				bool (*compare)(void *, void *), void *arg)
386
{
387
	struct bucket_table *tbl, *old_tbl;
388
	struct rhash_head *head;
389 390 391 392 393 394 395
	bool no_resize_running;
	unsigned hash;
	bool success = true;

	rcu_read_lock();

	old_tbl = rht_dereference_rcu(ht->tbl, ht);
396
	hash = head_hashfn(ht, old_tbl, obj);
397 398 399 400 401 402 403 404 405 406 407

	spin_lock_bh(bucket_lock(old_tbl, hash));

	/* Because we have already taken the bucket lock in old_tbl,
	 * if we find that future_tbl is not yet visible then that
	 * guarantees all other insertions of the same entry will
	 * also grab the bucket lock in old_tbl because until the
	 * rehash completes ht->tbl won't be changed.
	 */
	tbl = rht_dereference_rcu(ht->future_tbl, ht);
	if (tbl != old_tbl) {
408
		hash = head_hashfn(ht, tbl, obj);
409
		spin_lock_nested(bucket_lock(tbl, hash), RHT_LOCK_NESTED);
410 411 412 413 414 415 416 417 418 419
	}

	if (compare &&
	    rhashtable_lookup_compare(ht, rht_obj(ht, obj) + ht->p.key_offset,
				      compare, arg)) {
		success = false;
		goto exit;
	}

	no_resize_running = tbl == old_tbl;
420 421

	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
422 423 424 425 426 427 428 429 430

	if (rht_is_a_nulls(head))
		INIT_RHT_NULLS_HEAD(obj->next, ht, hash);
	else
		RCU_INIT_POINTER(obj->next, head);

	rcu_assign_pointer(tbl->buckets[hash], obj);

	atomic_inc(&ht->nelems);
431 432
	if (no_resize_running && rht_grow_above_75(ht, tbl->size))
		schedule_work(&ht->run_work);
433 434 435

exit:
	if (tbl != old_tbl) {
436
		hash = head_hashfn(ht, tbl, obj);
437 438 439
		spin_unlock(bucket_lock(tbl, hash));
	}

440
	hash = head_hashfn(ht, old_tbl, obj);
441 442 443 444 445
	spin_unlock_bh(bucket_lock(old_tbl, hash));

	rcu_read_unlock();

	return success;
446 447
}

448
/**
449
 * rhashtable_insert - insert object into hash table
450 451 452
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 *
453 454 455
 * Will take a per bucket spinlock to protect against mutual mutations
 * on the same bucket. Multiple insertions may occur in parallel unless
 * they map to the same bucket lock.
456
 *
457 458 459 460 461
 * It is safe to call this function from atomic context.
 *
 * Will trigger an automatic deferred table resizing if the size grows
 * beyond the watermark indicated by grow_decision() which can be passed
 * to rhashtable_init().
462
 */
463
void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj)
464
{
465 466 467 468 469 470 471 472 473 474 475
	__rhashtable_insert(ht, obj, NULL, NULL);
}
EXPORT_SYMBOL_GPL(rhashtable_insert);

static bool __rhashtable_remove(struct rhashtable *ht,
				struct bucket_table *tbl,
				struct rhash_head *obj)
{
	struct rhash_head __rcu **pprev;
	struct rhash_head *he;
	spinlock_t * lock;
476
	unsigned hash;
477
	bool ret = false;
478

479
	hash = head_hashfn(ht, tbl, obj);
480
	lock = bucket_lock(tbl, hash);
481

482
	spin_lock_bh(lock);
483

484 485 486 487 488 489
	pprev = &tbl->buckets[hash];
	rht_for_each(he, tbl, hash) {
		if (he != obj) {
			pprev = &he->next;
			continue;
		}
490

491 492 493 494 495 496 497 498
		rcu_assign_pointer(*pprev, obj->next);
		ret = true;
		break;
	}

	spin_unlock_bh(lock);

	return ret;
499 500 501 502 503 504 505 506 507 508 509
}

/**
 * rhashtable_remove - remove object from hash table
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 *
 * Since the hash chain is single linked, the removal operation needs to
 * walk the bucket chain upon removal. The removal operation is thus
 * considerable slow if the hash table is not correctly sized.
 *
510
 * Will automatically shrink the table via rhashtable_expand() if the
511 512 513 514 515
 * shrink_decision function specified at rhashtable_init() returns true.
 *
 * The caller must ensure that no concurrent table mutations occur. It is
 * however valid to have concurrent lookups if they are RCU protected.
 */
516
bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj)
517
{
518 519
	struct bucket_table *tbl, *old_tbl;
	bool ret;
520

521
	rcu_read_lock();
522

523 524
	old_tbl = rht_dereference_rcu(ht->tbl, ht);
	ret = __rhashtable_remove(ht, old_tbl, obj);
525

526 527 528 529
	/* Because we have already taken (and released) the bucket
	 * lock in old_tbl, if we find that future_tbl is not yet
	 * visible then that guarantees the entry to still be in
	 * old_tbl if it exists.
530
	 */
531 532 533
	tbl = rht_dereference_rcu(ht->future_tbl, ht);
	if (!ret && old_tbl != tbl)
		ret = __rhashtable_remove(ht, tbl, obj);
534 535

	if (ret) {
536
		bool no_resize_running = tbl == old_tbl;
537

538
		atomic_dec(&ht->nelems);
539
		if (no_resize_running && rht_shrink_below_30(ht, tbl->size))
540
			schedule_work(&ht->run_work);
541 542
	}

543 544
	rcu_read_unlock();

545
	return ret;
546 547 548
}
EXPORT_SYMBOL_GPL(rhashtable_remove);

549 550 551 552 553 554 555 556 557 558 559 560 561
struct rhashtable_compare_arg {
	struct rhashtable *ht;
	const void *key;
};

static bool rhashtable_compare(void *ptr, void *arg)
{
	struct rhashtable_compare_arg *x = arg;
	struct rhashtable *ht = x->ht;

	return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len);
}

562 563 564 565 566 567 568 569 570
/**
 * rhashtable_lookup - lookup key in hash table
 * @ht:		hash table
 * @key:	pointer to key
 *
 * Computes the hash value for the key and traverses the bucket chain looking
 * for a entry with an identical key. The first matching entry is returned.
 *
 * This lookup function may only be used for fixed key hash table (key_len
571
 * parameter set). It will BUG() if used inappropriately.
572
 *
573
 * Lookups may occur in parallel with hashtable mutations and resizing.
574
 */
575
void *rhashtable_lookup(struct rhashtable *ht, const void *key)
576
{
577 578 579 580
	struct rhashtable_compare_arg arg = {
		.ht = ht,
		.key = key,
	};
581 582 583

	BUG_ON(!ht->p.key_len);

584
	return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg);
585 586 587 588 589 590
}
EXPORT_SYMBOL_GPL(rhashtable_lookup);

/**
 * rhashtable_lookup_compare - search hash table with compare function
 * @ht:		hash table
591
 * @key:	the pointer to the key
592 593 594 595 596 597
 * @compare:	compare function, must return true on match
 * @arg:	argument passed on to compare function
 *
 * Traverses the bucket chain behind the provided hash value and calls the
 * specified compare function for each entry.
 *
598
 * Lookups may occur in parallel with hashtable mutations and resizing.
599 600 601
 *
 * Returns the first entry on which the compare function returned true.
 */
602
void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key,
603 604
				bool (*compare)(void *, void *), void *arg)
{
605
	const struct bucket_table *tbl, *old_tbl;
606
	struct rhash_head *he;
607
	u32 hash;
608

609 610
	rcu_read_lock();

611
	tbl = rht_dereference_rcu(ht->tbl, ht);
612
	hash = key_hashfn(ht, tbl, key);
613
restart:
614
	rht_for_each_rcu(he, tbl, hash) {
615 616
		if (!compare(rht_obj(ht, he), arg))
			continue;
617
		rcu_read_unlock();
618
		return rht_obj(ht, he);
619 620
	}

621 622 623
	old_tbl = tbl;
	tbl = rht_dereference_rcu(ht->future_tbl, ht);
	if (unlikely(tbl != old_tbl))
624 625 626
		goto restart;
	rcu_read_unlock();

627 628 629 630
	return NULL;
}
EXPORT_SYMBOL_GPL(rhashtable_lookup_compare);

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
/**
 * rhashtable_lookup_insert - lookup and insert object into hash table
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 *
 * Locks down the bucket chain in both the old and new table if a resize
 * is in progress to ensure that writers can't remove from the old table
 * and can't insert to the new table during the atomic operation of search
 * and insertion. Searches for duplicates in both the old and new table if
 * a resize is in progress.
 *
 * This lookup function may only be used for fixed key hash table (key_len
 * parameter set). It will BUG() if used inappropriately.
 *
 * It is safe to call this function from atomic context.
 *
 * Will trigger an automatic deferred table resizing if the size grows
 * beyond the watermark indicated by grow_decision() which can be passed
 * to rhashtable_init().
 */
bool rhashtable_lookup_insert(struct rhashtable *ht, struct rhash_head *obj)
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
{
	struct rhashtable_compare_arg arg = {
		.ht = ht,
		.key = rht_obj(ht, obj) + ht->p.key_offset,
	};

	BUG_ON(!ht->p.key_len);

	return rhashtable_lookup_compare_insert(ht, obj, &rhashtable_compare,
						&arg);
}
EXPORT_SYMBOL_GPL(rhashtable_lookup_insert);

/**
 * rhashtable_lookup_compare_insert - search and insert object to hash table
 *                                    with compare function
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 * @compare:	compare function, must return true on match
 * @arg:	argument passed on to compare function
 *
 * Locks down the bucket chain in both the old and new table if a resize
 * is in progress to ensure that writers can't remove from the old table
 * and can't insert to the new table during the atomic operation of search
 * and insertion. Searches for duplicates in both the old and new table if
 * a resize is in progress.
 *
 * Lookups may occur in parallel with hashtable mutations and resizing.
 *
 * Will trigger an automatic deferred table resizing if the size grows
 * beyond the watermark indicated by grow_decision() which can be passed
 * to rhashtable_init().
 */
bool rhashtable_lookup_compare_insert(struct rhashtable *ht,
				      struct rhash_head *obj,
				      bool (*compare)(void *, void *),
				      void *arg)
689 690 691
{
	BUG_ON(!ht->p.key_len);

692
	return __rhashtable_insert(ht, obj, compare, arg);
693
}
694
EXPORT_SYMBOL_GPL(rhashtable_lookup_compare_insert);
695

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/**
 * rhashtable_walk_init - Initialise an iterator
 * @ht:		Table to walk over
 * @iter:	Hash table Iterator
 *
 * This function prepares a hash table walk.
 *
 * Note that if you restart a walk after rhashtable_walk_stop you
 * may see the same object twice.  Also, you may miss objects if
 * there are removals in between rhashtable_walk_stop and the next
 * call to rhashtable_walk_start.
 *
 * For a completely stable walk you should construct your own data
 * structure outside the hash table.
 *
 * This function may sleep so you must not call it from interrupt
 * context or with spin locks held.
 *
 * You must call rhashtable_walk_exit if this function returns
 * successfully.
 */
int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
{
	iter->ht = ht;
	iter->p = NULL;
	iter->slot = 0;
	iter->skip = 0;

	iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
	if (!iter->walker)
		return -ENOMEM;

728 729 730
	INIT_LIST_HEAD(&iter->walker->list);
	iter->walker->resize = false;

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	mutex_lock(&ht->mutex);
	list_add(&iter->walker->list, &ht->walkers);
	mutex_unlock(&ht->mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_init);

/**
 * rhashtable_walk_exit - Free an iterator
 * @iter:	Hash table Iterator
 *
 * This function frees resources allocated by rhashtable_walk_init.
 */
void rhashtable_walk_exit(struct rhashtable_iter *iter)
{
	mutex_lock(&iter->ht->mutex);
	list_del(&iter->walker->list);
	mutex_unlock(&iter->ht->mutex);
	kfree(iter->walker);
}
EXPORT_SYMBOL_GPL(rhashtable_walk_exit);

/**
 * rhashtable_walk_start - Start a hash table walk
 * @iter:	Hash table iterator
 *
 * Start a hash table walk.  Note that we take the RCU lock in all
 * cases including when we return an error.  So you must always call
 * rhashtable_walk_stop to clean up.
 *
 * Returns zero if successful.
 *
 * Returns -EAGAIN if resize event occured.  Note that the iterator
 * will rewind back to the beginning and you may use it immediately
 * by calling rhashtable_walk_next.
 */
int rhashtable_walk_start(struct rhashtable_iter *iter)
{
	rcu_read_lock();

	if (iter->walker->resize) {
		iter->slot = 0;
		iter->skip = 0;
		iter->walker->resize = false;
		return -EAGAIN;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_start);

/**
 * rhashtable_walk_next - Return the next object and advance the iterator
 * @iter:	Hash table iterator
 *
 * Note that you must call rhashtable_walk_stop when you are finished
 * with the walk.
 *
 * Returns the next object or NULL when the end of the table is reached.
 *
 * Returns -EAGAIN if resize event occured.  Note that the iterator
 * will rewind back to the beginning and you may continue to use it.
 */
void *rhashtable_walk_next(struct rhashtable_iter *iter)
{
	const struct bucket_table *tbl;
	struct rhashtable *ht = iter->ht;
	struct rhash_head *p = iter->p;
	void *obj = NULL;

	tbl = rht_dereference_rcu(ht->tbl, ht);

	if (p) {
		p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
		goto next;
	}

	for (; iter->slot < tbl->size; iter->slot++) {
		int skip = iter->skip;

		rht_for_each_rcu(p, tbl, iter->slot) {
			if (!skip)
				break;
			skip--;
		}

next:
		if (!rht_is_a_nulls(p)) {
			iter->skip++;
			iter->p = p;
			obj = rht_obj(ht, p);
			goto out;
		}

		iter->skip = 0;
	}

	iter->p = NULL;

out:
	if (iter->walker->resize) {
		iter->p = NULL;
		iter->slot = 0;
		iter->skip = 0;
		iter->walker->resize = false;
		return ERR_PTR(-EAGAIN);
	}

	return obj;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_next);

/**
 * rhashtable_walk_stop - Finish a hash table walk
 * @iter:	Hash table iterator
 *
 * Finish a hash table walk.
 */
void rhashtable_walk_stop(struct rhashtable_iter *iter)
{
	rcu_read_unlock();
	iter->p = NULL;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_stop);

857
static size_t rounded_hashtable_size(struct rhashtable_params *params)
858
{
859 860
	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
		   1UL << params->min_shift);
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
}

/**
 * rhashtable_init - initialize a new hash table
 * @ht:		hash table to be initialized
 * @params:	configuration parameters
 *
 * Initializes a new hash table based on the provided configuration
 * parameters. A table can be configured either with a variable or
 * fixed length key:
 *
 * Configuration Example 1: Fixed length keys
 * struct test_obj {
 *	int			key;
 *	void *			my_member;
 *	struct rhash_head	node;
 * };
 *
 * struct rhashtable_params params = {
 *	.head_offset = offsetof(struct test_obj, node),
 *	.key_offset = offsetof(struct test_obj, key),
 *	.key_len = sizeof(int),
883
 *	.hashfn = jhash,
884
 *	.nulls_base = (1U << RHT_BASE_SHIFT),
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
 * };
 *
 * Configuration Example 2: Variable length keys
 * struct test_obj {
 *	[...]
 *	struct rhash_head	node;
 * };
 *
 * u32 my_hash_fn(const void *data, u32 seed)
 * {
 *	struct test_obj *obj = data;
 *
 *	return [... hash ...];
 * }
 *
 * struct rhashtable_params params = {
 *	.head_offset = offsetof(struct test_obj, node),
902
 *	.hashfn = jhash,
903 904 905 906 907 908 909 910 911 912 913 914 915 916
 *	.obj_hashfn = my_hash_fn,
 * };
 */
int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params)
{
	struct bucket_table *tbl;
	size_t size;

	size = HASH_DEFAULT_SIZE;

	if ((params->key_len && !params->hashfn) ||
	    (!params->key_len && !params->obj_hashfn))
		return -EINVAL;

917 918 919
	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
		return -EINVAL;

920 921 922
	params->min_shift = max_t(size_t, params->min_shift,
				  ilog2(HASH_MIN_SIZE));

923
	if (params->nelem_hint)
924
		size = rounded_hashtable_size(params);
925

926 927 928
	memset(ht, 0, sizeof(*ht));
	mutex_init(&ht->mutex);
	memcpy(&ht->p, params, sizeof(*params));
929
	INIT_LIST_HEAD(&ht->walkers);
930 931 932 933 934 935 936

	if (params->locks_mul)
		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
	else
		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;

	tbl = bucket_table_alloc(ht, size);
937 938 939
	if (tbl == NULL)
		return -ENOMEM;

940 941
	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));

942
	atomic_set(&ht->nelems, 0);
943
	atomic_set(&ht->shift, ilog2(tbl->size));
944
	RCU_INIT_POINTER(ht->tbl, tbl);
945
	RCU_INIT_POINTER(ht->future_tbl, tbl);
946

947
	INIT_WORK(&ht->run_work, rht_deferred_worker);
948

949 950 951 952 953 954 955 956
	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_init);

/**
 * rhashtable_destroy - destroy hash table
 * @ht:		the hash table to destroy
 *
957 958 959
 * Frees the bucket array. This function is not rcu safe, therefore the caller
 * has to make sure that no resizing may happen by unpublishing the hashtable
 * and waiting for the quiescent cycle before releasing the bucket array.
960
 */
961
void rhashtable_destroy(struct rhashtable *ht)
962
{
963 964
	ht->being_destroyed = true;

965
	cancel_work_sync(&ht->run_work);
966

967
	mutex_lock(&ht->mutex);
968 969
	bucket_table_free(rht_dereference(ht->tbl, ht));
	mutex_unlock(&ht->mutex);
970 971
}
EXPORT_SYMBOL_GPL(rhashtable_destroy);