rcutree_plugin.h 34.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
 * or preemptable semantics.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
28
#include <linux/stop_machine.h>
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
#ifdef CONFIG_RCU_TRACE
	printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
#endif
#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
	printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
	       CONFIG_RCU_FANOUT);
#endif
#ifdef CONFIG_RCU_FANOUT_EXACT
	printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
#endif
#ifdef CONFIG_RCU_FAST_NO_HZ
	printk(KERN_INFO
	       "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
#endif
#ifdef CONFIG_PROVE_RCU
	printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
#endif
#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
	printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
#endif
#ifndef CONFIG_RCU_CPU_STALL_DETECTOR
	printk(KERN_INFO
	       "\tRCU-based detection of stalled CPUs is disabled.\n");
#endif
61
#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
62 63 64 65 66 67 68
	printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n");
#endif
#if NUM_RCU_LVL_4 != 0
	printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
#endif
}

69 70 71 72 73
#ifdef CONFIG_TREE_PREEMPT_RCU

struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);

74 75
static int rcu_preempted_readers_exp(struct rcu_node *rnp);

76 77 78
/*
 * Tell them what RCU they are running.
 */
79
static void __init rcu_bootup_announce(void)
80
{
81 82
	printk(KERN_INFO "Preemptable hierarchical RCU implementation.\n");
	rcu_bootup_announce_oddness();
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
}

/*
 * Return the number of RCU-preempt batches processed thus far
 * for debug and statistics.
 */
long rcu_batches_completed_preempt(void)
{
	return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

104 105 106 107 108 109 110 111 112
/*
 * Force a quiescent state for preemptible RCU.
 */
void rcu_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_preempt_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

113 114 115 116 117
/*
 * Record a preemptable-RCU quiescent state for the specified CPU.  Note
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
118 119 120 121
 *
 * Unlike the other rcu_*_qs() functions, callers to this function
 * must disable irqs in order to protect the assignment to
 * ->rcu_read_unlock_special.
122
 */
123
static void rcu_preempt_qs(int cpu)
124 125
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
126

127
	rdp->passed_quiesc_completed = rdp->gpnum - 1;
128 129
	barrier();
	rdp->passed_quiesc = 1;
130
	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
131 132 133
}

/*
134 135 136 137 138 139 140 141 142 143 144
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
 * record that fact, so we enqueue the task on the appropriate entry
 * of the blocked_tasks[] array.  The task will dequeue itself when
 * it exits the outermost enclosing RCU read-side critical section.
 * Therefore, the current grace period cannot be permitted to complete
 * until the blocked_tasks[] entry indexed by the low-order bit of
 * rnp->gpnum empties.
 *
 * Caller must disable preemption.
145
 */
146
static void rcu_preempt_note_context_switch(int cpu)
147 148
{
	struct task_struct *t = current;
149
	unsigned long flags;
150 151 152 153 154 155 156 157
	int phase;
	struct rcu_data *rdp;
	struct rcu_node *rnp;

	if (t->rcu_read_lock_nesting &&
	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {

		/* Possibly blocking in an RCU read-side critical section. */
158
		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
159
		rnp = rdp->mynode;
P
Paul E. McKenney 已提交
160
		raw_spin_lock_irqsave(&rnp->lock, flags);
161
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
162
		t->rcu_blocked_node = rnp;
163 164 165 166 167 168 169 170 171 172

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
		 * cannot end.
173 174 175
		 *
		 * But first, note that the current CPU must still be
		 * on line!
176
		 */
177
		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
178 179
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
		phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1;
180
		list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
P
Paul E. McKenney 已提交
181
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
182 183 184 185 186 187 188 189 190 191 192
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
193
	local_irq_save(flags);
194
	rcu_preempt_qs(cpu);
195
	local_irq_restore(flags);
196 197 198 199 200 201 202 203 204
}

/*
 * Tree-preemptable RCU implementation for rcu_read_lock().
 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 * if we block.
 */
void __rcu_read_lock(void)
{
205
	current->rcu_read_lock_nesting++;
206 207 208 209
	barrier();  /* needed if we ever invoke rcu_read_lock in rcutree.c */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);

210 211 212 213 214 215 216
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
static int rcu_preempted_readers(struct rcu_node *rnp)
{
217 218 219 220
	int phase = rnp->gpnum & 0x1;

	return !list_empty(&rnp->blocked_tasks[phase]) ||
	       !list_empty(&rnp->blocked_tasks[phase + 2]);
221 222
}

223 224 225 226 227 228 229
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
P
Paul E. McKenney 已提交
230
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
231 232 233 234 235 236
	__releases(rnp->lock)
{
	unsigned long mask;
	struct rcu_node *rnp_p;

	if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
P
Paul E. McKenney 已提交
237
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
238 239 240 241 242 243 244 245 246 247
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
		 * Either there is only one rcu_node in the tree,
		 * or tasks were kicked up to root rcu_node due to
		 * CPUs going offline.
		 */
P
Paul E. McKenney 已提交
248
		rcu_report_qs_rsp(&rcu_preempt_state, flags);
249 250 251 252 253
		return;
	}

	/* Report up the rest of the hierarchy. */
	mask = rnp->grpmask;
P
Paul E. McKenney 已提交
254 255
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
P
Paul E. McKenney 已提交
256
	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
257 258 259 260 261 262 263
}

/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
264 265 266
static void rcu_read_unlock_special(struct task_struct *t)
{
	int empty;
267
	int empty_exp;
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
	unsigned long flags;
	struct rcu_node *rnp;
	int special;

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
	 * let it know that we have done so.
	 */
	special = t->rcu_read_unlock_special;
	if (special & RCU_READ_UNLOCK_NEED_QS) {
284
		rcu_preempt_qs(smp_processor_id());
285 286 287 288 289 290 291 292 293 294 295 296
	}

	/* Hardware IRQ handlers cannot block. */
	if (in_irq()) {
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
	if (special & RCU_READ_UNLOCK_BLOCKED) {
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;

297 298 299 300 301 302
		/*
		 * Remove this task from the list it blocked on.  The
		 * task can migrate while we acquire the lock, but at
		 * most one time.  So at most two passes through loop.
		 */
		for (;;) {
303
			rnp = t->rcu_blocked_node;
P
Paul E. McKenney 已提交
304
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
305
			if (rnp == t->rcu_blocked_node)
306
				break;
P
Paul E. McKenney 已提交
307
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
308
		}
309
		empty = !rcu_preempted_readers(rnp);
310 311
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
312
		list_del_init(&t->rcu_node_entry);
313
		t->rcu_blocked_node = NULL;
314 315 316 317

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
P
Paul E. McKenney 已提交
318
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
319
		 */
320
		if (empty)
P
Paul E. McKenney 已提交
321
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
322
		else
P
Paul E. McKenney 已提交
323
			rcu_report_unblock_qs_rnp(rnp, flags);
324 325 326 327 328 329 330

		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
		if (!empty_exp && !rcu_preempted_readers_exp(rnp))
			rcu_report_exp_rnp(&rcu_preempt_state, rnp);
331 332
	} else {
		local_irq_restore(flags);
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
	}
}

/*
 * Tree-preemptable RCU implementation for rcu_read_unlock().
 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 * invoke rcu_read_unlock_special() to clean up after a context switch
 * in an RCU read-side critical section and other special cases.
 */
void __rcu_read_unlock(void)
{
	struct task_struct *t = current;

	barrier();  /* needed if we ever invoke rcu_read_unlock in rcutree.c */
348 349 350
	--t->rcu_read_lock_nesting;
	barrier();  /* decrement before load of ->rcu_read_unlock_special */
	if (t->rcu_read_lock_nesting == 0 &&
351 352
	    unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
		rcu_read_unlock_special(t);
353 354 355
#ifdef CONFIG_PROVE_LOCKING
	WARN_ON_ONCE(ACCESS_ONCE(t->rcu_read_lock_nesting) < 0);
#endif /* #ifdef CONFIG_PROVE_LOCKING */
356 357 358 359 360
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);

#ifdef CONFIG_RCU_CPU_STALL_DETECTOR

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
#ifdef CONFIG_RCU_CPU_STALL_VERBOSE

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct list_head *lp;
	int phase;
	struct task_struct *t;

	if (rcu_preempted_readers(rnp)) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		phase = rnp->gpnum & 0x1;
		lp = &rnp->blocked_tasks[phase];
		list_for_each_entry(t, lp, rcu_node_entry)
			sched_show_task(t);
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

405 406 407 408 409 410 411
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
static void rcu_print_task_stall(struct rcu_node *rnp)
{
	struct list_head *lp;
412
	int phase;
413 414
	struct task_struct *t;

415 416
	if (rcu_preempted_readers(rnp)) {
		phase = rnp->gpnum & 0x1;
417 418 419 420 421 422
		lp = &rnp->blocked_tasks[phase];
		list_for_each_entry(t, lp, rcu_node_entry)
			printk(" P%d", t->pid);
	}
}

423 424 425 426 427 428 429 430 431 432
/*
 * Suppress preemptible RCU's CPU stall warnings by pushing the
 * time of the next stall-warning message comfortably far into the
 * future.
 */
static void rcu_preempt_stall_reset(void)
{
	rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
}

433 434
#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */

435 436 437 438 439 440 441 442 443
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
444
	WARN_ON_ONCE(rcu_preempted_readers(rnp));
445
	WARN_ON_ONCE(rnp->qsmask);
446 447
}

448 449
#ifdef CONFIG_HOTPLUG_CPU

450 451 452 453 454 455
/*
 * Handle tasklist migration for case in which all CPUs covered by the
 * specified rcu_node have gone offline.  Move them up to the root
 * rcu_node.  The reason for not just moving them to the immediate
 * parent is to remove the need for rcu_read_unlock_special() to
 * make more than two attempts to acquire the target rcu_node's lock.
456 457
 * Returns true if there were tasks blocking the current RCU grace
 * period.
458
 *
459 460 461
 * Returns 1 if there was previously a task blocking the current grace
 * period on the specified rcu_node structure.
 *
462 463
 * The caller must hold rnp->lock with irqs disabled.
 */
464 465 466
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
467 468 469 470
{
	int i;
	struct list_head *lp;
	struct list_head *lp_root;
471
	int retval = 0;
472 473 474
	struct rcu_node *rnp_root = rcu_get_root(rsp);
	struct task_struct *tp;

475 476
	if (rnp == rnp_root) {
		WARN_ONCE(1, "Last CPU thought to be offlined?");
477
		return 0;  /* Shouldn't happen: at least one CPU online. */
478
	}
479 480
	WARN_ON_ONCE(rnp != rdp->mynode &&
		     (!list_empty(&rnp->blocked_tasks[0]) ||
481 482 483
		      !list_empty(&rnp->blocked_tasks[1]) ||
		      !list_empty(&rnp->blocked_tasks[2]) ||
		      !list_empty(&rnp->blocked_tasks[3])));
484 485 486 487 488 489 490

	/*
	 * Move tasks up to root rcu_node.  Rely on the fact that the
	 * root rcu_node can be at most one ahead of the rest of the
	 * rcu_nodes in terms of gp_num value.  This fact allows us to
	 * move the blocked_tasks[] array directly, element by element.
	 */
491 492 493 494 495
	if (rcu_preempted_readers(rnp))
		retval |= RCU_OFL_TASKS_NORM_GP;
	if (rcu_preempted_readers_exp(rnp))
		retval |= RCU_OFL_TASKS_EXP_GP;
	for (i = 0; i < 4; i++) {
496 497 498 499
		lp = &rnp->blocked_tasks[i];
		lp_root = &rnp_root->blocked_tasks[i];
		while (!list_empty(lp)) {
			tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
P
Paul E. McKenney 已提交
500
			raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
501 502 503
			list_del(&tp->rcu_node_entry);
			tp->rcu_blocked_node = rnp_root;
			list_add(&tp->rcu_node_entry, lp_root);
P
Paul E. McKenney 已提交
504
			raw_spin_unlock(&rnp_root->lock); /* irqs remain disabled */
505 506
		}
	}
507
	return retval;
508 509
}

510 511 512 513 514 515 516 517 518 519
/*
 * Do CPU-offline processing for preemptable RCU.
 */
static void rcu_preempt_offline_cpu(int cpu)
{
	__rcu_offline_cpu(cpu, &rcu_preempt_state);
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

520 521 522 523 524 525 526 527 528 529 530 531
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
static void rcu_preempt_check_callbacks(int cpu)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
532
		rcu_preempt_qs(cpu);
533 534
		return;
	}
535
	if (per_cpu(rcu_preempt_data, cpu).qs_pending)
536
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
}

/*
 * Process callbacks for preemptable RCU.
 */
static void rcu_preempt_process_callbacks(void)
{
	__rcu_process_callbacks(&rcu_preempt_state,
				&__get_cpu_var(rcu_preempt_data));
}

/*
 * Queue a preemptable-RCU callback for invocation after a grace period.
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_preempt_state);
}
EXPORT_SYMBOL_GPL(call_rcu);

557 558 559 560 561
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
562 563 564 565 566
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
567 568 569 570 571 572 573 574
 */
void synchronize_rcu(void)
{
	struct rcu_synchronize rcu;

	if (!rcu_scheduler_active)
		return;

575
	init_rcu_head_on_stack(&rcu.head);
576 577 578 579 580
	init_completion(&rcu.completion);
	/* Will wake me after RCU finished. */
	call_rcu(&rcu.head, wakeme_after_rcu);
	/* Wait for it. */
	wait_for_completion(&rcu.completion);
581
	destroy_rcu_head_on_stack(&rcu.head);
582 583 584
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
static long sync_rcu_preempt_exp_count;
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);

/*
 * Return non-zero if there are any tasks in RCU read-side critical
 * sections blocking the current preemptible-RCU expedited grace period.
 * If there is no preemptible-RCU expedited grace period currently in
 * progress, returns zero unconditionally.
 */
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
	return !list_empty(&rnp->blocked_tasks[2]) ||
	       !list_empty(&rnp->blocked_tasks[3]);
}

/*
 * return non-zero if there is no RCU expedited grace period in progress
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
	return !rcu_preempted_readers_exp(rnp) &&
	       ACCESS_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
{
	unsigned long flags;
	unsigned long mask;

P
Paul E. McKenney 已提交
631
	raw_spin_lock_irqsave(&rnp->lock, flags);
632 633 634 635 636 637 638 639
	for (;;) {
		if (!sync_rcu_preempt_exp_done(rnp))
			break;
		if (rnp->parent == NULL) {
			wake_up(&sync_rcu_preempt_exp_wq);
			break;
		}
		mask = rnp->grpmask;
P
Paul E. McKenney 已提交
640
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
641
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
642
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
643 644
		rnp->expmask &= ~mask;
	}
P
Paul E. McKenney 已提交
645
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
646 647 648 649 650 651 652 653 654 655 656 657 658 659
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure.  If there are no such
 * tasks, report it up the rcu_node hierarchy.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
 */
static void
sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int must_wait;

P
Paul E. McKenney 已提交
660
	raw_spin_lock(&rnp->lock); /* irqs already disabled */
661 662 663
	list_splice_init(&rnp->blocked_tasks[0], &rnp->blocked_tasks[2]);
	list_splice_init(&rnp->blocked_tasks[1], &rnp->blocked_tasks[3]);
	must_wait = rcu_preempted_readers_exp(rnp);
P
Paul E. McKenney 已提交
664
	raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
665 666 667 668
	if (!must_wait)
		rcu_report_exp_rnp(rsp, rnp);
}

669
/*
670 671 672 673 674
 * Wait for an rcu-preempt grace period, but expedite it.  The basic idea
 * is to invoke synchronize_sched_expedited() to push all the tasks to
 * the ->blocked_tasks[] lists, move all entries from the first set of
 * ->blocked_tasks[] lists to the second set, and finally wait for this
 * second set to drain.
675 676 677
 */
void synchronize_rcu_expedited(void)
{
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_preempt_state;
	long snap;
	int trycount = 0;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
	smp_mb(); /* Above access cannot bleed into critical section. */

	/*
	 * Acquire lock, falling back to synchronize_rcu() if too many
	 * lock-acquisition failures.  Of course, if someone does the
	 * expedited grace period for us, just leave.
	 */
	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_rcu();
			return;
		}
		if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
			goto mb_ret; /* Others did our work for us. */
	}
	if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
		goto unlock_mb_ret; /* Others did our work for us. */

	/* force all RCU readers onto blocked_tasks[]. */
	synchronize_sched_expedited();

P
Paul E. McKenney 已提交
709
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
710 711 712

	/* Initialize ->expmask for all non-leaf rcu_node structures. */
	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
713
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
714
		rnp->expmask = rnp->qsmaskinit;
P
Paul E. McKenney 已提交
715
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
716 717 718 719 720 721 722 723
	}

	/* Snapshot current state of ->blocked_tasks[] lists. */
	rcu_for_each_leaf_node(rsp, rnp)
		sync_rcu_preempt_exp_init(rsp, rnp);
	if (NUM_RCU_NODES > 1)
		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));

P
Paul E. McKenney 已提交
724
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
725 726 727 728 729 730 731 732 733 734 735 736 737

	/* Wait for snapshotted ->blocked_tasks[] lists to drain. */
	rnp = rcu_get_root(rsp);
	wait_event(sync_rcu_preempt_exp_wq,
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
	smp_mb(); /* ensure expedited GP seen before counter increment. */
	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
unlock_mb_ret:
	mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
	smp_mb(); /* ensure subsequent action seen after grace period. */
738 739 740
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
/*
 * Check to see if there is any immediate preemptable-RCU-related work
 * to be done.
 */
static int rcu_preempt_pending(int cpu)
{
	return __rcu_pending(&rcu_preempt_state,
			     &per_cpu(rcu_preempt_data, cpu));
}

/*
 * Does preemptable RCU need the CPU to stay out of dynticks mode?
 */
static int rcu_preempt_needs_cpu(int cpu)
{
	return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
}

759 760 761 762 763 764 765 766 767
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 */
void rcu_barrier(void)
{
	_rcu_barrier(&rcu_preempt_state, call_rcu);
}
EXPORT_SYMBOL_GPL(rcu_barrier);

768 769 770 771 772 773 774 775
/*
 * Initialize preemptable RCU's per-CPU data.
 */
static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
{
	rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
}

776
/*
777
 * Move preemptable DYING RCU's callbacks to other online CPU.
778
 */
779
static void rcu_preempt_send_cbs_to_online(void)
780
{
781
	rcu_send_cbs_to_online(&rcu_preempt_state);
782 783
}

784 785 786 787 788
/*
 * Initialize preemptable RCU's state structures.
 */
static void __init __rcu_init_preempt(void)
{
789
	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
790 791
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
/*
 * Check for a task exiting while in a preemptable-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0)
		return;
	t->rcu_read_lock_nesting = 1;
	rcu_read_unlock();
}

#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

/*
 * Tell them what RCU they are running.
 */
813
static void __init rcu_bootup_announce(void)
814 815
{
	printk(KERN_INFO "Hierarchical RCU implementation.\n");
816
	rcu_bootup_announce_oddness();
817 818 819 820 821 822 823 824 825 826 827
}

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

828 829 830 831 832 833 834 835 836 837
/*
 * Force a quiescent state for RCU, which, because there is no preemptible
 * RCU, becomes the same as rcu-sched.
 */
void rcu_force_quiescent_state(void)
{
	rcu_sched_force_quiescent_state();
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

838 839 840 841
/*
 * Because preemptable RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
842
static void rcu_preempt_note_context_switch(int cpu)
843 844 845
{
}

846 847 848 849 850 851 852 853 854
/*
 * Because preemptable RCU does not exist, there are never any preempted
 * RCU readers.
 */
static int rcu_preempted_readers(struct rcu_node *rnp)
{
	return 0;
}

855 856 857
#ifdef CONFIG_HOTPLUG_CPU

/* Because preemptible RCU does not exist, no quieting of tasks. */
P
Paul E. McKenney 已提交
858
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
859
{
P
Paul E. McKenney 已提交
860
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
861 862 863 864
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

865 866
#ifdef CONFIG_RCU_CPU_STALL_DETECTOR

867 868 869 870 871 872 873 874
/*
 * Because preemptable RCU does not exist, we never have to check for
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

875 876 877 878 879 880 881 882
/*
 * Because preemptable RCU does not exist, we never have to check for
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_task_stall(struct rcu_node *rnp)
{
}

883 884 885 886 887 888 889 890
/*
 * Because preemptible RCU does not exist, there is no need to suppress
 * its CPU stall warnings.
 */
static void rcu_preempt_stall_reset(void)
{
}

891 892
#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */

893 894
/*
 * Because there is no preemptable RCU, there can be no readers blocked,
895 896
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
897 898 899
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
900
	WARN_ON_ONCE(rnp->qsmask);
901 902
}

903 904
#ifdef CONFIG_HOTPLUG_CPU

905 906
/*
 * Because preemptable RCU does not exist, it never needs to migrate
907 908 909
 * tasks that were blocked within RCU read-side critical sections, and
 * such non-existent tasks cannot possibly have been blocking the current
 * grace period.
910
 */
911 912 913
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
914
{
915
	return 0;
916 917
}

918 919 920 921 922 923 924 925 926 927
/*
 * Because preemptable RCU does not exist, it never needs CPU-offline
 * processing.
 */
static void rcu_preempt_offline_cpu(int cpu)
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

928 929 930 931
/*
 * Because preemptable RCU does not exist, it never has any callbacks
 * to check.
 */
932
static void rcu_preempt_check_callbacks(int cpu)
933 934 935 936 937 938 939
{
}

/*
 * Because preemptable RCU does not exist, it never has any callbacks
 * to process.
 */
940
static void rcu_preempt_process_callbacks(void)
941 942 943
{
}

944 945 946 947 948 949 950 951 952 953
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
 * But because preemptable RCU does not exist, map to rcu-sched.
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

954 955 956 957 958 959 960 961 962 963 964 965 966 967
#ifdef CONFIG_HOTPLUG_CPU

/*
 * Because preemptable RCU does not exist, there is never any need to
 * report on tasks preempted in RCU read-side critical sections during
 * expedited RCU grace periods.
 */
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
{
	return;
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
/*
 * Because preemptable RCU does not exist, it never has any work to do.
 */
static int rcu_preempt_pending(int cpu)
{
	return 0;
}

/*
 * Because preemptable RCU does not exist, it never needs any CPU.
 */
static int rcu_preempt_needs_cpu(int cpu)
{
	return 0;
}

984 985 986 987 988 989 990 991 992 993
/*
 * Because preemptable RCU does not exist, rcu_barrier() is just
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

994 995 996 997 998 999 1000 1001
/*
 * Because preemptable RCU does not exist, there is no per-CPU
 * data to initialize.
 */
static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
{
}

1002 1003 1004
/*
 * Because there is no preemptable RCU, there are no callbacks to move.
 */
1005
static void rcu_preempt_send_cbs_to_online(void)
1006 1007 1008
{
}

1009 1010 1011 1012 1013 1014 1015
/*
 * Because preemptable RCU does not exist, it need not be initialized.
 */
static void __init __rcu_init_preempt(void)
{
}

1016
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
#ifndef CONFIG_SMP

void synchronize_sched_expedited(void)
{
	cond_resched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);

static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int snap, trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = atomic_read(&synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	atomic_inc(&synchronize_sched_expedited_count);
	smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
 * Because we have preemptible RCU, just check whether this CPU needs
 * any flavor of RCU.  Do not chew up lots of CPU cycles with preemption
 * disabled in a most-likely vain attempt to cause RCU not to need this CPU.
 */
int rcu_needs_cpu(int cpu)
{
	return rcu_needs_cpu_quick_check(cpu);
}

1105 1106 1107 1108 1109 1110 1111 1112 1113
/*
 * Check to see if we need to continue a callback-flush operations to
 * allow the last CPU to enter dyntick-idle mode.  But fast dyntick-idle
 * entry is not configured, so we never do need to.
 */
static void rcu_needs_cpu_flush(void)
{
}

1114 1115 1116
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

#define RCU_NEEDS_CPU_FLUSHES 5
1117
static DEFINE_PER_CPU(int, rcu_dyntick_drain);
1118
static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
 * Because we are not supporting preemptible RCU, attempt to accelerate
 * any current grace periods so that RCU no longer needs this CPU, but
 * only if all other CPUs are already in dynticks-idle mode.  This will
 * allow the CPU cores to be powered down immediately, as opposed to after
 * waiting many milliseconds for grace periods to elapse.
1131 1132 1133 1134 1135
 *
 * Because it is not legal to invoke rcu_process_callbacks() with irqs
 * disabled, we do one pass of force_quiescent_state(), then do a
 * raise_softirq() to cause rcu_process_callbacks() to be invoked later.
 * The per-cpu rcu_dyntick_drain variable controls the sequencing.
1136 1137 1138
 */
int rcu_needs_cpu(int cpu)
{
1139
	int c = 0;
1140 1141
	int snap;
	int snap_nmi;
1142 1143
	int thatcpu;

1144 1145 1146 1147
	/* Check for being in the holdoff period. */
	if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
		return rcu_needs_cpu_quick_check(cpu);

1148
	/* Don't bother unless we are the last non-dyntick-idle CPU. */
1149 1150 1151
	for_each_online_cpu(thatcpu) {
		if (thatcpu == cpu)
			continue;
1152 1153
		snap = per_cpu(rcu_dynticks, thatcpu).dynticks;
		snap_nmi = per_cpu(rcu_dynticks, thatcpu).dynticks_nmi;
1154 1155
		smp_mb(); /* Order sampling of snap with end of grace period. */
		if (((snap & 0x1) != 0) || ((snap_nmi & 0x1) != 0)) {
1156
			per_cpu(rcu_dyntick_drain, cpu) = 0;
1157
			per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
1158 1159
			return rcu_needs_cpu_quick_check(cpu);
		}
1160
	}
1161 1162 1163 1164 1165 1166 1167

	/* Check and update the rcu_dyntick_drain sequencing. */
	if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
		/* First time through, initialize the counter. */
		per_cpu(rcu_dyntick_drain, cpu) = RCU_NEEDS_CPU_FLUSHES;
	} else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
		/* We have hit the limit, so time to give up. */
1168
		per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		return rcu_needs_cpu_quick_check(cpu);
	}

	/* Do one step pushing remaining RCU callbacks through. */
	if (per_cpu(rcu_sched_data, cpu).nxtlist) {
		rcu_sched_qs(cpu);
		force_quiescent_state(&rcu_sched_state, 0);
		c = c || per_cpu(rcu_sched_data, cpu).nxtlist;
	}
	if (per_cpu(rcu_bh_data, cpu).nxtlist) {
		rcu_bh_qs(cpu);
		force_quiescent_state(&rcu_bh_state, 0);
		c = c || per_cpu(rcu_bh_data, cpu).nxtlist;
1182 1183 1184
	}

	/* If RCU callbacks are still pending, RCU still needs this CPU. */
1185
	if (c)
1186
		raise_softirq(RCU_SOFTIRQ);
1187 1188 1189
	return c;
}

1190 1191 1192 1193 1194 1195 1196
/*
 * Check to see if we need to continue a callback-flush operations to
 * allow the last CPU to enter dyntick-idle mode.
 */
static void rcu_needs_cpu_flush(void)
{
	int cpu = smp_processor_id();
1197
	unsigned long flags;
1198 1199 1200

	if (per_cpu(rcu_dyntick_drain, cpu) <= 0)
		return;
1201
	local_irq_save(flags);
1202
	(void)rcu_needs_cpu(cpu);
1203
	local_irq_restore(flags);
1204 1205
}

1206
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */