core-device.c 33.3 KB
Newer Older
1 2
/*
 * Device probing and sysfs code.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bug.h>
22
#include <linux/ctype.h>
23
#include <linux/delay.h>
24 25
#include <linux/device.h>
#include <linux/errno.h>
26 27
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
28
#include <linux/idr.h>
29
#include <linux/jiffies.h>
30 31
#include <linux/kobject.h>
#include <linux/list.h>
32
#include <linux/mod_devicetable.h>
S
Stefan Richter 已提交
33
#include <linux/module.h>
34
#include <linux/mutex.h>
35
#include <linux/rwsem.h>
36
#include <linux/slab.h>
J
Jay Fenlason 已提交
37
#include <linux/spinlock.h>
38 39 40
#include <linux/string.h>
#include <linux/workqueue.h>

A
Arun Sharma 已提交
41
#include <linux/atomic.h>
S
Stefan Richter 已提交
42
#include <asm/byteorder.h>
43

44
#include "core.h"
45

46
void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
{
	ci->p = p + 1;
	ci->end = ci->p + (p[0] >> 16);
}
EXPORT_SYMBOL(fw_csr_iterator_init);

int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
{
	*key = *ci->p >> 24;
	*value = *ci->p & 0xffffff;

	return ci->p++ < ci->end;
}
EXPORT_SYMBOL(fw_csr_iterator_next);

62
static const u32 *search_leaf(const u32 *directory, int search_key)
63 64 65 66 67 68 69 70 71
{
	struct fw_csr_iterator ci;
	int last_key = 0, key, value;

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (last_key == search_key &&
		    key == (CSR_DESCRIPTOR | CSR_LEAF))
			return ci.p - 1 + value;
72

73 74
		last_key = key;
	}
75

76 77 78
	return NULL;
}

79
static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
80
{
81 82
	unsigned int quadlets, i;
	char c;
83 84 85 86

	if (!size || !buf)
		return -EINVAL;

87
	quadlets = min(block[0] >> 16, 256U);
88 89 90 91 92 93 94 95 96
	if (quadlets < 2)
		return -ENODATA;

	if (block[1] != 0 || block[2] != 0)
		/* unknown language/character set */
		return -ENODATA;

	block += 3;
	quadlets -= 2;
97 98
	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
		c = block[i / 4] >> (24 - 8 * (i % 4));
99 100
		if (c == '\0')
			break;
101
		buf[i] = c;
102
	}
103 104 105
	buf[i] = '\0';

	return i;
106 107 108
}

/**
109 110 111 112 113
 * fw_csr_string() - reads a string from the configuration ROM
 * @directory:	e.g. root directory or unit directory
 * @key:	the key of the preceding directory entry
 * @buf:	where to put the string
 * @size:	size of @buf, in bytes
114
 *
115 116 117
 * The string is taken from a minimal ASCII text descriptor leaf after
 * the immediate entry with @key.  The string is zero-terminated.
 * Returns strlen(buf) or a negative error code.
118
 */
119
int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
120
{
121
	const u32 *leaf = search_leaf(directory, key);
122 123
	if (!leaf)
		return -ENOENT;
124

125 126 127 128
	return textual_leaf_to_string(leaf, buf, size);
}
EXPORT_SYMBOL(fw_csr_string);

129
static void get_ids(const u32 *directory, int *id)
130 131
{
	struct fw_csr_iterator ci;
132
	int key, value;
133 134 135

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
136 137 138 139 140 141
		switch (key) {
		case CSR_VENDOR:	id[0] = value; break;
		case CSR_MODEL:		id[1] = value; break;
		case CSR_SPECIFIER_ID:	id[2] = value; break;
		case CSR_VERSION:	id[3] = value; break;
		}
142
	}
143
}
144

145 146 147 148 149
static void get_modalias_ids(struct fw_unit *unit, int *id)
{
	get_ids(&fw_parent_device(unit)->config_rom[5], id);
	get_ids(unit->directory, id);
}
150

151 152 153 154 155 156 157 158 159 160 161 162 163 164
static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
{
	int match = 0;

	if (id[0] == id_table->vendor_id)
		match |= IEEE1394_MATCH_VENDOR_ID;
	if (id[1] == id_table->model_id)
		match |= IEEE1394_MATCH_MODEL_ID;
	if (id[2] == id_table->specifier_id)
		match |= IEEE1394_MATCH_SPECIFIER_ID;
	if (id[3] == id_table->version)
		match |= IEEE1394_MATCH_VERSION;

	return (match & id_table->match_flags) == id_table->match_flags;
165 166
}

167 168
static bool is_fw_unit(struct device *dev);

169 170
static int fw_unit_match(struct device *dev, struct device_driver *drv)
{
171 172 173
	const struct ieee1394_device_id *id_table =
			container_of(drv, struct fw_driver, driver)->id_table;
	int id[] = {0, 0, 0, 0};
174 175 176 177 178

	/* We only allow binding to fw_units. */
	if (!is_fw_unit(dev))
		return 0;

179
	get_modalias_ids(fw_unit(dev), id);
180

181 182
	for (; id_table->match_flags != 0; id_table++)
		if (match_ids(id_table, id))
183 184 185 186 187 188 189
			return 1;

	return 0;
}

static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
{
190
	int id[] = {0, 0, 0, 0};
191

192
	get_modalias_ids(unit, id);
193 194 195

	return snprintf(buffer, buffer_size,
			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
196
			id[0], id[1], id[2], id[3]);
197 198
}

199
static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
200 201 202 203
{
	struct fw_unit *unit = fw_unit(dev);
	char modalias[64];

204
	get_modalias(unit, modalias, sizeof(modalias));
205

206
	if (add_uevent_var(env, "MODALIAS=%s", modalias))
207 208 209 210 211 212
		return -ENOMEM;

	return 0;
}

struct bus_type fw_bus_type = {
213
	.name = "firewire",
214 215 216 217 218 219
	.match = fw_unit_match,
};
EXPORT_SYMBOL(fw_bus_type);

int fw_device_enable_phys_dma(struct fw_device *device)
{
220 221 222 223 224
	int generation = device->generation;

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();

225 226
	return device->card->driver->enable_phys_dma(device->card,
						     device->node_id,
227
						     generation);
228 229 230
}
EXPORT_SYMBOL(fw_device_enable_phys_dma);

231 232 233 234 235
struct config_rom_attribute {
	struct device_attribute attr;
	u32 key;
};

236 237
static ssize_t show_immediate(struct device *dev,
			      struct device_attribute *dattr, char *buf)
238 239 240 241
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
	struct fw_csr_iterator ci;
242
	const u32 *dir;
243 244 245
	int key, value, ret = -ENOENT;

	down_read(&fw_device_rwsem);
246 247 248 249 250 251 252 253

	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

	fw_csr_iterator_init(&ci, dir);
	while (fw_csr_iterator_next(&ci, &key, &value))
254 255 256 257 258 259 260
		if (attr->key == key) {
			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
				       "0x%06x\n", value);
			break;
		}

	up_read(&fw_device_rwsem);
261

262
	return ret;
263 264 265 266 267
}

#define IMMEDIATE_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }

268 269
static ssize_t show_text_leaf(struct device *dev,
			      struct device_attribute *dattr, char *buf)
270 271 272
{
	struct config_rom_attribute *attr =
		container_of(dattr, struct config_rom_attribute, attr);
273
	const u32 *dir;
274 275 276
	size_t bufsize;
	char dummy_buf[2];
	int ret;
277

278 279
	down_read(&fw_device_rwsem);

280 281 282 283 284
	if (is_fw_unit(dev))
		dir = fw_unit(dev)->directory;
	else
		dir = fw_device(dev)->config_rom + 5;

285 286 287 288 289
	if (buf) {
		bufsize = PAGE_SIZE - 1;
	} else {
		buf = dummy_buf;
		bufsize = 1;
290 291
	}

292
	ret = fw_csr_string(dir, attr->key, buf, bufsize);
293

294 295 296 297 298 299
	if (ret >= 0) {
		/* Strip trailing whitespace and add newline. */
		while (ret > 0 && isspace(buf[ret - 1]))
			ret--;
		strcpy(buf + ret, "\n");
		ret++;
300
	}
301

302
	up_read(&fw_device_rwsem);
303

304
	return ret;
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
}

#define TEXT_LEAF_ATTR(name, key)				\
	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }

static struct config_rom_attribute config_rom_attributes[] = {
	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
	IMMEDIATE_ATTR(version, CSR_VERSION),
	IMMEDIATE_ATTR(model, CSR_MODEL),
	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
};

321 322 323
static void init_fw_attribute_group(struct device *dev,
				    struct device_attribute *attrs,
				    struct fw_attribute_group *group)
324 325
{
	struct device_attribute *attr;
326 327 328 329
	int i, j;

	for (j = 0; attrs[j].attr.name != NULL; j++)
		group->attrs[j] = &attrs[j].attr;
330 331 332 333 334

	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
		attr = &config_rom_attributes[i].attr;
		if (attr->show(dev, attr, NULL) < 0)
			continue;
335
		group->attrs[j++] = &attr->attr;
336 337
	}

338
	group->attrs[j] = NULL;
339 340 341
	group->groups[0] = &group->group;
	group->groups[1] = NULL;
	group->group.attrs = group->attrs;
342
	dev->groups = (const struct attribute_group **) group->groups;
343 344
}

345 346
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
347 348 349 350 351 352 353 354 355 356
{
	struct fw_unit *unit = fw_unit(dev);
	int length;

	length = get_modalias(unit, buf, PAGE_SIZE);
	strcpy(buf + length, "\n");

	return length + 1;
}

357 358
static ssize_t rom_index_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
359
{
360 361
	struct fw_device *device = fw_device(dev->parent);
	struct fw_unit *unit = fw_unit(dev);
362

363 364
	return snprintf(buf, PAGE_SIZE, "%d\n",
			(int)(unit->directory - device->config_rom));
365 366
}

367 368 369 370
static struct device_attribute fw_unit_attributes[] = {
	__ATTR_RO(modalias),
	__ATTR_RO(rom_index),
	__ATTR_NULL,
371 372
};

373 374
static ssize_t config_rom_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
375
{
376
	struct fw_device *device = fw_device(dev);
377
	size_t length;
378

379 380 381 382
	down_read(&fw_device_rwsem);
	length = device->config_rom_length * 4;
	memcpy(buf, device->config_rom, length);
	up_read(&fw_device_rwsem);
383

384
	return length;
385 386
}

387 388
static ssize_t guid_show(struct device *dev,
			 struct device_attribute *attr, char *buf)
389 390
{
	struct fw_device *device = fw_device(dev);
391 392 393 394 395 396
	int ret;

	down_read(&fw_device_rwsem);
	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
		       device->config_rom[3], device->config_rom[4]);
	up_read(&fw_device_rwsem);
397

398
	return ret;
399 400
}

401 402 403 404 405 406 407 408
static ssize_t is_local_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct fw_device *device = fw_device(dev);

	return sprintf(buf, "%u\n", device->is_local);
}

409
static int units_sprintf(char *buf, const u32 *directory)
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
{
	struct fw_csr_iterator ci;
	int key, value;
	int specifier_id = 0;
	int version = 0;

	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_SPECIFIER_ID:
			specifier_id = value;
			break;
		case CSR_VERSION:
			version = value;
			break;
		}
	}

	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
}

static ssize_t units_show(struct device *dev,
			  struct device_attribute *attr, char *buf)
{
	struct fw_device *device = fw_device(dev);
	struct fw_csr_iterator ci;
	int key, value, i = 0;

	down_read(&fw_device_rwsem);
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;
		i += units_sprintf(&buf[i], ci.p + value - 1);
		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
			break;
	}
	up_read(&fw_device_rwsem);

	if (i)
		buf[i - 1] = '\n';

	return i;
}

455 456
static struct device_attribute fw_device_attributes[] = {
	__ATTR_RO(config_rom),
457
	__ATTR_RO(guid),
458
	__ATTR_RO(is_local),
459
	__ATTR_RO(units),
460
	__ATTR_NULL,
461 462
};

463 464
static int read_rom(struct fw_device *device,
		    int generation, int index, u32 *data)
465
{
466 467
	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
	int i, rcode;
468 469 470

	/* device->node_id, accessed below, must not be older than generation */
	smp_rmb();
471

472 473 474 475 476 477 478 479
	for (i = 10; i < 100; i += 10) {
		rcode = fw_run_transaction(device->card,
				TCODE_READ_QUADLET_REQUEST, device->node_id,
				generation, device->max_speed, offset, data, 4);
		if (rcode != RCODE_BUSY)
			break;
		msleep(i);
	}
J
Jay Fenlason 已提交
480
	be32_to_cpus(data);
481

J
Jay Fenlason 已提交
482
	return rcode;
483 484
}

485
#define MAX_CONFIG_ROM_SIZE 256
486

487 488 489
/*
 * Read the bus info block, perform a speed probe, and read all of the rest of
 * the config ROM.  We do all this with a cached bus generation.  If the bus
490
 * generation changes under us, read_config_rom will fail and get retried.
491 492
 * It's better to start all over in this case because the node from which we
 * are reading the ROM may have changed the ROM during the reset.
493
 * Returns either a result code or a negative error code.
494
 */
495
static int read_config_rom(struct fw_device *device, int generation)
496
{
497
	struct fw_card *card = device->card;
498 499
	const u32 *old_rom, *new_rom;
	u32 *rom, *stack;
500
	u32 sp, key;
501
	int i, end, length, ret;
502

503 504
	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
505 506 507
	if (rom == NULL)
		return -ENOMEM;

508 509
	stack = &rom[MAX_CONFIG_ROM_SIZE];
	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
510

511 512
	device->max_speed = SCODE_100;

513 514
	/* First read the bus info block. */
	for (i = 0; i < 5; i++) {
515 516
		ret = read_rom(device, generation, i, &rom[i]);
		if (ret != RCODE_COMPLETE)
517
			goto out;
518
		/*
519
		 * As per IEEE1212 7.2, during initialization, devices can
520 521 522 523
		 * reply with a 0 for the first quadlet of the config
		 * rom to indicate that they are booting (for example,
		 * if the firmware is on the disk of a external
		 * harddisk).  In that case we just fail, and the
524 525
		 * retry mechanism will try again later.
		 */
526 527
		if (i == 0 && rom[i] == 0) {
			ret = RCODE_BUSY;
528
			goto out;
529
		}
530 531
	}

532 533 534 535 536 537 538 539 540 541 542 543 544
	device->max_speed = device->node->max_speed;

	/*
	 * Determine the speed of
	 *   - devices with link speed less than PHY speed,
	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
	 *   - all devices if there are 1394b repeaters.
	 * Note, we cannot use the bus info block's link_spd as starting point
	 * because some buggy firmwares set it lower than necessary and because
	 * 1394-1995 nodes do not have the field.
	 */
	if ((rom[2] & 0x7) < device->max_speed ||
	    device->max_speed == SCODE_BETA ||
545
	    card->beta_repeaters_present) {
546 547 548 549
		u32 dummy;

		/* for S1600 and S3200 */
		if (device->max_speed == SCODE_BETA)
550
			device->max_speed = card->link_speed;
551 552

		while (device->max_speed > SCODE_100) {
553 554
			if (read_rom(device, generation, 0, &dummy) ==
			    RCODE_COMPLETE)
555 556 557 558 559
				break;
			device->max_speed--;
		}
	}

560 561
	/*
	 * Now parse the config rom.  The config rom is a recursive
562 563 564
	 * directory structure so we parse it using a stack of
	 * references to the blocks that make up the structure.  We
	 * push a reference to the root directory on the stack to
565 566
	 * start things off.
	 */
567 568 569 570
	length = i;
	sp = 0;
	stack[sp++] = 0xc0000005;
	while (sp > 0) {
571 572
		/*
		 * Pop the next block reference of the stack.  The
573 574
		 * lower 24 bits is the offset into the config rom,
		 * the upper 8 bits are the type of the reference the
575 576
		 * block.
		 */
577 578
		key = stack[--sp];
		i = key & 0xffffff;
579 580
		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
			ret = -ENXIO;
581
			goto out;
582
		}
583 584

		/* Read header quadlet for the block to get the length. */
585 586
		ret = read_rom(device, generation, i, &rom[i]);
		if (ret != RCODE_COMPLETE)
587
			goto out;
588
		end = i + (rom[i] >> 16) + 1;
589
		if (end > MAX_CONFIG_ROM_SIZE) {
590
			/*
591 592 593
			 * This block extends outside the config ROM which is
			 * a firmware bug.  Ignore this whole block, i.e.
			 * simply set a fake block length of 0.
594
			 */
595 596 597
			fw_err(card, "skipped invalid ROM block %x at %llx\n",
			       rom[i],
			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
598 599 600 601
			rom[i] = 0;
			end = i;
		}
		i++;
602

603 604
		/*
		 * Now read in the block.  If this is a directory
605
		 * block, check the entries as we read them to see if
606 607
		 * it references another block, and push it in that case.
		 */
608
		for (; i < end; i++) {
609 610
			ret = read_rom(device, generation, i, &rom[i]);
			if (ret != RCODE_COMPLETE)
611
				goto out;
612

613
			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
614 615 616 617 618 619 620 621
				continue;
			/*
			 * Offset points outside the ROM.  May be a firmware
			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
			 * 7.7.18).  Simply overwrite this pointer here by a
			 * fake immediate entry so that later iterators over
			 * the ROM don't have to check offsets all the time.
			 */
622
			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
623 624 625 626
				fw_err(card,
				       "skipped unsupported ROM entry %x at %llx\n",
				       rom[i],
				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
627 628 629 630
				rom[i] = 0;
				continue;
			}
			stack[sp++] = i + rom[i];
631 632 633 634 635
		}
		if (length < i)
			length = i;
	}

636 637
	old_rom = device->config_rom;
	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
638 639
	if (new_rom == NULL) {
		ret = -ENOMEM;
640
		goto out;
641
	}
642 643 644

	down_write(&fw_device_rwsem);
	device->config_rom = new_rom;
645
	device->config_rom_length = length;
646 647 648
	up_write(&fw_device_rwsem);

	kfree(old_rom);
649
	ret = RCODE_COMPLETE;
650 651 652
	device->max_rec	= rom[2] >> 12 & 0xf;
	device->cmc	= rom[2] >> 30 & 1;
	device->irmc	= rom[2] >> 31 & 1;
653 654
 out:
	kfree(rom);
655

656
	return ret;
657 658 659 660 661 662
}

static void fw_unit_release(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);

663
	fw_device_put(fw_parent_device(unit));
664 665 666
	kfree(unit);
}

667 668 669 670 671
static struct device_type fw_unit_type = {
	.uevent		= fw_unit_uevent,
	.release	= fw_unit_release,
};

672
static bool is_fw_unit(struct device *dev)
673
{
674
	return dev->type == &fw_unit_type;
675 676 677 678 679 680 681 682 683 684 685 686 687 688
}

static void create_units(struct fw_device *device)
{
	struct fw_csr_iterator ci;
	struct fw_unit *unit;
	int key, value, i;

	i = 0;
	fw_csr_iterator_init(&ci, &device->config_rom[5]);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		if (key != (CSR_UNIT | CSR_DIRECTORY))
			continue;

689 690 691 692
		/*
		 * Get the address of the unit directory and try to
		 * match the drivers id_tables against it.
		 */
693
		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
694
		if (unit == NULL) {
695
			fw_err(device->card, "out of memory for unit\n");
696 697 698 699 700
			continue;
		}

		unit->directory = ci.p + value - 1;
		unit->device.bus = &fw_bus_type;
701
		unit->device.type = &fw_unit_type;
702
		unit->device.parent = &device->device;
703
		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
704

705 706 707
		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
				ARRAY_SIZE(fw_unit_attributes) +
				ARRAY_SIZE(config_rom_attributes));
708 709 710
		init_fw_attribute_group(&unit->device,
					fw_unit_attributes,
					&unit->attribute_group);
711

712 713 714
		if (device_register(&unit->device) < 0)
			goto skip_unit;

715
		fw_device_get(device);
716 717 718 719
		continue;

	skip_unit:
		kfree(unit);
720 721 722 723 724
	}
}

static int shutdown_unit(struct device *device, void *data)
{
725
	device_unregister(device);
726 727 728 729

	return 0;
}

730 731 732 733 734 735 736 737
/*
 * fw_device_rwsem acts as dual purpose mutex:
 *   - serializes accesses to fw_device_idr,
 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
 *     fw_unit.directory, unless those accesses happen at safe occasions
 */
DECLARE_RWSEM(fw_device_rwsem);

738
DEFINE_IDR(fw_device_idr);
739 740
int fw_cdev_major;

741
struct fw_device *fw_device_get_by_devt(dev_t devt)
742 743 744
{
	struct fw_device *device;

745
	down_read(&fw_device_rwsem);
746
	device = idr_find(&fw_device_idr, MINOR(devt));
747 748
	if (device)
		fw_device_get(device);
749
	up_read(&fw_device_rwsem);
750 751 752 753

	return device;
}

754 755
struct workqueue_struct *fw_workqueue;
EXPORT_SYMBOL(fw_workqueue);
756 757 758 759

static void fw_schedule_device_work(struct fw_device *device,
				    unsigned long delay)
{
760
	queue_delayed_work(fw_workqueue, &device->work, delay);
761 762
}

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
/*
 * These defines control the retry behavior for reading the config
 * rom.  It shouldn't be necessary to tweak these; if the device
 * doesn't respond to a config rom read within 10 seconds, it's not
 * going to respond at all.  As for the initial delay, a lot of
 * devices will be able to respond within half a second after bus
 * reset.  On the other hand, it's not really worth being more
 * aggressive than that, since it scales pretty well; if 10 devices
 * are plugged in, they're all getting read within one second.
 */

#define MAX_RETRIES	10
#define RETRY_DELAY	(3 * HZ)
#define INITIAL_DELAY	(HZ / 2)
#define SHUTDOWN_DELAY	(2 * HZ)

779 780 781 782
static void fw_device_shutdown(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
783 784
	int minor = MINOR(device->device.devt);

785 786
	if (time_before64(get_jiffies_64(),
			  device->card->reset_jiffies + SHUTDOWN_DELAY)
787
	    && !list_empty(&device->card->link)) {
788
		fw_schedule_device_work(device, SHUTDOWN_DELAY);
789 790 791 792 793 794 795 796
		return;
	}

	if (atomic_cmpxchg(&device->state,
			   FW_DEVICE_GONE,
			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
		return;

797
	fw_device_cdev_remove(device);
798 799
	device_for_each_child(&device->device, NULL, shutdown_unit);
	device_unregister(&device->device);
800

801
	down_write(&fw_device_rwsem);
802
	idr_remove(&fw_device_idr, minor);
803
	up_write(&fw_device_rwsem);
804

805
	fw_device_put(device);
806 807
}

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
static void fw_device_release(struct device *dev)
{
	struct fw_device *device = fw_device(dev);
	struct fw_card *card = device->card;
	unsigned long flags;

	/*
	 * Take the card lock so we don't set this to NULL while a
	 * FW_NODE_UPDATED callback is being handled or while the
	 * bus manager work looks at this node.
	 */
	spin_lock_irqsave(&card->lock, flags);
	device->node->data = NULL;
	spin_unlock_irqrestore(&card->lock, flags);

	fw_node_put(device->node);
	kfree(device->config_rom);
	kfree(device);
	fw_card_put(card);
}

829
static struct device_type fw_device_type = {
830
	.release = fw_device_release,
831 832
};

833 834 835 836 837
static bool is_fw_device(struct device *dev)
{
	return dev->type == &fw_device_type;
}

838 839 840 841 842 843
static int update_unit(struct device *dev, void *data)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_driver *driver = (struct fw_driver *)dev->driver;

	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
844
		device_lock(dev);
845
		driver->update(unit);
846
		device_unlock(dev);
847 848 849 850 851 852 853 854 855 856 857 858 859
	}

	return 0;
}

static void fw_device_update(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);

	fw_device_cdev_update(device);
	device_for_each_child(&device->device, NULL, update_unit);
}
860

861
/*
862 863 864 865
 * If a device was pending for deletion because its node went away but its
 * bus info block and root directory header matches that of a newly discovered
 * device, revive the existing fw_device.
 * The newly allocated fw_device becomes obsolete instead.
866
 */
867 868 869 870 871 872 873
static int lookup_existing_device(struct device *dev, void *data)
{
	struct fw_device *old = fw_device(dev);
	struct fw_device *new = data;
	struct fw_card *card = new->card;
	int match = 0;

874 875 876
	if (!is_fw_device(dev))
		return 0;

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	down_read(&fw_device_rwsem); /* serialize config_rom access */
	spin_lock_irq(&card->lock);  /* serialize node access */

	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
	    atomic_cmpxchg(&old->state,
			   FW_DEVICE_GONE,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
		struct fw_node *current_node = new->node;
		struct fw_node *obsolete_node = old->node;

		new->node = obsolete_node;
		new->node->data = new;
		old->node = current_node;
		old->node->data = old;

		old->max_speed = new->max_speed;
		old->node_id = current_node->node_id;
		smp_wmb();  /* update node_id before generation */
		old->generation = card->generation;
		old->config_rom_retries = 0;
897
		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
898

899
		PREPARE_DELAYED_WORK(&old->work, fw_device_update);
900
		fw_schedule_device_work(old, 0);
901 902 903 904 905 906 907 908 909 910 911 912

		if (current_node == card->root_node)
			fw_schedule_bm_work(card, 0);

		match = 1;
	}

	spin_unlock_irq(&card->lock);
	up_read(&fw_device_rwsem);

	return match;
}
913

914 915
enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };

916
static void set_broadcast_channel(struct fw_device *device, int generation)
917 918 919 920 921 922 923 924
{
	struct fw_card *card = device->card;
	__be32 data;
	int rcode;

	if (!card->broadcast_channel_allocated)
		return;

925 926 927 928 929 930 931 932 933 934 935 936 937 938
	/*
	 * The Broadcast_Channel Valid bit is required by nodes which want to
	 * transmit on this channel.  Such transmissions are practically
	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
	 * to narrow down to which nodes we send Broadcast_Channel updates.
	 */
	if (!device->irmc || device->max_rec < 8)
		return;

	/*
	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
	 * Perform a read test first.
	 */
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	if (device->bc_implemented == BC_UNKNOWN) {
		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
				device->node_id, generation, device->max_speed,
				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
				&data, 4);
		switch (rcode) {
		case RCODE_COMPLETE:
			if (data & cpu_to_be32(1 << 31)) {
				device->bc_implemented = BC_IMPLEMENTED;
				break;
			}
			/* else fall through to case address error */
		case RCODE_ADDRESS_ERROR:
			device->bc_implemented = BC_UNIMPLEMENTED;
		}
	}

	if (device->bc_implemented == BC_IMPLEMENTED) {
		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
				   BROADCAST_CHANNEL_VALID);
		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
				device->node_id, generation, device->max_speed,
				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
				&data, 4);
	}
}

966 967 968 969 970 971 972 973
int fw_device_set_broadcast_channel(struct device *dev, void *gen)
{
	if (is_fw_device(dev))
		set_broadcast_channel(fw_device(dev), (long)gen);

	return 0;
}

974 975 976 977
static void fw_device_init(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
978
	struct fw_card *card = device->card;
979
	struct device *revived_dev;
980
	int minor, ret;
981

982 983
	/*
	 * All failure paths here set node->data to NULL, so that we
984
	 * don't try to do device_for_each_child() on a kfree()'d
985 986
	 * device.
	 */
987

988 989
	ret = read_config_rom(device, device->generation);
	if (ret != RCODE_COMPLETE) {
990 991
		if (device->config_rom_retries < MAX_RETRIES &&
		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
992
			device->config_rom_retries++;
993
			fw_schedule_device_work(device, RETRY_DELAY);
994
		} else {
995
			if (device->node->link_on)
996 997 998
				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
					  device->node_id,
					  fw_rcode_string(ret));
999 1000
			if (device->node == card->root_node)
				fw_schedule_bm_work(card, 0);
1001 1002 1003 1004 1005
			fw_device_release(&device->device);
		}
		return;
	}

1006
	revived_dev = device_find_child(card->device,
1007 1008 1009 1010 1011 1012 1013 1014
					device, lookup_existing_device);
	if (revived_dev) {
		put_device(revived_dev);
		fw_device_release(&device->device);

		return;
	}

1015
	device_initialize(&device->device);
1016 1017

	fw_device_get(device);
1018
	down_write(&fw_device_rwsem);
1019
	ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
1020 1021
	      idr_get_new(&fw_device_idr, device, &minor) :
	      -ENOMEM;
1022
	up_write(&fw_device_rwsem);
1023

1024
	if (ret < 0)
1025 1026
		goto error;

1027
	device->device.bus = &fw_bus_type;
1028
	device->device.type = &fw_device_type;
1029
	device->device.parent = card->device;
1030
	device->device.devt = MKDEV(fw_cdev_major, minor);
1031
	dev_set_name(&device->device, "fw%d", minor);
1032

1033 1034 1035
	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
			ARRAY_SIZE(fw_device_attributes) +
			ARRAY_SIZE(config_rom_attributes));
1036 1037 1038
	init_fw_attribute_group(&device->device,
				fw_device_attributes,
				&device->attribute_group);
1039

1040
	if (device_add(&device->device)) {
1041
		fw_err(card, "failed to add device\n");
1042
		goto error_with_cdev;
1043 1044 1045 1046
	}

	create_units(device);

1047 1048
	/*
	 * Transition the device to running state.  If it got pulled
1049 1050 1051 1052 1053
	 * out from under us while we did the intialization work, we
	 * have to shut down the device again here.  Normally, though,
	 * fw_node_event will be responsible for shutting it down when
	 * necessary.  We have to use the atomic cmpxchg here to avoid
	 * racing with the FW_NODE_DESTROYED case in
1054 1055
	 * fw_node_event().
	 */
1056
	if (atomic_cmpxchg(&device->state,
1057 1058 1059
			   FW_DEVICE_INITIALIZING,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
		PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1060
		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1061
	} else {
1062 1063 1064 1065
		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
			  dev_name(&device->device),
			  device->config_rom[3], device->config_rom[4],
			  1 << device->max_speed);
1066
		device->config_rom_retries = 0;
1067

1068
		set_broadcast_channel(device, device->generation);
1069
	}
1070

1071 1072
	/*
	 * Reschedule the IRM work if we just finished reading the
1073 1074
	 * root node config rom.  If this races with a bus reset we
	 * just end up running the IRM work a couple of extra times -
1075 1076
	 * pretty harmless.
	 */
1077 1078
	if (device->node == card->root_node)
		fw_schedule_bm_work(card, 0);
1079 1080 1081

	return;

1082
 error_with_cdev:
1083
	down_write(&fw_device_rwsem);
1084
	idr_remove(&fw_device_idr, minor);
1085
	up_write(&fw_device_rwsem);
S
Stefan Richter 已提交
1086
 error:
1087 1088 1089
	fw_device_put(device);		/* fw_device_idr's reference */

	put_device(&device->device);	/* our reference */
1090 1091
}

1092
/* Reread and compare bus info block and header of root directory */
1093 1094
static int reread_config_rom(struct fw_device *device, int generation,
			     bool *changed)
1095 1096
{
	u32 q;
1097
	int i, rcode;
1098 1099

	for (i = 0; i < 6; i++) {
1100 1101 1102
		rcode = read_rom(device, generation, i, &q);
		if (rcode != RCODE_COMPLETE)
			return rcode;
1103 1104

		if (i == 0 && q == 0)
1105
			/* inaccessible (see read_config_rom); retry later */
1106
			return RCODE_BUSY;
1107

1108 1109 1110 1111
		if (q != device->config_rom[i]) {
			*changed = true;
			return RCODE_COMPLETE;
		}
1112 1113
	}

1114 1115
	*changed = false;
	return RCODE_COMPLETE;
1116 1117 1118 1119 1120 1121 1122
}

static void fw_device_refresh(struct work_struct *work)
{
	struct fw_device *device =
		container_of(work, struct fw_device, work.work);
	struct fw_card *card = device->card;
1123 1124
	int ret, node_id = device->node_id;
	bool changed;
1125

1126
	ret = reread_config_rom(device, device->generation, &changed);
1127 1128
	if (ret != RCODE_COMPLETE)
		goto failed_config_rom;
1129

1130
	if (!changed) {
1131
		if (atomic_cmpxchg(&device->state,
1132 1133
				   FW_DEVICE_INITIALIZING,
				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
			goto gone;

		fw_device_update(work);
		device->config_rom_retries = 0;
		goto out;
	}

	/*
	 * Something changed.  We keep things simple and don't investigate
	 * further.  We just destroy all previous units and create new ones.
	 */
	device_for_each_child(&device->device, NULL, shutdown_unit);

1147
	ret = read_config_rom(device, device->generation);
1148 1149
	if (ret != RCODE_COMPLETE)
		goto failed_config_rom;
1150

1151
	fw_device_cdev_update(device);
1152 1153
	create_units(device);

1154 1155 1156
	/* Userspace may want to re-read attributes. */
	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);

1157
	if (atomic_cmpxchg(&device->state,
1158 1159
			   FW_DEVICE_INITIALIZING,
			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1160 1161
		goto gone;

1162
	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1163 1164 1165
	device->config_rom_retries = 0;
	goto out;

1166 1167 1168 1169 1170 1171 1172 1173
 failed_config_rom:
	if (device->config_rom_retries < MAX_RETRIES &&
	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
		device->config_rom_retries++;
		fw_schedule_device_work(device, RETRY_DELAY);
		return;
	}

1174 1175
	fw_notice(card, "giving up on refresh of device %s: %s\n",
		  dev_name(&device->device), fw_rcode_string(ret));
1176
 gone:
1177 1178
	atomic_set(&device->state, FW_DEVICE_GONE);
	PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1179
	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1180 1181
 out:
	if (node_id == card->root_node->node_id)
1182
		fw_schedule_bm_work(card, 0);
1183 1184
}

1185 1186 1187 1188 1189 1190
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
{
	struct fw_device *device;

	switch (event) {
	case FW_NODE_CREATED:
1191 1192 1193 1194 1195 1196
		/*
		 * Attempt to scan the node, regardless whether its self ID has
		 * the L (link active) flag set or not.  Some broken devices
		 * send L=0 but have an up-and-running link; others send L=1
		 * without actually having a link.
		 */
1197
 create:
1198 1199 1200 1201
		device = kzalloc(sizeof(*device), GFP_ATOMIC);
		if (device == NULL)
			break;

1202 1203
		/*
		 * Do minimal intialization of the device here, the
1204 1205 1206 1207 1208 1209 1210
		 * rest will happen in fw_device_init().
		 *
		 * Attention:  A lot of things, even fw_device_get(),
		 * cannot be done before fw_device_init() finished!
		 * You can basically just check device->state and
		 * schedule work until then, but only while holding
		 * card->lock.
1211
		 */
1212
		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1213
		device->card = fw_card_get(card);
1214 1215 1216
		device->node = fw_node_get(node);
		device->node_id = node->node_id;
		device->generation = card->generation;
1217
		device->is_local = node == card->local_node;
1218
		mutex_init(&device->client_list_mutex);
1219
		INIT_LIST_HEAD(&device->client_list);
1220

1221 1222
		/*
		 * Set the node data to point back to this device so
1223
		 * FW_NODE_UPDATED callbacks can update the node_id
1224 1225
		 * and generation for the device.
		 */
1226 1227
		node->data = device;

1228 1229
		/*
		 * Many devices are slow to respond after bus resets,
1230 1231
		 * especially if they are bus powered and go through
		 * power-up after getting plugged in.  We schedule the
1232 1233
		 * first config rom scan half a second after bus reset.
		 */
1234
		INIT_DELAYED_WORK(&device->work, fw_device_init);
1235
		fw_schedule_device_work(device, INITIAL_DELAY);
1236 1237
		break;

1238
	case FW_NODE_INITIATED_RESET:
1239
	case FW_NODE_LINK_ON:
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
		device = node->data;
		if (device == NULL)
			goto create;

		device->node_id = node->node_id;
		smp_wmb();  /* update node_id before generation */
		device->generation = card->generation;
		if (atomic_cmpxchg(&device->state,
			    FW_DEVICE_RUNNING,
			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1251
			fw_schedule_device_work(device,
1252
				device->is_local ? 0 : INITIAL_DELAY);
1253 1254 1255
		}
		break;

1256
	case FW_NODE_UPDATED:
1257 1258
		device = node->data;
		if (device == NULL)
1259 1260 1261
			break;

		device->node_id = node->node_id;
1262
		smp_wmb();  /* update node_id before generation */
1263
		device->generation = card->generation;
1264 1265
		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1266
			fw_schedule_device_work(device, 0);
1267
		}
1268 1269 1270 1271 1272 1273 1274
		break;

	case FW_NODE_DESTROYED:
	case FW_NODE_LINK_OFF:
		if (!node->data)
			break;

1275 1276
		/*
		 * Destroy the device associated with the node.  There
1277 1278 1279 1280 1281 1282 1283 1284
		 * are two cases here: either the device is fully
		 * initialized (FW_DEVICE_RUNNING) or we're in the
		 * process of reading its config rom
		 * (FW_DEVICE_INITIALIZING).  If it is fully
		 * initialized we can reuse device->work to schedule a
		 * full fw_device_shutdown().  If not, there's work
		 * scheduled to read it's config rom, and we just put
		 * the device in shutdown state to have that code fail
1285 1286
		 * to create the device.
		 */
1287
		device = node->data;
1288
		if (atomic_xchg(&device->state,
1289
				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1290
			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1291
			fw_schedule_device_work(device,
1292
				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1293 1294 1295 1296
		}
		break;
	}
}