mmu.c 128.9 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31 32
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
33
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
A
Avi Kivity 已提交
39

A
Avi Kivity 已提交
40 41
#include <asm/page.h>
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
44
#include <asm/kvm_page_track.h>
A
Avi Kivity 已提交
45

46 47 48 49 50 51 52
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
53
bool tdp_enabled = false;
54

55 56 57 58
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
59 60 61
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
62
};
63

64
#undef MMU_DEBUG
65 66

#ifdef MMU_DEBUG
67 68
static bool dbg = 0;
module_param(dbg, bool, 0644);
69 70 71

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72
#define MMU_WARN_ON(x) WARN_ON(x)
73 74 75
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
76
#define MMU_WARN_ON(x) do { } while (0)
77
#endif
A
Avi Kivity 已提交
78

79 80
#define PTE_PREFETCH_NUM		8

81
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
82 83 84 85 86
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
87
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
88 89 90 91 92 93 94 95

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
96
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
97

98 99 100
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
101 102 103 104 105

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


106
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
107 108
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 110 111 112 113 114
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
115 116 117 118

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 120 121
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
122

123 124
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
125

126 127 128 129 130
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

131 132
#include <trace/events/kvm.h>

133 134 135
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

136 137
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138

139 140
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

141 142 143
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

144 145 146
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
147 148
};

149 150 151 152
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
153
	int level;
154 155 156 157 158 159 160 161
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

162 163 164 165 166 167
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

168
static struct kmem_cache *pte_list_desc_cache;
169
static struct kmem_cache *mmu_page_header_cache;
170
static struct percpu_counter kvm_total_used_mmu_pages;
171

S
Sheng Yang 已提交
172 173 174 175 176
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
177 178 179
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
180
static void mmu_free_roots(struct kvm_vcpu *vcpu);
181 182 183 184 185 186 187

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

188
/*
189 190 191 192 193 194 195
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
196
 */
197
#define MMIO_SPTE_GEN_LOW_SHIFT		2
198 199
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

200 201 202
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
203
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
204 205 206 207 208

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
209
	WARN_ON(gen & ~MMIO_GEN_MASK);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

227
static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
228
{
229
	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
230 231
}

232
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
233
			   unsigned access)
234
{
235
	unsigned int gen = kvm_current_mmio_generation(vcpu);
236
	u64 mask = generation_mmio_spte_mask(gen);
237

238
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
239 240
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

241
	trace_mark_mmio_spte(sptep, gfn, access, gen);
242
	mmu_spte_set(sptep, mask);
243 244 245 246 247 248 249 250 251
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
252
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
253
	return (spte & ~mask) >> PAGE_SHIFT;
254 255 256 257
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
258
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
259
	return (spte & ~mask) & ~PAGE_MASK;
260 261
}

262
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
D
Dan Williams 已提交
263
			  kvm_pfn_t pfn, unsigned access)
264 265
{
	if (unlikely(is_noslot_pfn(pfn))) {
266
		mark_mmio_spte(vcpu, sptep, gfn, access);
267 268 269 270 271
		return true;
	}

	return false;
}
272

273
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
274
{
275 276
	unsigned int kvm_gen, spte_gen;

277
	kvm_gen = kvm_current_mmio_generation(vcpu);
278 279 280 281
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
282 283
}

S
Sheng Yang 已提交
284
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
285
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
286 287 288 289 290 291 292 293 294
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
295 296 297 298 299
static int is_cpuid_PSE36(void)
{
	return 1;
}

300 301
static int is_nx(struct kvm_vcpu *vcpu)
{
302
	return vcpu->arch.efer & EFER_NX;
303 304
}

305 306
static int is_shadow_present_pte(u64 pte)
{
307
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
308 309
}

M
Marcelo Tosatti 已提交
310 311 312 313 314
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

315 316 317 318
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
319
	if (is_large_pte(pte))
320 321 322 323
		return 1;
	return 0;
}

D
Dan Williams 已提交
324
static kvm_pfn_t spte_to_pfn(u64 pte)
325
{
326
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
327 328
}

329 330 331 332 333 334 335
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

336
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
337
static void __set_spte(u64 *sptep, u64 spte)
338
{
339
	*sptep = spte;
340 341
}

342
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343
{
344 345 346 347 348 349 350
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
351 352 353 354 355

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
356
#else
357 358 359 360 361 362 363
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
364

365 366 367 368 369 370 371 372 373 374 375 376
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

377 378 379
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
380

381 382 383 384 385 386 387 388 389 390 391 392 393
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
394 395
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
412
	count_spte_clear(sptep, spte);
413 414 415 416 417 418 419 420 421 422 423
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424 425
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
426
	count_spte_clear(sptep, spte);
427 428 429

	return orig.spte;
}
430 431 432 433

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
434 435 436 437 438 439 440 441 442 443 444 445 446 447
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
471 472
#endif

473 474
static bool spte_is_locklessly_modifiable(u64 spte)
{
475 476
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
477 478
}

479 480
static bool spte_has_volatile_bits(u64 spte)
{
481 482 483 484 485 486 487 488 489
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

490 491 492 493 494 495
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

496 497
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
498 499 500 501 502
		return false;

	return true;
}

503 504 505 506 507
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

508 509 510 511 512
static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) != (new_spte & bit_mask);
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
527 528 529 530 531 532
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
533
 */
534
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
535
{
536
	u64 old_spte = *sptep;
537
	bool ret = false;
538

539
	WARN_ON(!is_shadow_present_pte(new_spte));
540

541 542 543 544
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
545

546
	if (!spte_has_volatile_bits(old_spte))
547
		__update_clear_spte_fast(sptep, new_spte);
548
	else
549
		old_spte = __update_clear_spte_slow(sptep, new_spte);
550

551 552 553 554 555
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
556 557
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
558 559
		ret = true;

560
	if (!shadow_accessed_mask)
561
		return ret;
562

563 564 565 566 567 568 569 570
	/*
	 * Flush TLB when accessed/dirty bits are changed in the page tables,
	 * to guarantee consistency between TLB and page tables.
	 */
	if (spte_is_bit_changed(old_spte, new_spte,
                                shadow_accessed_mask | shadow_dirty_mask))
		ret = true;

571 572 573 574
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
575 576

	return ret;
577 578
}

579 580 581 582 583 584 585
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
586
	kvm_pfn_t pfn;
587 588 589
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
590
		__update_clear_spte_fast(sptep, 0ull);
591
	else
592
		old_spte = __update_clear_spte_slow(sptep, 0ull);
593

594
	if (!is_shadow_present_pte(old_spte))
595 596 597
		return 0;

	pfn = spte_to_pfn(old_spte);
598 599 600 601 602 603

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
604
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
605

606 607 608 609 610 611 612 613 614 615 616 617 618 619
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
620
	__update_clear_spte_fast(sptep, 0ull);
621 622
}

623 624 625 626 627 628 629
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
630 631 632 633 634 635 636 637 638 639 640
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
641 642 643 644
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
645 646 647 648 649 650 651 652
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
653 654
}

655
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
656
				  struct kmem_cache *base_cache, int min)
657 658 659 660
{
	void *obj;

	if (cache->nobjs >= min)
661
		return 0;
662
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
663
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
664
		if (!obj)
665
			return -ENOMEM;
666 667
		cache->objects[cache->nobjs++] = obj;
	}
668
	return 0;
669 670
}

671 672 673 674 675
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

676 677
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
678 679
{
	while (mc->nobjs)
680
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
681 682
}

A
Avi Kivity 已提交
683
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
684
				       int min)
A
Avi Kivity 已提交
685
{
686
	void *page;
A
Avi Kivity 已提交
687 688 689 690

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
691
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
692 693
		if (!page)
			return -ENOMEM;
694
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
695 696 697 698 699 700 701
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
702
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
703 704
}

705
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
706
{
707 708
	int r;

709
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
710
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
711 712
	if (r)
		goto out;
713
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
714 715
	if (r)
		goto out;
716
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
717
				   mmu_page_header_cache, 4);
718 719
out:
	return r;
720 721 722 723
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
724 725
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
726
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
727 728
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
729 730
}

731
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
732 733 734 735 736 737 738 739
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

740
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
741
{
742
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
743 744
}

745
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
746
{
747
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
748 749
}

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
766
/*
767 768
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
769
 */
770 771 772
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
773 774 775
{
	unsigned long idx;

776
	idx = gfn_to_index(gfn, slot->base_gfn, level);
777
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
778 779
}

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

803
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
804
{
805
	struct kvm_memslots *slots;
806
	struct kvm_memory_slot *slot;
807
	gfn_t gfn;
M
Marcelo Tosatti 已提交
808

809
	kvm->arch.indirect_shadow_pages++;
810
	gfn = sp->gfn;
811 812
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
813 814 815 816 817 818

	/* the non-leaf shadow pages are keeping readonly. */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

819
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
820 821
}

822
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
823
{
824
	struct kvm_memslots *slots;
825
	struct kvm_memory_slot *slot;
826
	gfn_t gfn;
M
Marcelo Tosatti 已提交
827

828
	kvm->arch.indirect_shadow_pages--;
829
	gfn = sp->gfn;
830 831
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
832 833 834 835
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

836
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
837 838
}

839 840
static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
					  struct kvm_memory_slot *slot)
M
Marcelo Tosatti 已提交
841
{
842
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
843 844

	if (slot) {
845
		linfo = lpage_info_slot(gfn, slot, level);
846
		return !!linfo->disallow_lpage;
M
Marcelo Tosatti 已提交
847 848
	}

849
	return true;
M
Marcelo Tosatti 已提交
850 851
}

852 853
static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
					int level)
854 855 856 857
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
858
	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
859 860
}

861
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
862
{
J
Joerg Roedel 已提交
863
	unsigned long page_size;
864
	int i, ret = 0;
M
Marcelo Tosatti 已提交
865

J
Joerg Roedel 已提交
866
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
867

868
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
869 870 871 872 873 874
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

875
	return ret;
M
Marcelo Tosatti 已提交
876 877
}

878 879 880 881 882 883 884 885 886 887 888
static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
					  bool no_dirty_log)
{
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return false;
	if (no_dirty_log && slot->dirty_bitmap)
		return false;

	return true;
}

889 890 891
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
892 893
{
	struct kvm_memory_slot *slot;
894

895
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
896
	if (!memslot_valid_for_gpte(slot, no_dirty_log))
897 898 899 900 901
		slot = NULL;

	return slot;
}

902 903
static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
			 bool *force_pt_level)
904 905
{
	int host_level, level, max_level;
906 907
	struct kvm_memory_slot *slot;

908 909
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
910

911 912
	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
	*force_pt_level = !memslot_valid_for_gpte(slot, true);
913 914 915
	if (unlikely(*force_pt_level))
		return PT_PAGE_TABLE_LEVEL;

916 917 918 919 920
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
921
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
922 923

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
924
		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
925 926 927
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
928 929
}

930
/*
931
 * About rmap_head encoding:
932
 *
933 934
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
935
 * pte_list_desc containing more mappings.
936 937 938 939
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
940
 */
941
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
942
			struct kvm_rmap_head *rmap_head)
943
{
944
	struct pte_list_desc *desc;
945
	int i, count = 0;
946

947
	if (!rmap_head->val) {
948
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
949 950
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
951 952
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
953
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
954
		desc->sptes[1] = spte;
955
		rmap_head->val = (unsigned long)desc | 1;
956
		++count;
957
	} else {
958
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
959
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
960
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
961
			desc = desc->more;
962
			count += PTE_LIST_EXT;
963
		}
964 965
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
966 967
			desc = desc->more;
		}
A
Avi Kivity 已提交
968
		for (i = 0; desc->sptes[i]; ++i)
969
			++count;
A
Avi Kivity 已提交
970
		desc->sptes[i] = spte;
971
	}
972
	return count;
973 974
}

975
static void
976 977 978
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
979 980 981
{
	int j;

982
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
983
		;
A
Avi Kivity 已提交
984 985
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
986 987 988
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
989
		rmap_head->val = (unsigned long)desc->sptes[0];
990 991 992 993
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
994
			rmap_head->val = (unsigned long)desc->more | 1;
995
	mmu_free_pte_list_desc(desc);
996 997
}

998
static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
999
{
1000 1001
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1002 1003
	int i;

1004
	if (!rmap_head->val) {
1005
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1006
		BUG();
1007
	} else if (!(rmap_head->val & 1)) {
1008
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1009
		if ((u64 *)rmap_head->val != spte) {
1010
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1011 1012
			BUG();
		}
1013
		rmap_head->val = 0;
1014
	} else {
1015
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
1016
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1017 1018
		prev_desc = NULL;
		while (desc) {
1019
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1020
				if (desc->sptes[i] == spte) {
1021 1022
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1023 1024
					return;
				}
1025
			}
1026 1027 1028
			prev_desc = desc;
			desc = desc->more;
		}
1029
		pr_err("pte_list_remove: %p many->many\n", spte);
1030 1031 1032 1033
		BUG();
	}
}

1034 1035
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1036
{
1037
	unsigned long idx;
1038

1039
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1040
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1041 1042
}

1043 1044
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1045
{
1046
	struct kvm_memslots *slots;
1047 1048
	struct kvm_memory_slot *slot;

1049 1050
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1051
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1052 1053
}

1054 1055 1056 1057 1058 1059 1060 1061
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1062 1063 1064
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1065
	struct kvm_rmap_head *rmap_head;
1066 1067 1068

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1069 1070
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1071 1072 1073 1074 1075 1076
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1077
	struct kvm_rmap_head *rmap_head;
1078 1079 1080

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1081 1082
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
	pte_list_remove(spte, rmap_head);
1083 1084
}

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
1102 1103
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1104
{
1105 1106
	u64 *sptep;

1107
	if (!rmap_head->val)
1108 1109
		return NULL;

1110
	if (!(rmap_head->val & 1)) {
1111
		iter->desc = NULL;
1112 1113
		sptep = (u64 *)rmap_head->val;
		goto out;
1114 1115
	}

1116
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1117
	iter->pos = 0;
1118 1119 1120 1121
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1122 1123 1124 1125 1126 1127 1128 1129 1130
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1131 1132
	u64 *sptep;

1133 1134 1135 1136 1137
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1138
				goto out;
1139 1140 1141 1142 1143 1144 1145
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1146 1147
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1148 1149 1150 1151
		}
	}

	return NULL;
1152 1153 1154
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1155 1156
}

1157 1158
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1159
	     _spte_; _spte_ = rmap_get_next(_iter_))
1160

1161
static void drop_spte(struct kvm *kvm, u64 *sptep)
1162
{
1163
	if (mmu_spte_clear_track_bits(sptep))
1164
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1165 1166
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1188
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1189
 * spte write-protection is caused by protecting shadow page table.
1190
 *
T
Tiejun Chen 已提交
1191
 * Note: write protection is difference between dirty logging and spte
1192 1193 1194 1195 1196
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1197
 *
1198
 * Return true if tlb need be flushed.
1199
 */
1200
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1201 1202 1203
{
	u64 spte = *sptep;

1204 1205
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1206 1207 1208 1209
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1210 1211
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1212
	spte = spte & ~PT_WRITABLE_MASK;
1213

1214
	return mmu_spte_update(sptep, spte);
1215 1216
}

1217 1218
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1219
				 bool pt_protect)
1220
{
1221 1222
	u64 *sptep;
	struct rmap_iterator iter;
1223
	bool flush = false;
1224

1225
	for_each_rmap_spte(rmap_head, &iter, sptep)
1226
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1227

1228
	return flush;
1229 1230
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

	spte &= ~shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1242
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1243 1244 1245 1246 1247
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1248
	for_each_rmap_spte(rmap_head, &iter, sptep)
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		flush |= spte_clear_dirty(kvm, sptep);

	return flush;
}

static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1265
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1266 1267 1268 1269 1270
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1271
	for_each_rmap_spte(rmap_head, &iter, sptep)
1272 1273 1274 1275 1276
		flush |= spte_set_dirty(kvm, sptep);

	return flush;
}

1277
/**
1278
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1279 1280 1281 1282 1283 1284 1285 1286
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1287
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1288 1289
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1290
{
1291
	struct kvm_rmap_head *rmap_head;
1292

1293
	while (mask) {
1294 1295 1296
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1297

1298 1299 1300
		/* clear the first set bit */
		mask &= mask - 1;
	}
1301 1302
}

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
/**
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1316
	struct kvm_rmap_head *rmap_head;
1317 1318

	while (mask) {
1319 1320 1321
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					  PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmap_head);
1322 1323 1324 1325 1326 1327 1328

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1343 1344 1345 1346 1347
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1348 1349
}

1350 1351
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1352
{
1353
	struct kvm_rmap_head *rmap_head;
1354
	int i;
1355
	bool write_protected = false;
1356

1357
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1358
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1359
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1360 1361 1362
	}

	return write_protected;
1363 1364
}

1365 1366 1367 1368 1369 1370 1371 1372
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1373
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1374
{
1375 1376
	u64 *sptep;
	struct rmap_iterator iter;
1377
	bool flush = false;
1378

1379
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1380
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1381 1382

		drop_spte(kvm, sptep);
1383
		flush = true;
1384
	}
1385

1386 1387 1388
	return flush;
}

1389
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1390 1391 1392
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1393
	return kvm_zap_rmapp(kvm, rmap_head);
1394 1395
}

1396
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1397 1398
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1399
{
1400 1401
	u64 *sptep;
	struct rmap_iterator iter;
1402
	int need_flush = 0;
1403
	u64 new_spte;
1404
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1405
	kvm_pfn_t new_pfn;
1406 1407 1408

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1409

1410
restart:
1411
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1412 1413
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1414

1415
		need_flush = 1;
1416

1417
		if (pte_write(*ptep)) {
1418
			drop_spte(kvm, sptep);
1419
			goto restart;
1420
		} else {
1421
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1422 1423 1424 1425
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1426
			new_spte &= ~shadow_accessed_mask;
1427 1428 1429

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1430 1431
		}
	}
1432

1433 1434 1435 1436 1437 1438
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1449
	struct kvm_rmap_head *rmap;
1450 1451 1452
	int level;

	/* private field. */
1453
	struct kvm_rmap_head *end_rmap;
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1507 1508 1509 1510 1511
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1512
					       struct kvm_rmap_head *rmap_head,
1513
					       struct kvm_memory_slot *slot,
1514 1515
					       gfn_t gfn,
					       int level,
1516
					       unsigned long data))
1517
{
1518
	struct kvm_memslots *slots;
1519
	struct kvm_memory_slot *memslot;
1520 1521
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1522
	int i;
1523

1524 1525 1526 1527 1528
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1529

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
						 PT_MAX_HUGEPAGE_LEVEL,
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1549 1550
	}

1551
	return ret;
1552 1553
}

1554 1555
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1556 1557
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1558
					 struct kvm_memory_slot *slot,
1559
					 gfn_t gfn, int level,
1560 1561 1562
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1563 1564 1565 1566
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1567 1568 1569
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1570 1571 1572 1573 1574
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1575 1576
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1577
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1578 1579
}

1580
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1581 1582
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1583
{
1584
	u64 *sptep;
1585
	struct rmap_iterator uninitialized_var(iter);
1586 1587
	int young = 0;

A
Andres Lagar-Cavilla 已提交
1588
	BUG_ON(!shadow_accessed_mask);
1589

1590
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1591
		if (*sptep & shadow_accessed_mask) {
1592
			young = 1;
1593 1594
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1595
		}
1596
	}
1597

1598
	trace_kvm_age_page(gfn, level, slot, young);
1599 1600 1601
	return young;
}

1602
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1603 1604
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1605
{
1606 1607
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1618
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1619
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1620 1621 1622
			young = 1;
			break;
		}
1623
	}
A
Andrea Arcangeli 已提交
1624 1625 1626 1627
out:
	return young;
}

1628 1629
#define RMAP_RECYCLE_THRESHOLD 1000

1630
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1631
{
1632
	struct kvm_rmap_head *rmap_head;
1633 1634 1635
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1636

1637
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1638

1639
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1640 1641 1642
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1643
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1644
{
A
Andres Lagar-Cavilla 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	/*
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
	if (!shadow_accessed_mask) {
		/*
		 * We are holding the kvm->mmu_lock, and we are blowing up
		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
		 * This is correct as long as we don't decouple the mmu_lock
		 * protected regions (like invalidate_range_start|end does).
		 */
		kvm->mmu_notifier_seq++;
		return kvm_handle_hva_range(kvm, start, end, 0,
					    kvm_unmap_rmapp);
	}

	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1666 1667
}

A
Andrea Arcangeli 已提交
1668 1669 1670 1671 1672
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1673
#ifdef MMU_DEBUG
1674
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1675
{
1676 1677 1678
	u64 *pos;
	u64 *end;

1679
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1680
		if (is_shadow_present_pte(*pos)) {
1681
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1682
			       pos, *pos);
A
Avi Kivity 已提交
1683
			return 0;
1684
		}
A
Avi Kivity 已提交
1685 1686
	return 1;
}
1687
#endif
A
Avi Kivity 已提交
1688

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1701
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1702
{
1703
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1704
	hlist_del(&sp->hash_link);
1705 1706
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1707 1708
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1709
	kmem_cache_free(mmu_page_header_cache, sp);
1710 1711
}

1712 1713
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1714
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1715 1716
}

1717
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1718
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1719 1720 1721 1722
{
	if (!parent_pte)
		return;

1723
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1724 1725
}

1726
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1727 1728
				       u64 *parent_pte)
{
1729
	pte_list_remove(parent_pte, &sp->parent_ptes);
1730 1731
}

1732 1733 1734 1735
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1736
	mmu_spte_clear_no_track(parent_pte);
1737 1738
}

1739
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1740
{
1741
	struct kvm_mmu_page *sp;
1742

1743 1744
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1745
	if (!direct)
1746
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1747
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1748 1749 1750 1751 1752 1753

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1754 1755 1756
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1757 1758
}

1759
static void mark_unsync(u64 *spte);
1760
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1761
{
1762 1763 1764 1765 1766 1767
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1768 1769
}

1770
static void mark_unsync(u64 *spte)
1771
{
1772
	struct kvm_mmu_page *sp;
1773
	unsigned int index;
1774

1775
	sp = page_header(__pa(spte));
1776 1777
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1778
		return;
1779
	if (sp->unsync_children++)
1780
		return;
1781
	kvm_mmu_mark_parents_unsync(sp);
1782 1783
}

1784
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1785
			       struct kvm_mmu_page *sp)
1786
{
1787
	return 0;
1788 1789
}

M
Marcelo Tosatti 已提交
1790 1791 1792 1793
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1794 1795
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1796
				 const void *pte)
1797 1798 1799 1800
{
	WARN_ON(1);
}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1811 1812
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1813
{
1814
	int i;
1815

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1827 1828 1829 1830 1831 1832 1833
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1834 1835 1836 1837
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1838

1839
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1840
		struct kvm_mmu_page *child;
1841 1842
		u64 ent = sp->spt[i];

1843 1844 1845 1846
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1847 1848 1849 1850 1851 1852 1853 1854

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1855 1856 1857 1858
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1859
				nr_unsync_leaf += ret;
1860
			} else
1861 1862 1863 1864 1865 1866
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1867
			clear_unsync_child_bit(sp, i);
1868 1869
	}

1870 1871 1872
	return nr_unsync_leaf;
}

1873 1874
#define INVALID_INDEX (-1)

1875 1876 1877
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1878
	pvec->nr = 0;
1879 1880 1881
	if (!sp->unsync_children)
		return 0;

1882
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1883
	return __mmu_unsync_walk(sp, pvec);
1884 1885 1886 1887 1888
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1889
	trace_kvm_mmu_sync_page(sp);
1890 1891 1892 1893
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1894 1895 1896 1897
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1898

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1909 1910 1911 1912 1913 1914 1915 1916
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1917

1918
/* @sp->gfn should be write-protected at the call site */
1919 1920
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
1921
{
1922
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1923
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1924
		return false;
1925 1926
	}

1927
	if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1928
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1929
		return false;
1930 1931
	}

1932
	return true;
1933 1934
}

1935 1936 1937
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
1938
{
1939 1940 1941 1942
	if (!list_empty(invalid_list)) {
		kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
		return;
	}
1943

1944 1945 1946 1947
	if (remote_flush)
		kvm_flush_remote_tlbs(vcpu->kvm);
	else if (local_flush)
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1948 1949
}

1950 1951 1952 1953 1954 1955 1956
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1957
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1958
			 struct list_head *invalid_list)
1959
{
1960 1961
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
1962 1963
}

1964
/* @gfn should be write-protected at the call site */
1965 1966
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
1967 1968
{
	struct kvm_mmu_page *s;
1969
	bool ret = false;
1970

1971
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1972
		if (!s->unsync)
1973 1974 1975
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1976
		ret |= kvm_sync_page(vcpu, s, invalid_list);
1977 1978
	}

1979
	return ret;
1980 1981
}

1982
struct mmu_page_path {
P
Paolo Bonzini 已提交
1983 1984
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
	unsigned int idx[PT64_ROOT_LEVEL];
1985 1986
};

1987
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1988
		for (i = mmu_pages_first(&pvec, &parents);	\
1989 1990 1991
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1992 1993 1994
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1995 1996 1997 1998 1999
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2000 2001
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2002

P
Paolo Bonzini 已提交
2003 2004 2005
		parents->idx[level-1] = idx;
		if (level == PT_PAGE_TABLE_LEVEL)
			break;
2006

P
Paolo Bonzini 已提交
2007
		parents->parent[level-2] = sp;
2008 2009 2010 2011 2012
	}

	return n;
}

P
Paolo Bonzini 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2022 2023
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	sp = pvec->page[0].sp;
	level = sp->role.level;
	WARN_ON(level == PT_PAGE_TABLE_LEVEL);

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2037
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2038
{
2039 2040 2041 2042 2043 2044 2045 2046 2047
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2048
		WARN_ON(idx == INVALID_INDEX);
2049
		clear_unsync_child_bit(sp, idx);
2050
		level++;
P
Paolo Bonzini 已提交
2051
	} while (!sp->unsync_children);
2052
}
2053

2054 2055 2056 2057 2058 2059 2060
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2061
	LIST_HEAD(invalid_list);
2062
	bool flush = false;
2063 2064

	while (mmu_unsync_walk(parent, &pages)) {
2065
		bool protected = false;
2066 2067

		for_each_sp(pages, sp, parents, i)
2068
			protected |= rmap_write_protect(vcpu, sp->gfn);
2069

2070
		if (protected) {
2071
			kvm_flush_remote_tlbs(vcpu->kvm);
2072 2073
			flush = false;
		}
2074

2075
		for_each_sp(pages, sp, parents, i) {
2076
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2077 2078
			mmu_pages_clear_parents(&parents);
		}
2079 2080 2081 2082 2083
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2084
	}
2085 2086

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2087 2088
}

2089 2090
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2091
	atomic_set(&sp->write_flooding_count,  0);
2092 2093 2094 2095 2096 2097 2098 2099 2100
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2101 2102 2103 2104 2105
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

2106 2107 2108 2109
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2110
					     int direct,
2111
					     unsigned access)
2112 2113 2114
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2115 2116
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2117 2118
	bool flush = false;
	LIST_HEAD(invalid_list);
2119

2120
	role = vcpu->arch.mmu.base_role;
2121
	role.level = level;
2122
	role.direct = direct;
2123
	if (role.direct)
2124
		role.cr4_pae = 0;
2125
	role.access = access;
2126 2127
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2128 2129 2130 2131
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2132
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2133 2134 2135
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

2136 2137
		if (!need_sync && sp->unsync)
			need_sync = true;
2138

2139 2140
		if (sp->role.word != role.word)
			continue;
2141

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}
2152

2153
		if (sp->unsync_children)
2154
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2155

2156
		__clear_sp_write_flooding_count(sp);
2157 2158 2159
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
2160

A
Avi Kivity 已提交
2161
	++vcpu->kvm->stat.mmu_cache_miss;
2162 2163 2164

	sp = kvm_mmu_alloc_page(vcpu, direct);

2165 2166
	sp->gfn = gfn;
	sp->role = role;
2167 2168
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2169
	if (!direct) {
2170 2171 2172 2173 2174 2175 2176 2177
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
		if (level == PT_PAGE_TABLE_LEVEL &&
		      rmap_write_protect(vcpu, gfn))
2178
			kvm_flush_remote_tlbs(vcpu->kvm);
2179 2180

		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2181
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2182
	}
2183
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2184
	clear_page(sp->spt);
A
Avi Kivity 已提交
2185
	trace_kvm_mmu_get_page(sp, true);
2186 2187

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2188
	return sp;
2189 2190
}

2191 2192 2193 2194 2195 2196
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2197 2198 2199 2200 2201 2202

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2217

2218 2219 2220 2221 2222
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2223 2224
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2225
{
2226
	if (is_last_spte(spte, iterator->level)) {
2227 2228 2229 2230
		iterator->level = 0;
		return;
	}

2231
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2232 2233 2234
	--iterator->level;
}

2235 2236 2237 2238 2239
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2240 2241
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2242 2243 2244
{
	u64 spte;

2245 2246 2247
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2248
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2249
	       shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
X
Xiao Guangrong 已提交
2250

2251
	mmu_spte_set(sptep, spte);
2252 2253 2254 2255 2256

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2257 2258
}

2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2276
		drop_parent_pte(child, sptep);
2277 2278 2279 2280
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2281
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2282 2283 2284 2285 2286 2287 2288
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2289
		if (is_last_spte(pte, sp->role.level)) {
2290
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2291 2292 2293
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2294
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2295
			drop_parent_pte(child, spte);
2296
		}
X
Xiao Guangrong 已提交
2297 2298 2299 2300
		return true;
	}

	if (is_mmio_spte(pte))
2301
		mmu_spte_clear_no_track(spte);
2302

X
Xiao Guangrong 已提交
2303
	return false;
2304 2305
}

2306
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2307
					 struct kvm_mmu_page *sp)
2308
{
2309 2310
	unsigned i;

2311 2312
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2313 2314
}

2315
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2316
{
2317 2318
	u64 *sptep;
	struct rmap_iterator iter;
2319

2320
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2321
		drop_parent_pte(sp, sptep);
2322 2323
}

2324
static int mmu_zap_unsync_children(struct kvm *kvm,
2325 2326
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2327
{
2328 2329 2330
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2331

2332
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2333
		return 0;
2334 2335 2336 2337 2338

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2339
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2340
			mmu_pages_clear_parents(&parents);
2341
			zapped++;
2342 2343 2344 2345
		}
	}

	return zapped;
2346 2347
}

2348 2349
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2350
{
2351
	int ret;
A
Avi Kivity 已提交
2352

2353
	trace_kvm_mmu_prepare_zap_page(sp);
2354
	++kvm->stat.mmu_shadow_zapped;
2355
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2356
	kvm_mmu_page_unlink_children(kvm, sp);
2357
	kvm_mmu_unlink_parents(kvm, sp);
2358

2359
	if (!sp->role.invalid && !sp->role.direct)
2360
		unaccount_shadowed(kvm, sp);
2361

2362 2363
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2364
	if (!sp->root_count) {
2365 2366
		/* Count self */
		ret++;
2367
		list_move(&sp->link, invalid_list);
2368
		kvm_mod_used_mmu_pages(kvm, -1);
2369
	} else {
A
Avi Kivity 已提交
2370
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2371 2372 2373 2374 2375 2376 2377

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2378
	}
2379 2380

	sp->role.invalid = 1;
2381
	return ret;
2382 2383
}

2384 2385 2386
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2387
	struct kvm_mmu_page *sp, *nsp;
2388 2389 2390 2391

	if (list_empty(invalid_list))
		return;

2392
	/*
2393 2394 2395 2396 2397 2398 2399
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2400 2401
	 */
	kvm_flush_remote_tlbs(kvm);
2402

2403
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2404
		WARN_ON(!sp->role.invalid || sp->root_count);
2405
		kvm_mmu_free_page(sp);
2406
	}
2407 2408
}

2409 2410 2411 2412 2413 2414 2415 2416
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

G
Geliang Tang 已提交
2417 2418
	sp = list_last_entry(&kvm->arch.active_mmu_pages,
			     struct kvm_mmu_page, link);
2419 2420 2421 2422 2423
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2424 2425
/*
 * Changing the number of mmu pages allocated to the vm
2426
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2427
 */
2428
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2429
{
2430
	LIST_HEAD(invalid_list);
2431

2432 2433
	spin_lock(&kvm->mmu_lock);

2434
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2435 2436 2437 2438
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2439

2440
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2441
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2442 2443
	}

2444
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2445 2446

	spin_unlock(&kvm->mmu_lock);
2447 2448
}

2449
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2450
{
2451
	struct kvm_mmu_page *sp;
2452
	LIST_HEAD(invalid_list);
2453 2454
	int r;

2455
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2456
	r = 0;
2457
	spin_lock(&kvm->mmu_lock);
2458
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2459
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2460 2461
			 sp->role.word);
		r = 1;
2462
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2463
	}
2464
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2465 2466
	spin_unlock(&kvm->mmu_lock);

2467
	return r;
2468
}
2469
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2470

2471
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2472 2473 2474 2475 2476 2477 2478 2479
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2480 2481
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2482
{
2483
	struct kvm_mmu_page *sp;
2484

2485 2486
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2487

2488
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2489
		if (!can_unsync)
2490
			return true;
2491

2492 2493
		if (sp->unsync)
			continue;
2494

2495 2496
		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
		kvm_unsync_page(vcpu, sp);
2497
	}
2498 2499

	return false;
2500 2501
}

D
Dan Williams 已提交
2502
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2503 2504 2505 2506 2507 2508 2509
{
	if (pfn_valid(pfn))
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));

	return true;
}

A
Avi Kivity 已提交
2510
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2511
		    unsigned pte_access, int level,
D
Dan Williams 已提交
2512
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2513
		    bool can_unsync, bool host_writable)
2514
{
2515
	u64 spte;
M
Marcelo Tosatti 已提交
2516
	int ret = 0;
S
Sheng Yang 已提交
2517

2518
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2519 2520
		return 0;

2521
	spte = PT_PRESENT_MASK;
2522
	if (!speculative)
2523
		spte |= shadow_accessed_mask;
2524

S
Sheng Yang 已提交
2525 2526 2527 2528
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2529

2530
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2531
		spte |= shadow_user_mask;
2532

2533
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2534
		spte |= PT_PAGE_SIZE_MASK;
2535
	if (tdp_enabled)
2536
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2537
			kvm_is_mmio_pfn(pfn));
2538

2539
	if (host_writable)
2540
		spte |= SPTE_HOST_WRITEABLE;
2541 2542
	else
		pte_access &= ~ACC_WRITE_MASK;
2543

2544
	spte |= (u64)pfn << PAGE_SHIFT;
2545

2546
	if (pte_access & ACC_WRITE_MASK) {
2547

X
Xiao Guangrong 已提交
2548
		/*
2549 2550 2551 2552
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2553
		 */
2554
		if (level > PT_PAGE_TABLE_LEVEL &&
2555
		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
A
Avi Kivity 已提交
2556
			goto done;
2557

2558
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2559

2560 2561 2562 2563 2564 2565
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2566
		if (!can_unsync && is_writable_pte(*sptep))
2567 2568
			goto set_pte;

2569
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2570
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2571
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2572
			ret = 1;
2573
			pte_access &= ~ACC_WRITE_MASK;
2574
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2575 2576 2577
		}
	}

2578
	if (pte_access & ACC_WRITE_MASK) {
2579
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2580 2581
		spte |= shadow_dirty_mask;
	}
2582

2583
set_pte:
2584
	if (mmu_spte_update(sptep, spte))
2585
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2586
done:
M
Marcelo Tosatti 已提交
2587 2588 2589
	return ret;
}

2590
static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
D
Dan Williams 已提交
2591
			 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2592
			 bool speculative, bool host_writable)
M
Marcelo Tosatti 已提交
2593 2594
{
	int was_rmapped = 0;
2595
	int rmap_count;
2596
	bool emulate = false;
M
Marcelo Tosatti 已提交
2597

2598 2599
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2600

2601
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2602 2603 2604 2605
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2606 2607
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2608
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2609
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2610 2611

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2612
			drop_parent_pte(child, sptep);
2613
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2614
		} else if (pfn != spte_to_pfn(*sptep)) {
2615
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2616
				 spte_to_pfn(*sptep), pfn);
2617
			drop_spte(vcpu->kvm, sptep);
2618
			kvm_flush_remote_tlbs(vcpu->kvm);
2619 2620
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2621
	}
2622

2623 2624
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2625
		if (write_fault)
2626
			emulate = true;
2627
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2628
	}
M
Marcelo Tosatti 已提交
2629

2630 2631
	if (unlikely(is_mmio_spte(*sptep)))
		emulate = true;
2632

A
Avi Kivity 已提交
2633
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2634
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2635
		 is_large_pte(*sptep)? "2MB" : "4kB",
2636 2637
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2638
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2639 2640
		++vcpu->kvm->stat.lpages;

2641 2642 2643 2644 2645 2646
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2647
	}
2648

X
Xiao Guangrong 已提交
2649
	kvm_release_pfn_clean(pfn);
2650 2651

	return emulate;
2652 2653
}

D
Dan Williams 已提交
2654
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2655 2656 2657 2658
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2659
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2660
	if (!slot)
2661
		return KVM_PFN_ERR_FAULT;
2662

2663
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2664 2665 2666 2667 2668 2669 2670
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2671
	struct kvm_memory_slot *slot;
2672 2673 2674 2675 2676
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2677 2678
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2679 2680
		return -1;

2681
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2682 2683 2684 2685
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2686 2687
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2704
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2735
static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
D
Dan Williams 已提交
2736
			int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2737
{
2738
	struct kvm_shadow_walk_iterator iterator;
2739
	struct kvm_mmu_page *sp;
2740
	int emulate = 0;
2741
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2742

2743 2744 2745
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2746
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2747
		if (iterator.level == level) {
2748 2749 2750
			emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
					       write, level, gfn, pfn, prefault,
					       map_writable);
2751
			direct_pte_prefetch(vcpu, iterator.sptep);
2752 2753
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2754 2755
		}

2756
		drop_large_spte(vcpu, iterator.sptep);
2757
		if (!is_shadow_present_pte(*iterator.sptep)) {
2758 2759 2760 2761
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2762
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2763
					      iterator.level - 1, 1, ACC_ALL);
2764

2765
			link_shadow_page(vcpu, iterator.sptep, sp);
2766 2767
		}
	}
2768
	return emulate;
A
Avi Kivity 已提交
2769 2770
}

H
Huang Ying 已提交
2771
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2772
{
H
Huang Ying 已提交
2773 2774 2775 2776 2777 2778 2779
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2780

H
Huang Ying 已提交
2781
	send_sig_info(SIGBUS, &info, tsk);
2782 2783
}

D
Dan Williams 已提交
2784
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2785
{
X
Xiao Guangrong 已提交
2786 2787 2788 2789 2790 2791 2792 2793 2794
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2795
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2796
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2797
		return 0;
2798
	}
2799

2800
	return -EFAULT;
2801 2802
}

2803
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
D
Dan Williams 已提交
2804 2805
					gfn_t *gfnp, kvm_pfn_t *pfnp,
					int *levelp)
2806
{
D
Dan Williams 已提交
2807
	kvm_pfn_t pfn = *pfnp;
2808 2809 2810 2811 2812 2813 2814 2815 2816
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2817
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2818 2819
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
2820
	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2839
			kvm_get_pfn(pfn);
2840 2841 2842 2843 2844
			*pfnp = pfn;
		}
	}
}

2845
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
D
Dan Williams 已提交
2846
				kvm_pfn_t pfn, unsigned access, int *ret_val)
2847 2848
{
	/* The pfn is invalid, report the error! */
2849
	if (unlikely(is_error_pfn(pfn))) {
2850
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2851
		return true;
2852 2853
	}

2854
	if (unlikely(is_noslot_pfn(pfn)))
2855 2856
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

2857
	return false;
2858 2859
}

2860
static bool page_fault_can_be_fast(u32 error_code)
2861
{
2862 2863 2864 2865 2866 2867 2868
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2882 2883
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
2907
	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2908
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2922
	struct kvm_mmu_page *sp;
2923 2924 2925
	bool ret = false;
	u64 spte = 0ull;

2926 2927 2928
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2929
	if (!page_fault_can_be_fast(error_code))
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
2941
	if (!is_shadow_present_pte(spte)) {
2942 2943 2944 2945
		ret = true;
		goto exit;
	}

2946 2947
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

2981 2982 2983 2984 2985
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
2986
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2987
exit:
X
Xiao Guangrong 已提交
2988 2989
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
2990 2991 2992 2993 2994
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

2995
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
2996
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
2997
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2998

2999 3000
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
3001 3002
{
	int r;
3003
	int level;
3004
	bool force_pt_level = false;
D
Dan Williams 已提交
3005
	kvm_pfn_t pfn;
3006
	unsigned long mmu_seq;
3007
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3008

3009
	level = mapping_level(vcpu, gfn, &force_pt_level);
3010 3011 3012 3013 3014 3015 3016 3017
	if (likely(!force_pt_level)) {
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
3018

3019
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3020
	}
M
Marcelo Tosatti 已提交
3021

3022 3023 3024
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

3025
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3026
	smp_rmb();
3027

3028
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3029
		return 0;
3030

3031 3032
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
3033

3034
	spin_lock(&vcpu->kvm->mmu_lock);
3035
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3036
		goto out_unlock;
3037
	make_mmu_pages_available(vcpu);
3038 3039
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3040
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3041 3042
	spin_unlock(&vcpu->kvm->mmu_lock);

3043
	return r;
3044 3045 3046 3047 3048

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3049 3050 3051
}


3052 3053 3054
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
3055
	struct kvm_mmu_page *sp;
3056
	LIST_HEAD(invalid_list);
3057

3058
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
3059
		return;
3060

3061 3062 3063
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
3064
		hpa_t root = vcpu->arch.mmu.root_hpa;
3065

3066
		spin_lock(&vcpu->kvm->mmu_lock);
3067 3068
		sp = page_header(root);
		--sp->root_count;
3069 3070 3071 3072
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
3073
		spin_unlock(&vcpu->kvm->mmu_lock);
3074
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3075 3076
		return;
	}
3077 3078

	spin_lock(&vcpu->kvm->mmu_lock);
3079
	for (i = 0; i < 4; ++i) {
3080
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3081

A
Avi Kivity 已提交
3082 3083
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3084 3085
			sp = page_header(root);
			--sp->root_count;
3086
			if (!sp->root_count && sp->role.invalid)
3087 3088
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3089
		}
3090
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3091
	}
3092
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3093
	spin_unlock(&vcpu->kvm->mmu_lock);
3094
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3095 3096
}

3097 3098 3099 3100 3101
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3102
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3103 3104 3105 3106 3107 3108
		ret = 1;
	}

	return ret;
}

3109 3110 3111
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3112
	unsigned i;
3113 3114 3115

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3116
		make_mmu_pages_available(vcpu);
3117
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3118 3119 3120 3121 3122 3123 3124
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3125
			MMU_WARN_ON(VALID_PAGE(root));
3126
			spin_lock(&vcpu->kvm->mmu_lock);
3127
			make_mmu_pages_available(vcpu);
3128
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3129
					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3130 3131 3132 3133 3134
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3135
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3136 3137 3138 3139 3140 3141 3142
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3143
{
3144
	struct kvm_mmu_page *sp;
3145 3146 3147
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3148

3149
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3150

3151 3152 3153 3154 3155 3156 3157 3158
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3159
		hpa_t root = vcpu->arch.mmu.root_hpa;
3160

3161
		MMU_WARN_ON(VALID_PAGE(root));
3162

3163
		spin_lock(&vcpu->kvm->mmu_lock);
3164
		make_mmu_pages_available(vcpu);
3165
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3166
				      0, ACC_ALL);
3167 3168
		root = __pa(sp->spt);
		++sp->root_count;
3169
		spin_unlock(&vcpu->kvm->mmu_lock);
3170
		vcpu->arch.mmu.root_hpa = root;
3171
		return 0;
3172
	}
3173

3174 3175
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3176 3177
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3178
	 */
3179 3180 3181 3182
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3183
	for (i = 0; i < 4; ++i) {
3184
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3185

3186
		MMU_WARN_ON(VALID_PAGE(root));
3187
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3188
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3189
			if (!is_present_gpte(pdptr)) {
3190
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3191 3192
				continue;
			}
A
Avi Kivity 已提交
3193
			root_gfn = pdptr >> PAGE_SHIFT;
3194 3195
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3196
		}
3197
		spin_lock(&vcpu->kvm->mmu_lock);
3198
		make_mmu_pages_available(vcpu);
3199 3200
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
				      0, ACC_ALL);
3201 3202
		root = __pa(sp->spt);
		++sp->root_count;
3203 3204
		spin_unlock(&vcpu->kvm->mmu_lock);

3205
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3206
	}
3207
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3234
	return 0;
3235 3236
}

3237 3238 3239 3240 3241 3242 3243 3244
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3245 3246 3247 3248 3249
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3250 3251 3252
	if (vcpu->arch.mmu.direct_map)
		return;

3253 3254
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3255

3256
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3257
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3258
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3259 3260 3261
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3262
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3263 3264 3265 3266 3267
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3268
		if (root && VALID_PAGE(root)) {
3269 3270 3271 3272 3273
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3274
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3275 3276 3277 3278 3279 3280
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3281
	spin_unlock(&vcpu->kvm->mmu_lock);
3282
}
N
Nadav Har'El 已提交
3283
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3284

3285
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3286
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3287
{
3288 3289
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3290 3291 3292
	return vaddr;
}

3293
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3294 3295
					 u32 access,
					 struct x86_exception *exception)
3296
{
3297 3298
	if (exception)
		exception->error_code = 0;
3299
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3300 3301
}

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;

	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
}

static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
{
	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
}

static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
{
	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
}

3321
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3322 3323 3324 3325 3326 3327 3328
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3329 3330 3331
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3332 3333
{
	struct kvm_shadow_walk_iterator iterator;
3334 3335 3336
	u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
	int root, leaf;
	bool reserved = false;
3337

3338
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3339
		goto exit;
3340

3341
	walk_shadow_page_lockless_begin(vcpu);
3342

3343 3344
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3345 3346 3347 3348 3349
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3350
		leaf--;
3351

3352 3353
		if (!is_shadow_present_pte(spte))
			break;
3354 3355

		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3356
						    iterator.level);
3357 3358
	}

3359 3360
	walk_shadow_page_lockless_end(vcpu);

3361 3362 3363
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3364
		while (root > leaf) {
3365 3366 3367 3368 3369 3370 3371 3372
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
exit:
	*sptep = spte;
	return reserved;
3373 3374
}

3375
int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3376 3377
{
	u64 spte;
3378
	bool reserved;
3379

3380
	if (mmio_info_in_cache(vcpu, addr, direct))
3381
		return RET_MMIO_PF_EMULATE;
3382

3383
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3384
	if (WARN_ON(reserved))
3385
		return RET_MMIO_PF_BUG;
3386 3387 3388 3389 3390

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3391
		if (!check_mmio_spte(vcpu, spte))
3392 3393
			return RET_MMIO_PF_INVALID;

3394 3395
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3396 3397

		trace_handle_mmio_page_fault(addr, gfn, access);
3398
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3399
		return RET_MMIO_PF_EMULATE;
3400 3401 3402 3403 3404 3405
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3406
	return RET_MMIO_PF_RETRY;
3407
}
3408
EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3409

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

A
Avi Kivity 已提交
3447
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3448
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3449
{
3450
	gfn_t gfn = gva >> PAGE_SHIFT;
3451
	int r;
A
Avi Kivity 已提交
3452

3453
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3454

3455 3456
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;
3457

3458 3459 3460
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3461

3462
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3463 3464


3465
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3466
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3467 3468
}

3469
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3470 3471
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3472

3473
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3474
	arch.gfn = gfn;
3475
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3476
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3477

3478
	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3479 3480 3481 3482
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
3483
	if (unlikely(!lapic_in_kernel(vcpu) ||
3484 3485 3486 3487 3488 3489
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3490
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
D
Dan Williams 已提交
3491
			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3492
{
3493
	struct kvm_memory_slot *slot;
3494 3495
	bool async;

3496
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3497 3498
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3499 3500 3501
	if (!async)
		return false; /* *pfn has correct page already */

3502
	if (!prefault && can_do_async_pf(vcpu)) {
3503
		trace_kvm_try_async_get_page(gva, gfn);
3504 3505 3506 3507 3508 3509 3510 3511
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3512
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3513 3514 3515
	return false;
}

3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
static bool
check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
{
	int page_num = KVM_PAGES_PER_HPAGE(level);

	gfn &= ~(page_num - 1);

	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
}

G
Gleb Natapov 已提交
3526
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3527
			  bool prefault)
3528
{
D
Dan Williams 已提交
3529
	kvm_pfn_t pfn;
3530
	int r;
3531
	int level;
3532
	bool force_pt_level;
M
Marcelo Tosatti 已提交
3533
	gfn_t gfn = gpa >> PAGE_SHIFT;
3534
	unsigned long mmu_seq;
3535 3536
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3537

3538
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3539

3540 3541
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
		return 1;
3542

3543 3544 3545 3546
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3547 3548 3549
	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
							   PT_DIRECTORY_LEVEL);
	level = mapping_level(vcpu, gfn, &force_pt_level);
3550
	if (likely(!force_pt_level)) {
3551 3552 3553
		if (level > PT_DIRECTORY_LEVEL &&
		    !check_hugepage_cache_consistency(vcpu, gfn, level))
			level = PT_DIRECTORY_LEVEL;
3554
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3555
	}
3556

3557 3558 3559
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3560
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3561
	smp_rmb();
3562

3563
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3564 3565
		return 0;

3566 3567 3568
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3569
	spin_lock(&vcpu->kvm->mmu_lock);
3570
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3571
		goto out_unlock;
3572
	make_mmu_pages_available(vcpu);
3573 3574
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3575
	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3576 3577 3578
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3579 3580 3581 3582 3583

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3584 3585
}

3586 3587
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3588 3589 3590
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3591
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3592
	context->invlpg = nonpaging_invlpg;
3593
	context->update_pte = nonpaging_update_pte;
3594
	context->root_level = 0;
A
Avi Kivity 已提交
3595
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3596
	context->root_hpa = INVALID_PAGE;
3597
	context->direct_map = true;
3598
	context->nx = false;
A
Avi Kivity 已提交
3599 3600
}

3601
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3602
{
3603
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3604 3605
}

3606 3607
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3608
	return kvm_read_cr3(vcpu);
3609 3610
}

3611 3612
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3613
{
3614
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3615 3616
}

3617
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3618
			   unsigned access, int *nr_present)
3619 3620 3621 3622 3623 3624 3625 3626
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3627
		mark_mmio_spte(vcpu, sptep, gfn, access);
3628 3629 3630 3631 3632 3633
		return true;
	}

	return false;
}

3634 3635
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
3636
{
3637 3638 3639 3640 3641 3642
	/*
	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
	 */
	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
A
Avi Kivity 已提交
3643

3644 3645 3646 3647 3648 3649 3650 3651
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
3652 3653
}

3654 3655 3656 3657 3658
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3659 3660 3661 3662 3663 3664 3665 3666
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3667 3668 3669 3670
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
3671
			bool pse, bool amd)
3672 3673
{
	u64 exb_bit_rsvd = 0;
3674
	u64 gbpages_bit_rsvd = 0;
3675
	u64 nonleaf_bit8_rsvd = 0;
3676

3677
	rsvd_check->bad_mt_xwr = 0;
3678

3679
	if (!nx)
3680
		exb_bit_rsvd = rsvd_bits(63, 63);
3681
	if (!gbpages)
3682
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3683 3684 3685 3686 3687

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
3688
	if (amd)
3689 3690
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3691
	switch (level) {
3692 3693
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
3694 3695 3696 3697
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3698

3699
		if (!pse) {
3700
			rsvd_check->rsvd_bits_mask[1][1] = 0;
3701 3702 3703
			break;
		}

3704 3705
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
3706
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3707 3708
		else
			/* 32 bits PSE 4MB page */
3709
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3710 3711
		break;
	case PT32E_ROOT_LEVEL:
3712
		rsvd_check->rsvd_bits_mask[0][2] =
3713
			rsvd_bits(maxphyaddr, 63) |
3714
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3715
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3716
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3717
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3718
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3719
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3720 3721
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3722 3723
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3724 3725
		break;
	case PT64_ROOT_LEVEL:
3726 3727
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3728
			rsvd_bits(maxphyaddr, 51);
3729 3730
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3731
			rsvd_bits(maxphyaddr, 51);
3732 3733 3734 3735 3736 3737 3738
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3739
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3740
			rsvd_bits(13, 29);
3741
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3742 3743
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3744 3745
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
3746 3747 3748 3749
		break;
	}
}

3750 3751 3752 3753 3754 3755
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
				context->nx, guest_cpuid_has_gbpages(vcpu),
3756
				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3757 3758
}

3759 3760 3761
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
3762
{
3763
	u64 bad_mt_xwr;
3764

3765
	rsvd_check->rsvd_bits_mask[0][3] =
3766
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3767
	rsvd_check->rsvd_bits_mask[0][2] =
3768
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3769
	rsvd_check->rsvd_bits_mask[0][1] =
3770
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3771
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3772 3773

	/* large page */
3774 3775
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
3776
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3777
	rsvd_check->rsvd_bits_mask[1][1] =
3778
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3779
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3780

3781 3782 3783 3784 3785 3786 3787 3788
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3789
	}
3790
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
3791 3792
}

3793 3794 3795 3796 3797 3798 3799
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

3800 3801 3802 3803 3804 3805 3806 3807
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
3808 3809
	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;

3810 3811 3812 3813
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
3814 3815
	__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
				boot_cpu_data.x86_phys_bits,
3816
				context->shadow_root_level, uses_nx,
3817 3818
				guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
				true);
3819 3820 3821
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

3822 3823 3824 3825 3826 3827
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

3828 3829 3830 3831 3832 3833 3834 3835
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
3836
	if (boot_cpu_is_amd())
3837 3838 3839
		__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
					boot_cpu_data.x86_phys_bits,
					context->shadow_root_level, false,
3840
					cpu_has_gbpages, true, true);
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
	else
		__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
					    boot_cpu_data.x86_phys_bits,
					    false);

}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
				    boot_cpu_data.x86_phys_bits, execonly);
}

3860 3861
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
3862 3863 3864
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3865
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3866

F
Feng Wu 已提交
3867
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3868
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3869 3870 3871 3872 3873 3874
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3875 3876 3877 3878 3879 3880
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3881 3882 3883 3884 3885
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3886 3887 3888 3889 3890 3891
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3892
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3913 3914 3915
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3916

F
Feng Wu 已提交
3917 3918
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3919 3920 3921 3922 3923 3924
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4000
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4001
{
4002 4003 4004 4005 4006
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4007 4008
}

4009 4010 4011
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4012
{
4013
	context->nx = is_nx(vcpu);
4014
	context->root_level = level;
4015

4016
	reset_rsvds_bits_mask(vcpu, context);
4017
	update_permission_bitmask(vcpu, context, false);
4018
	update_pkru_bitmask(vcpu, context, false);
4019
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4020

4021
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4022 4023
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4024
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4025
	context->invlpg = paging64_invlpg;
4026
	context->update_pte = paging64_update_pte;
4027
	context->shadow_root_level = level;
A
Avi Kivity 已提交
4028
	context->root_hpa = INVALID_PAGE;
4029
	context->direct_map = false;
A
Avi Kivity 已提交
4030 4031
}

4032 4033
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4034
{
4035
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4036 4037
}

4038 4039
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4040
{
4041
	context->nx = false;
4042
	context->root_level = PT32_ROOT_LEVEL;
4043

4044
	reset_rsvds_bits_mask(vcpu, context);
4045
	update_permission_bitmask(vcpu, context, false);
4046
	update_pkru_bitmask(vcpu, context, false);
4047
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4048 4049 4050

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4051
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4052
	context->invlpg = paging32_invlpg;
4053
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4054
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
4055
	context->root_hpa = INVALID_PAGE;
4056
	context->direct_map = false;
A
Avi Kivity 已提交
4057 4058
}

4059 4060
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4061
{
4062
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4063 4064
}

4065
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4066
{
4067
	struct kvm_mmu *context = &vcpu->arch.mmu;
4068

4069
	context->base_role.word = 0;
4070
	context->base_role.smm = is_smm(vcpu);
4071
	context->page_fault = tdp_page_fault;
4072
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
4073
	context->invlpg = nonpaging_invlpg;
4074
	context->update_pte = nonpaging_update_pte;
4075
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4076
	context->root_hpa = INVALID_PAGE;
4077
	context->direct_map = true;
4078
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4079
	context->get_cr3 = get_cr3;
4080
	context->get_pdptr = kvm_pdptr_read;
4081
	context->inject_page_fault = kvm_inject_page_fault;
4082 4083

	if (!is_paging(vcpu)) {
4084
		context->nx = false;
4085 4086 4087
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4088
		context->nx = is_nx(vcpu);
4089
		context->root_level = PT64_ROOT_LEVEL;
4090 4091
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4092
	} else if (is_pae(vcpu)) {
4093
		context->nx = is_nx(vcpu);
4094
		context->root_level = PT32E_ROOT_LEVEL;
4095 4096
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4097
	} else {
4098
		context->nx = false;
4099
		context->root_level = PT32_ROOT_LEVEL;
4100 4101
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4102 4103
	}

4104
	update_permission_bitmask(vcpu, context, false);
4105
	update_pkru_bitmask(vcpu, context, false);
4106
	update_last_nonleaf_level(vcpu, context);
4107
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4108 4109
}

4110
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4111
{
4112
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4113
	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4114 4115
	struct kvm_mmu *context = &vcpu->arch.mmu;

4116
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
4117 4118

	if (!is_paging(vcpu))
4119
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
4120
	else if (is_long_mode(vcpu))
4121
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
4122
	else if (is_pae(vcpu))
4123
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4124
	else
4125
		paging32_init_context(vcpu, context);
4126

4127 4128 4129 4130
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
4131
		= smep && !is_write_protection(vcpu);
4132 4133
	context->base_role.smap_andnot_wp
		= smap && !is_write_protection(vcpu);
4134
	context->base_role.smm = is_smm(vcpu);
4135
	reset_shadow_zero_bits_mask(vcpu, context);
4136 4137 4138
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

4139
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
N
Nadav Har'El 已提交
4140
{
4141 4142
	struct kvm_mmu *context = &vcpu->arch.mmu;

4143
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
4158
	update_pkru_bitmask(vcpu, context, true);
N
Nadav Har'El 已提交
4159
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4160
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4161 4162 4163
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4164
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4165
{
4166 4167 4168 4169 4170 4171 4172
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4173 4174
}

4175
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4176 4177 4178 4179
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
4180
	g_context->get_pdptr         = kvm_pdptr_read;
4181 4182 4183
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
4184 4185 4186 4187 4188 4189
	 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4190 4191
	 */
	if (!is_paging(vcpu)) {
4192
		g_context->nx = false;
4193 4194 4195
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4196
		g_context->nx = is_nx(vcpu);
4197
		g_context->root_level = PT64_ROOT_LEVEL;
4198
		reset_rsvds_bits_mask(vcpu, g_context);
4199 4200
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4201
		g_context->nx = is_nx(vcpu);
4202
		g_context->root_level = PT32E_ROOT_LEVEL;
4203
		reset_rsvds_bits_mask(vcpu, g_context);
4204 4205
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4206
		g_context->nx = false;
4207
		g_context->root_level = PT32_ROOT_LEVEL;
4208
		reset_rsvds_bits_mask(vcpu, g_context);
4209 4210 4211
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4212
	update_permission_bitmask(vcpu, g_context, false);
4213
	update_pkru_bitmask(vcpu, g_context, false);
4214
	update_last_nonleaf_level(vcpu, g_context);
4215 4216
}

4217
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4218
{
4219
	if (mmu_is_nested(vcpu))
4220
		init_kvm_nested_mmu(vcpu);
4221
	else if (tdp_enabled)
4222
		init_kvm_tdp_mmu(vcpu);
4223
	else
4224
		init_kvm_softmmu(vcpu);
4225 4226
}

4227
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4228
{
4229
	kvm_mmu_unload(vcpu);
4230
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4231
}
4232
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4233 4234

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4235
{
4236 4237
	int r;

4238
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
4239 4240
	if (r)
		goto out;
4241
	r = mmu_alloc_roots(vcpu);
4242
	kvm_mmu_sync_roots(vcpu);
4243 4244
	if (r)
		goto out;
4245
	/* set_cr3() should ensure TLB has been flushed */
4246
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4247 4248
out:
	return r;
A
Avi Kivity 已提交
4249
}
A
Avi Kivity 已提交
4250 4251 4252 4253 4254
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
4255
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
4256
}
4257
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4258

4259
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4260 4261
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4262
{
4263
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4264 4265
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4266
        }
4267

A
Avi Kivity 已提交
4268
	++vcpu->kvm->stat.mmu_pte_updated;
4269
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4270 4271
}

4272 4273 4274 4275 4276 4277 4278 4279
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4280 4281
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4282 4283 4284
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4285 4286
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
4287
{
4288 4289
	u64 gentry;
	int r;
4290 4291 4292

	/*
	 * Assume that the pte write on a page table of the same type
4293 4294
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4295
	 */
4296
	if (is_pae(vcpu) && *bytes == 4) {
4297
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4298 4299
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4300
		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4301 4302
		if (r)
			gentry = 0;
4303 4304 4305
		new = (const u8 *)&gentry;
	}

4306
	switch (*bytes) {
4307 4308 4309 4310 4311 4312 4313 4314 4315
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4316 4317
	}

4318 4319 4320 4321 4322 4323 4324
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4325
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4326
{
4327 4328 4329 4330
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4331
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4332
		return false;
4333

4334 4335
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4352 4353 4354 4355 4356 4357 4358 4359

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

4397 4398
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
			      const u8 *new, int bytes)
4399 4400 4401 4402 4403 4404
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4405
	bool remote_flush, local_flush;
4406 4407 4408 4409 4410 4411 4412
	union kvm_mmu_page_role mask = { };

	mask.cr0_wp = 1;
	mask.cr4_pae = 1;
	mask.nxe = 1;
	mask.smep_andnot_wp = 1;
	mask.smap_andnot_wp = 1;
4413
	mask.smm = 1;
4414 4415 4416 4417 4418 4419 4420 4421

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

4422
	remote_flush = local_flush = false;
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4437
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4438

4439
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4440
		if (detect_write_misaligned(sp, gpa, bytes) ||
4441
		      detect_write_flooding(sp)) {
4442
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
4443
			++vcpu->kvm->stat.mmu_flooded;
4444 4445
			continue;
		}
4446 4447 4448 4449 4450

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4451
		local_flush = true;
4452
		while (npte--) {
4453
			entry = *spte;
4454
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4455 4456
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4457
			      & mask.word) && rmap_can_add(vcpu))
4458
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4459
			if (need_remote_flush(entry, *spte))
4460
				remote_flush = true;
4461
			++spte;
4462 4463
		}
	}
4464
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4465
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4466
	spin_unlock(&vcpu->kvm->mmu_lock);
4467 4468
}

4469 4470
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4471 4472
	gpa_t gpa;
	int r;
4473

4474
	if (vcpu->arch.mmu.direct_map)
4475 4476
		return 0;

4477
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4478 4479

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4480

4481
	return r;
4482
}
4483
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4484

4485
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4486
{
4487
	LIST_HEAD(invalid_list);
4488

4489 4490 4491
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4492 4493 4494
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4495

A
Avi Kivity 已提交
4496
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4497
	}
4498
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4499 4500
}

4501 4502
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4503
{
4504
	int r, emulation_type = EMULTYPE_RETRY;
4505
	enum emulation_result er;
4506
	bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4507

4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, cr2, direct);
		if (r == RET_MMIO_PF_EMULATE) {
			emulation_type = 0;
			goto emulate;
		}
		if (r == RET_MMIO_PF_RETRY)
			return 1;
		if (r < 0)
			return r;
	}
4519

G
Gleb Natapov 已提交
4520
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4521
	if (r < 0)
4522 4523 4524
		return r;
	if (!r)
		return 1;
4525

4526
	if (mmio_info_in_cache(vcpu, cr2, direct))
4527
		emulation_type = 0;
4528
emulate:
4529
	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4530 4531 4532 4533

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4534
	case EMULATE_USER_EXIT:
4535
		++vcpu->stat.mmio_exits;
4536
		/* fall through */
4537
	case EMULATE_FAIL:
4538
		return 0;
4539 4540 4541 4542 4543 4544
	default:
		BUG();
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4545 4546 4547
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4548
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4549 4550 4551 4552
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4553 4554 4555 4556 4557 4558
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4559 4560 4561 4562 4563 4564
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4565 4566
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4567
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4568 4569
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4570 4571 4572 4573
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4574
	struct page *page;
A
Avi Kivity 已提交
4575 4576
	int i;

4577 4578 4579 4580 4581 4582 4583
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4584 4585
		return -ENOMEM;

4586
	vcpu->arch.mmu.pae_root = page_address(page);
4587
	for (i = 0; i < 4; ++i)
4588
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4589

A
Avi Kivity 已提交
4590 4591 4592
	return 0;
}

4593
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4594
{
4595 4596 4597 4598
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4599

4600 4601
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4602

4603
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4604
{
4605
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4606

4607
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4608 4609
}

4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
void kvm_mmu_init_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	node->track_write = kvm_mmu_pte_write;
	kvm_page_track_register_notifier(kvm, node);
}

void kvm_mmu_uninit_vm(struct kvm *kvm)
{
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;

	kvm_page_track_unregister_notifier(kvm, node);
}

4625
/* The return value indicates if tlb flush on all vcpus is needed. */
4626
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693

/* The caller should hold mmu-lock before calling this function. */
static bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
				kvm_flush_remote_tlbs(kvm);
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
		kvm_flush_remote_tlbs(kvm);
		flush = false;
	}

	return flush;
}

static bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

X
Xiao Guangrong 已提交
4694 4695 4696 4697
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
4698
	int i;
X
Xiao Guangrong 已提交
4699 4700

	spin_lock(&kvm->mmu_lock);
4701 4702 4703 4704 4705 4706 4707 4708 4709
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
4710

4711 4712 4713 4714
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
						start, end - 1, true);
		}
X
Xiao Guangrong 已提交
4715 4716 4717 4718 4719
	}

	spin_unlock(&kvm->mmu_lock);
}

4720 4721
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
4722
{
4723
	return __rmap_write_protect(kvm, rmap_head, false);
4724 4725
}

4726 4727
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
4728
{
4729
	bool flush;
A
Avi Kivity 已提交
4730

4731
	spin_lock(&kvm->mmu_lock);
4732 4733
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
4734
	spin_unlock(&kvm->mmu_lock);
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
4754 4755
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4756
}
4757

4758
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4759
					 struct kvm_rmap_head *rmap_head)
4760 4761 4762 4763
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
4764
	kvm_pfn_t pfn;
4765 4766
	struct kvm_mmu_page *sp;

4767
restart:
4768
	for_each_rmap_spte(rmap_head, &iter, sptep) {
4769 4770 4771 4772
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
4773 4774 4775 4776 4777
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
4778 4779 4780 4781 4782 4783
		 */
		if (sp->role.direct &&
			!kvm_is_reserved_pfn(pfn) &&
			PageTransCompound(pfn_to_page(pfn))) {
			drop_spte(kvm, sptep);
			need_tlb_flush = 1;
4784 4785
			goto restart;
		}
4786 4787 4788 4789 4790 4791
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4792
				   const struct kvm_memory_slot *memslot)
4793
{
4794
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4795
	spin_lock(&kvm->mmu_lock);
4796 4797
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
4798 4799 4800
	spin_unlock(&kvm->mmu_lock);
}

4801 4802 4803
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
4804
	bool flush;
4805 4806

	spin_lock(&kvm->mmu_lock);
4807
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
4826
	bool flush;
4827 4828

	spin_lock(&kvm->mmu_lock);
4829 4830
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
4844
	bool flush;
4845 4846

	spin_lock(&kvm->mmu_lock);
4847
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

X
Xiao Guangrong 已提交
4858
#define BATCH_ZAP_PAGES	10
4859 4860 4861
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4862
	int batch = 0;
4863 4864 4865 4866

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4867 4868
		int ret;

4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4884 4885 4886 4887
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4888
		if (batch >= BATCH_ZAP_PAGES &&
4889
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4890
			batch = 0;
4891 4892 4893
			goto restart;
		}

4894 4895
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4896 4897 4898
		batch += ret;

		if (ret)
4899 4900 4901
			goto restart;
	}

4902 4903 4904 4905
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4906
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4921
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4922 4923
	kvm->arch.mmu_valid_gen++;

4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4935 4936 4937 4938
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4939 4940 4941 4942 4943
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4944
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4945 4946 4947 4948 4949
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4950
	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4951
		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4952
		kvm_mmu_invalidate_zap_all_pages(kvm);
4953
	}
4954 4955
}

4956 4957
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4958 4959
{
	struct kvm *kvm;
4960
	int nr_to_scan = sc->nr_to_scan;
4961
	unsigned long freed = 0;
4962

4963
	spin_lock(&kvm_lock);
4964 4965

	list_for_each_entry(kvm, &vm_list, vm_list) {
4966
		int idx;
4967
		LIST_HEAD(invalid_list);
4968

4969 4970 4971 4972 4973 4974 4975 4976
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4977 4978 4979 4980 4981 4982
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4983 4984
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4985 4986
			continue;

4987
		idx = srcu_read_lock(&kvm->srcu);
4988 4989
		spin_lock(&kvm->mmu_lock);

4990 4991 4992 4993 4994 4995
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4996 4997
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
4998
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4999

5000
unlock:
5001
		spin_unlock(&kvm->mmu_lock);
5002
		srcu_read_unlock(&kvm->srcu, idx);
5003

5004 5005 5006 5007 5008
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5009 5010
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5011 5012
	}

5013
	spin_unlock(&kvm_lock);
5014 5015 5016 5017 5018 5019
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5020
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5021 5022 5023
}

static struct shrinker mmu_shrinker = {
5024 5025
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5026 5027 5028
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5029
static void mmu_destroy_caches(void)
5030
{
5031 5032
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
5033 5034
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
5035 5036 5037 5038
}

int kvm_mmu_module_init(void)
{
5039 5040
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5041
					    0, 0, NULL);
5042
	if (!pte_list_desc_cache)
5043 5044
		goto nomem;

5045 5046
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5047
						  0, 0, NULL);
5048 5049 5050
	if (!mmu_page_header_cache)
		goto nomem;

5051
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5052 5053
		goto nomem;

5054 5055
	register_shrinker(&mmu_shrinker);

5056 5057 5058
	return 0;

nomem:
5059
	mmu_destroy_caches();
5060 5061 5062
	return -ENOMEM;
}

5063 5064 5065 5066 5067 5068 5069
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
5070
	struct kvm_memslots *slots;
5071
	struct kvm_memory_slot *memslot;
5072
	int i;
5073

5074 5075
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5076

5077 5078 5079
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5080 5081 5082

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
5083
			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5084 5085 5086 5087

	return nr_mmu_pages;
}

5088 5089
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5090
	kvm_mmu_unload(vcpu);
5091 5092
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
5093 5094 5095 5096 5097 5098 5099
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5100 5101
	mmu_audit_disable();
}