verifier.c 135.5 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
A
Alexei Starovoitov 已提交
23

24 25
#include "disasm.h"

26 27 28 29 30 31 32 33 34
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
35 36 37 38 39 40 41 42 43 44 45 46
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
47
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
75
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
76
 * means the register has some value, but it's not a valid pointer.
77
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
78 79
 *
 * When verifier sees load or store instructions the type of base register
80
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

142
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
143
struct bpf_verifier_stack_elem {
144 145 146 147
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
148
	struct bpf_verifier_state st;
149 150
	int insn_idx;
	int prev_insn_idx;
151
	struct bpf_verifier_stack_elem *next;
152 153
};

154
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
155 156
#define BPF_COMPLEXITY_LIMIT_STACK	1024

157 158
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

159 160
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
161
	bool raw_mode;
162
	bool pkt_access;
163 164
	int regno;
	int access_size;
165 166
};

167 168 169 170 171 172
static DEFINE_MUTEX(bpf_verifier_lock);

/* log_level controls verbosity level of eBPF verifier.
 * verbose() is used to dump the verification trace to the log, so the user
 * can figure out what's wrong with the program
 */
173 174
static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
				   const char *fmt, ...)
175
{
176
	struct bpf_verifer_log *log = &env->log;
177
	unsigned int n;
178 179
	va_list args;

180
	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 182 183
		return;

	va_start(args, fmt);
184
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185
	va_end(args);
186 187 188 189 190 191 192 193 194 195 196

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
197 198
}

199 200 201 202 203 204
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

205 206 207
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
208
	[SCALAR_VALUE]		= "inv",
209 210 211 212 213
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
214
	[PTR_TO_PACKET]		= "pkt",
215
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
216
	[PTR_TO_PACKET_END]	= "pkt_end",
217 218
};

219 220
static void print_verifier_state(struct bpf_verifier_env *env,
				 struct bpf_verifier_state *state)
221
{
222
	struct bpf_reg_state *reg;
223 224 225 226
	enum bpf_reg_type t;
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
227 228
		reg = &state->regs[i];
		t = reg->type;
229 230
		if (t == NOT_INIT)
			continue;
231
		verbose(env, " R%d=%s", i, reg_type_str[t]);
232 233 234
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
235
			verbose(env, "%lld", reg->var_off.value + reg->off);
236
		} else {
237
			verbose(env, "(id=%d", reg->id);
238
			if (t != SCALAR_VALUE)
239
				verbose(env, ",off=%d", reg->off);
240
			if (type_is_pkt_pointer(t))
241
				verbose(env, ",r=%d", reg->range);
242 243 244
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
245
				verbose(env, ",ks=%d,vs=%d",
246 247
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
248 249 250 251 252
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
253
				verbose(env, ",imm=%llx", reg->var_off.value);
254 255 256
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
257
					verbose(env, ",smin_value=%lld",
258 259 260
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
261
					verbose(env, ",smax_value=%lld",
262 263
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
264
					verbose(env, ",umin_value=%llu",
265 266
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
267
					verbose(env, ",umax_value=%llu",
268 269 270
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
271

272
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273
					verbose(env, ",var_off=%s", tn_buf);
274
				}
275
			}
276
			verbose(env, ")");
277
		}
278
	}
279 280 281 282 283
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] == STACK_SPILL)
			verbose(env, " fp%d=%s",
				-MAX_BPF_STACK + i * BPF_REG_SIZE,
				reg_type_str[state->stack[i].spilled_ptr.type]);
284
	}
285
	verbose(env, "\n");
286 287
}

288 289
static int copy_stack_state(struct bpf_verifier_state *dst,
			    const struct bpf_verifier_state *src)
290
{
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	if (!src->stack)
		return 0;
	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
		/* internal bug, make state invalid to reject the program */
		memset(dst, 0, sizeof(*dst));
		return -EFAULT;
	}
	memcpy(dst->stack, src->stack,
	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
	return 0;
}

/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 * make it consume minimal amount of memory. check_stack_write() access from
 * the program calls into realloc_verifier_state() to grow the stack size.
 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 * which this function copies over. It points to previous bpf_verifier_state
 * which is never reallocated
 */
static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
				  bool copy_old)
{
	u32 old_size = state->allocated_stack;
	struct bpf_stack_state *new_stack;
	int slot = size / BPF_REG_SIZE;

	if (size <= old_size || !size) {
		if (copy_old)
			return 0;
		state->allocated_stack = slot * BPF_REG_SIZE;
		if (!size && old_size) {
			kfree(state->stack);
			state->stack = NULL;
		}
		return 0;
	}
	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
				  GFP_KERNEL);
	if (!new_stack)
		return -ENOMEM;
	if (copy_old) {
		if (state->stack)
			memcpy(new_stack, state->stack,
			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
		memset(new_stack + old_size / BPF_REG_SIZE, 0,
		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
	}
	state->allocated_stack = slot * BPF_REG_SIZE;
	kfree(state->stack);
	state->stack = new_stack;
	return 0;
}

344 345
static void free_verifier_state(struct bpf_verifier_state *state,
				bool free_self)
346 347
{
	kfree(state->stack);
348 349
	if (free_self)
		kfree(state);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
}

/* copy verifier state from src to dst growing dst stack space
 * when necessary to accommodate larger src stack
 */
static int copy_verifier_state(struct bpf_verifier_state *dst,
			       const struct bpf_verifier_state *src)
{
	int err;

	err = realloc_verifier_state(dst, src->allocated_stack, false);
	if (err)
		return err;
	memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
	return copy_stack_state(dst, src);
}

static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
		     int *insn_idx)
{
	struct bpf_verifier_state *cur = env->cur_state;
	struct bpf_verifier_stack_elem *elem, *head = env->head;
	int err;
373 374

	if (env->head == NULL)
375
		return -ENOENT;
376

377 378 379 380 381 382 383
	if (cur) {
		err = copy_verifier_state(cur, &head->st);
		if (err)
			return err;
	}
	if (insn_idx)
		*insn_idx = head->insn_idx;
384
	if (prev_insn_idx)
385 386
		*prev_insn_idx = head->prev_insn_idx;
	elem = head->next;
387
	free_verifier_state(&head->st, false);
388
	kfree(head);
389 390
	env->head = elem;
	env->stack_size--;
391
	return 0;
392 393
}

394 395
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
396
{
397
	struct bpf_verifier_state *cur = env->cur_state;
398
	struct bpf_verifier_stack_elem *elem;
399
	int err;
400

401
	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
402 403 404 405 406 407 408 409
	if (!elem)
		goto err;

	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
410 411 412
	err = copy_verifier_state(&elem->st, cur);
	if (err)
		goto err;
413
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
414
		verbose(env, "BPF program is too complex\n");
415 416 417 418 419
		goto err;
	}
	return &elem->st;
err:
	/* pop all elements and return */
420
	while (!pop_stack(env, NULL, NULL));
421 422 423 424 425 426 427 428
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

429 430
static void __mark_reg_not_init(struct bpf_reg_state *reg);

431 432 433 434 435 436 437 438 439 440 441 442 443
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

444 445 446 447
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
448
{
449
	__mark_reg_known(reg, 0);
450
}
451

452 453
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
454 455
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
456
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
457 458 459 460 461 462 463 464
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

556 557 558 559 560 561 562
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
563
	__mark_reg_unbounded(reg);
564 565
}

566 567
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
568 569
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
570
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
571 572 573 574 575 576 577 578 579 580 581 582 583 584
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

585 586
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
587 588
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
589
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
590 591 592 593 594 595
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
596 597
}

598 599
static void init_reg_state(struct bpf_verifier_env *env,
			   struct bpf_reg_state *regs)
600 601 602
{
	int i;

603
	for (i = 0; i < MAX_BPF_REG; i++) {
604
		mark_reg_not_init(env, regs, i);
605 606
		regs[i].live = REG_LIVE_NONE;
	}
607 608

	/* frame pointer */
609
	regs[BPF_REG_FP].type = PTR_TO_STACK;
610
	mark_reg_known_zero(env, regs, BPF_REG_FP);
611 612 613

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
614
	mark_reg_known_zero(env, regs, BPF_REG_1);
615 616
}

617 618 619 620 621 622
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

623 624 625 626
static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
{
	struct bpf_verifier_state *parent = state->parent;

A
Alexei Starovoitov 已提交
627 628 629 630
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
		return;

631 632 633 634 635 636 637 638 639 640 641 642
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
		if (state->regs[regno].live & REG_LIVE_WRITTEN)
			break;
		/* ... then we depend on parent's value */
		parent->regs[regno].live |= REG_LIVE_READ;
		state = parent;
		parent = state->parent;
	}
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
643 644
			 enum reg_arg_type t)
{
645
	struct bpf_reg_state *regs = env->cur_state->regs;
646

647
	if (regno >= MAX_BPF_REG) {
648
		verbose(env, "R%d is invalid\n", regno);
649 650 651 652 653 654
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
655
			verbose(env, "R%d !read_ok\n", regno);
656 657
			return -EACCES;
		}
658
		mark_reg_read(env->cur_state, regno);
659 660 661
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
662
			verbose(env, "frame pointer is read only\n");
663 664
			return -EACCES;
		}
665
		regs[regno].live |= REG_LIVE_WRITTEN;
666
		if (t == DST_OP)
667
			mark_reg_unknown(env, regs, regno);
668 669 670 671
	}
	return 0;
}

672 673 674 675 676 677 678
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
679
	case PTR_TO_PACKET:
680
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
681
	case PTR_TO_PACKET_END:
682 683 684 685 686 687 688
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

689 690 691
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
692 693
static int check_stack_write(struct bpf_verifier_env *env,
			     struct bpf_verifier_state *state, int off,
694
			     int size, int value_regno)
695
{
696 697 698 699 700 701
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;

	err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
				     true);
	if (err)
		return err;
702 703 704
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
705 706 707 708 709 710
	if (!env->allow_ptr_leaks &&
	    state->stack[spi].slot_type[0] == STACK_SPILL &&
	    size != BPF_REG_SIZE) {
		verbose(env, "attempt to corrupt spilled pointer on stack\n");
		return -EACCES;
	}
711 712

	if (value_regno >= 0 &&
713
	    is_spillable_regtype(state->regs[value_regno].type)) {
714 715

		/* register containing pointer is being spilled into stack */
716
		if (size != BPF_REG_SIZE) {
717
			verbose(env, "invalid size of register spill\n");
718 719 720 721
			return -EACCES;
		}

		/* save register state */
722 723
		state->stack[spi].spilled_ptr = state->regs[value_regno];
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
724

725
		for (i = 0; i < BPF_REG_SIZE; i++)
726
			state->stack[spi].slot_type[i] = STACK_SPILL;
727
	} else {
728
		/* regular write of data into stack */
729
		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
730 731

		for (i = 0; i < size; i++)
732 733
			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
				STACK_MISC;
734 735 736 737
	}
	return 0;
}

738 739 740 741 742 743
static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
{
	struct bpf_verifier_state *parent = state->parent;

	while (parent) {
		/* if read wasn't screened by an earlier write ... */
744
		if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
745 746
			break;
		/* ... then we depend on parent's value */
747
		parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
748 749 750 751 752
		state = parent;
		parent = state->parent;
	}
}

753 754
static int check_stack_read(struct bpf_verifier_env *env,
			    struct bpf_verifier_state *state, int off, int size,
755 756
			    int value_regno)
{
757 758
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
	u8 *stype;
759

760 761 762 763 764 765
	if (state->allocated_stack <= slot) {
		verbose(env, "invalid read from stack off %d+0 size %d\n",
			off, size);
		return -EACCES;
	}
	stype = state->stack[spi].slot_type;
766

767
	if (stype[0] == STACK_SPILL) {
768
		if (size != BPF_REG_SIZE) {
769
			verbose(env, "invalid size of register spill\n");
770 771
			return -EACCES;
		}
772
		for (i = 1; i < BPF_REG_SIZE; i++) {
773
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
774
				verbose(env, "corrupted spill memory\n");
775 776 777 778
				return -EACCES;
			}
		}

779
		if (value_regno >= 0) {
780
			/* restore register state from stack */
781
			state->regs[value_regno] = state->stack[spi].spilled_ptr;
782 783
			mark_stack_slot_read(state, spi);
		}
784 785 786
		return 0;
	} else {
		for (i = 0; i < size; i++) {
787
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
788
				verbose(env, "invalid read from stack off %d+%d size %d\n",
789 790 791 792 793 794
					off, i, size);
				return -EACCES;
			}
		}
		if (value_regno >= 0)
			/* have read misc data from the stack */
795
			mark_reg_unknown(env, state->regs, value_regno);
796 797 798 799 800
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
801
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
802
			      int size, bool zero_size_allowed)
803
{
804 805
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_map *map = regs[regno].map_ptr;
806

807 808
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    off + size > map->value_size) {
809
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
810 811 812 813 814 815
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

816 817
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
818
			    int off, int size, bool zero_size_allowed)
819
{
820
	struct bpf_verifier_state *state = env->cur_state;
821 822 823
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

824 825 826
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
827
	 */
828 829
	if (env->log.level)
		print_verifier_state(env, state);
830 831 832 833 834 835
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
836
	if (reg->smin_value < 0) {
837
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
838 839 840
			regno);
		return -EACCES;
	}
841 842
	err = __check_map_access(env, regno, reg->smin_value + off, size,
				 zero_size_allowed);
843
	if (err) {
844 845
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
846 847 848
		return err;
	}

849 850 851
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
852
	 */
853
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
854
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
855 856 857
			regno);
		return -EACCES;
	}
858 859
	err = __check_map_access(env, regno, reg->umax_value + off, size,
				 zero_size_allowed);
860
	if (err)
861 862
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
863
	return err;
864 865
}

A
Alexei Starovoitov 已提交
866 867
#define MAX_PACKET_OFF 0xffff

868
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
869 870
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
871
{
872
	switch (env->prog->type) {
873 874 875 876 877
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
878
		/* fallthrough */
879 880
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
881
	case BPF_PROG_TYPE_XDP:
882
	case BPF_PROG_TYPE_LWT_XMIT:
883
	case BPF_PROG_TYPE_SK_SKB:
884 885 886 887
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
888 889 890 891 892 893
		return true;
	default:
		return false;
	}
}

894
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
895
				 int off, int size, bool zero_size_allowed)
A
Alexei Starovoitov 已提交
896
{
897
	struct bpf_reg_state *regs = cur_regs(env);
898
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
899

900 901
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    (u64)off + size > reg->range) {
902
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
903
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
904 905 906 907 908
		return -EACCES;
	}
	return 0;
}

909
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
910
			       int size, bool zero_size_allowed)
911
{
912
	struct bpf_reg_state *regs = cur_regs(env);
913 914 915 916 917 918 919 920 921 922 923
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
924
	if (reg->smin_value < 0) {
925
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
926 927 928
			regno);
		return -EACCES;
	}
929
	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
930
	if (err) {
931
		verbose(env, "R%d offset is outside of the packet\n", regno);
932 933 934 935 936 937
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
938
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
939
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
940
{
941 942 943
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
944

945 946
	if (env->ops->is_valid_access &&
	    env->ops->is_valid_access(off, size, t, &info)) {
947 948 949 950 951 952
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
953
		 */
954
		*reg_type = info.reg_type;
955

956
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
957 958 959
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
960
		return 0;
961
	}
962

963
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
964 965 966
	return -EACCES;
}

967 968
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
969
{
970
	if (allow_ptr_leaks)
971 972
		return false;

973
	return reg->type != SCALAR_VALUE;
974 975
}

976 977
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
978
	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
979 980
}

981 982
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
983
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
984
{
985
	struct tnum reg_off;
986
	int ip_align;
987 988 989 990 991

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

992 993 994 995 996 997 998
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
999
	 */
1000
	ip_align = 2;
1001 1002 1003 1004 1005 1006

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1007 1008
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
1009
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1010 1011
		return -EACCES;
	}
1012

A
Alexei Starovoitov 已提交
1013 1014 1015
	return 0;
}

1016 1017
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
1018 1019
				       const char *pointer_desc,
				       int off, int size, bool strict)
1020
{
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1032
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1033
			pointer_desc, tn_buf, reg->off, off, size);
1034 1035 1036
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1037 1038 1039
	return 0;
}

1040 1041
static int check_ptr_alignment(struct bpf_verifier_env *env,
			       const struct bpf_reg_state *reg,
1042 1043
			       int off, int size)
{
1044
	bool strict = env->strict_alignment;
1045
	const char *pointer_desc = "";
1046

1047 1048
	switch (reg->type) {
	case PTR_TO_PACKET:
1049 1050 1051 1052
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
1053
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1054 1055 1056 1057 1058 1059 1060 1061 1062
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
		break;
1063
	default:
1064
		break;
1065
	}
1066 1067
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
1068 1069
}

1070 1071 1072 1073 1074 1075
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1076
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1077 1078 1079
			    int bpf_size, enum bpf_access_type t,
			    int value_regno)
{
1080 1081 1082
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_reg_state *reg = regs + regno;
1083 1084 1085 1086 1087 1088
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1089
	/* alignment checks will add in reg->off themselves */
1090
	err = check_ptr_alignment(env, reg, off, size);
A
Alexei Starovoitov 已提交
1091 1092
	if (err)
		return err;
1093

1094 1095 1096 1097
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1098 1099
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1100
			verbose(env, "R%d leaks addr into map\n", value_regno);
1101 1102
			return -EACCES;
		}
1103

1104
		err = check_map_access(env, regno, off, size, false);
1105
		if (!err && t == BPF_READ && value_regno >= 0)
1106
			mark_reg_unknown(env, regs, value_regno);
1107

A
Alexei Starovoitov 已提交
1108
	} else if (reg->type == PTR_TO_CTX) {
1109
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1110

1111 1112
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1113
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1114 1115
			return -EACCES;
		}
1116 1117 1118
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
1119
		if (reg->off) {
1120 1121
			verbose(env,
				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1122 1123 1124 1125
				regno, reg->off, off - reg->off);
			return -EACCES;
		}
		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1126 1127 1128
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1129 1130
			verbose(env,
				"variable ctx access var_off=%s off=%d size=%d",
1131 1132 1133
				tn_buf, off, size);
			return -EACCES;
		}
1134
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1135
		if (!err && t == BPF_READ && value_regno >= 0) {
1136
			/* ctx access returns either a scalar, or a
1137 1138
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1139 1140
			 */
			if (reg_type == SCALAR_VALUE)
1141
				mark_reg_unknown(env, regs, value_regno);
1142
			else
1143
				mark_reg_known_zero(env, regs,
1144
						    value_regno);
1145 1146 1147 1148
			regs[value_regno].id = 0;
			regs[value_regno].off = 0;
			regs[value_regno].range = 0;
			regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1149
		}
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1160
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1161 1162 1163 1164
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1165
		if (off >= 0 || off < -MAX_BPF_STACK) {
1166 1167
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1168 1169
			return -EACCES;
		}
1170 1171 1172 1173

		if (env->prog->aux->stack_depth < -off)
			env->prog->aux->stack_depth = -off;

1174
		if (t == BPF_WRITE)
1175 1176
			err = check_stack_write(env, state, off, size,
						value_regno);
1177
		else
1178 1179
			err = check_stack_read(env, state, off, size,
					       value_regno);
1180
	} else if (reg_is_pkt_pointer(reg)) {
1181
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1182
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1183 1184
			return -EACCES;
		}
1185 1186
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1187 1188
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1189 1190
			return -EACCES;
		}
1191
		err = check_packet_access(env, regno, off, size, false);
A
Alexei Starovoitov 已提交
1192
		if (!err && t == BPF_READ && value_regno >= 0)
1193
			mark_reg_unknown(env, regs, value_regno);
1194
	} else {
1195 1196
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1197 1198
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1199

1200
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1201
	    regs[value_regno].type == SCALAR_VALUE) {
1202
		/* b/h/w load zero-extends, mark upper bits as known 0 */
1203 1204 1205
		regs[value_regno].var_off =
			tnum_cast(regs[value_regno].var_off, size);
		__update_reg_bounds(&regs[value_regno]);
A
Alexei Starovoitov 已提交
1206
	}
1207 1208 1209
	return err;
}

1210
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1211 1212 1213 1214 1215
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1216
		verbose(env, "BPF_XADD uses reserved fields\n");
1217 1218 1219 1220
		return -EINVAL;
	}

	/* check src1 operand */
1221
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1222 1223 1224 1225
	if (err)
		return err;

	/* check src2 operand */
1226
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1227 1228 1229
	if (err)
		return err;

1230
	if (is_pointer_value(env, insn->src_reg)) {
1231
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1232 1233 1234
		return -EACCES;
	}

1235
	/* check whether atomic_add can read the memory */
1236
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1237 1238 1239 1240 1241
			       BPF_SIZE(insn->code), BPF_READ, -1);
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1242
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1243 1244 1245
				BPF_SIZE(insn->code), BPF_WRITE, -1);
}

1246 1247 1248 1249 1250 1251
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state reg)
{
	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
}

1252 1253
/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1254 1255 1256
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1257
 */
1258
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1259 1260
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1261
{
1262
	struct bpf_verifier_state *state = env->cur_state;
1263
	struct bpf_reg_state *regs = state->regs;
1264
	int off, i, slot, spi;
1265

1266
	if (regs[regno].type != PTR_TO_STACK) {
1267
		/* Allow zero-byte read from NULL, regardless of pointer type */
1268
		if (zero_size_allowed && access_size == 0 &&
1269
		    register_is_null(regs[regno]))
1270 1271
			return 0;

1272
		verbose(env, "R%d type=%s expected=%s\n", regno,
1273 1274
			reg_type_str[regs[regno].type],
			reg_type_str[PTR_TO_STACK]);
1275
		return -EACCES;
1276
	}
1277

1278 1279 1280 1281 1282
	/* Only allow fixed-offset stack reads */
	if (!tnum_is_const(regs[regno].var_off)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1283
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1284 1285 1286
			regno, tn_buf);
	}
	off = regs[regno].off + regs[regno].var_off.value;
1287
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1288
	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1289
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1290 1291 1292 1293
			regno, off, access_size);
		return -EACCES;
	}

1294 1295 1296
	if (env->prog->aux->stack_depth < -off)
		env->prog->aux->stack_depth = -off;

1297 1298 1299 1300 1301 1302
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1303
	for (i = 0; i < access_size; i++) {
1304 1305 1306 1307 1308
		slot = -(off + i) - 1;
		spi = slot / BPF_REG_SIZE;
		if (state->allocated_stack <= slot ||
		    state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
			STACK_MISC) {
1309
			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1310 1311 1312 1313 1314 1315 1316
				off, i, access_size);
			return -EACCES;
		}
	}
	return 0;
}

1317 1318 1319 1320
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1321
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1322

1323
	switch (reg->type) {
1324
	case PTR_TO_PACKET:
1325
	case PTR_TO_PACKET_META:
1326 1327
		return check_packet_access(env, regno, reg->off, access_size,
					   zero_size_allowed);
1328
	case PTR_TO_MAP_VALUE:
1329 1330
		return check_map_access(env, regno, reg->off, access_size,
					zero_size_allowed);
1331
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1332 1333 1334 1335 1336
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1337
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1338 1339
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1340
{
1341
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1342
	enum bpf_reg_type expected_type, type = reg->type;
1343 1344
	int err = 0;

1345
	if (arg_type == ARG_DONTCARE)
1346 1347
		return 0;

1348 1349 1350
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1351

1352 1353
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1354 1355
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1356 1357
			return -EACCES;
		}
1358
		return 0;
1359
	}
1360

1361
	if (type_is_pkt_pointer(type) &&
1362
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1363
		verbose(env, "helper access to the packet is not allowed\n");
1364 1365 1366
		return -EACCES;
	}

1367
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1368 1369
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1370 1371
		if (!type_is_pkt_pointer(type) &&
		    type != expected_type)
1372
			goto err_type;
1373 1374
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1375 1376
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1377
			goto err_type;
1378 1379
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1380 1381
		if (type != expected_type)
			goto err_type;
1382 1383
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1384 1385
		if (type != expected_type)
			goto err_type;
1386
	} else if (arg_type == ARG_PTR_TO_MEM ||
1387
		   arg_type == ARG_PTR_TO_MEM_OR_NULL ||
1388
		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1389 1390
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1391
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1392 1393
		 * happens during stack boundary checking.
		 */
1394 1395
		if (register_is_null(*reg) &&
		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1396
			/* final test in check_stack_boundary() */;
1397 1398
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
1399
			 type != expected_type)
1400
			goto err_type;
1401
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1402
	} else {
1403
		verbose(env, "unsupported arg_type %d\n", arg_type);
1404 1405 1406 1407 1408
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1409
		meta->map_ptr = reg->map_ptr;
1410 1411 1412 1413 1414
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1415
		if (!meta->map_ptr) {
1416 1417 1418 1419 1420
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
1421
			verbose(env, "invalid map_ptr to access map->key\n");
1422 1423
			return -EACCES;
		}
1424
		if (type_is_pkt_pointer(type))
1425
			err = check_packet_access(env, regno, reg->off,
1426 1427
						  meta->map_ptr->key_size,
						  false);
1428 1429 1430 1431
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1432 1433 1434 1435
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1436
		if (!meta->map_ptr) {
1437
			/* kernel subsystem misconfigured verifier */
1438
			verbose(env, "invalid map_ptr to access map->value\n");
1439 1440
			return -EACCES;
		}
1441
		if (type_is_pkt_pointer(type))
1442
			err = check_packet_access(env, regno, reg->off,
1443 1444
						  meta->map_ptr->value_size,
						  false);
1445 1446 1447 1448
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1449 1450 1451
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1452 1453 1454 1455 1456 1457 1458

		/* bpf_xxx(..., buf, len) call will access 'len' bytes
		 * from stack pointer 'buf'. Check it
		 * note: regno == len, regno - 1 == buf
		 */
		if (regno == 0) {
			/* kernel subsystem misconfigured verifier */
1459 1460
			verbose(env,
				"ARG_CONST_SIZE cannot be first argument\n");
1461 1462
			return -EACCES;
		}
1463

1464 1465
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
1466
		 */
1467 1468

		if (!tnum_is_const(reg->var_off))
1469 1470 1471 1472 1473 1474 1475
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

1476
		if (reg->smin_value < 0) {
1477
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1478 1479 1480
				regno);
			return -EACCES;
		}
1481

1482
		if (reg->umin_value == 0) {
1483 1484 1485
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
1486 1487 1488
			if (err)
				return err;
		}
1489

1490
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1491
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1492 1493 1494 1495
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
1496
					      reg->umax_value,
1497
					      zero_size_allowed, meta);
1498 1499 1500
	}

	return err;
1501
err_type:
1502
	verbose(env, "R%d type=%s expected=%s\n", regno,
1503 1504
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
1505 1506
}

1507 1508
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
1509 1510 1511 1512
{
	if (!map)
		return 0;

1513 1514 1515 1516 1517 1518 1519 1520
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
1521 1522
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
1523 1524 1525 1526 1527 1528
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
1529
	case BPF_MAP_TYPE_CGROUP_ARRAY:
1530
		if (func_id != BPF_FUNC_skb_under_cgroup &&
1531
		    func_id != BPF_FUNC_current_task_under_cgroup)
1532 1533
			goto error;
		break;
1534 1535 1536 1537 1538
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
1539
		if (func_id != BPF_FUNC_redirect_map)
1540 1541
			goto error;
		break;
1542 1543 1544 1545 1546
	/* Restrict bpf side of cpumap, open when use-cases appear */
	case BPF_MAP_TYPE_CPUMAP:
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
1547
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
1548
	case BPF_MAP_TYPE_HASH_OF_MAPS:
1549 1550
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
1551
		break;
1552 1553 1554 1555 1556 1557
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
		    func_id != BPF_FUNC_map_delete_elem)
			goto error;
		break;
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
1570
	case BPF_FUNC_perf_event_read_value:
1571 1572 1573 1574 1575 1576 1577
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
1578
	case BPF_FUNC_current_task_under_cgroup:
1579
	case BPF_FUNC_skb_under_cgroup:
1580 1581 1582
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
1583
	case BPF_FUNC_redirect_map:
1584 1585
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
		    map->map_type != BPF_MAP_TYPE_CPUMAP)
1586 1587
			goto error;
		break;
1588 1589 1590 1591 1592 1593 1594 1595
	case BPF_FUNC_sk_redirect_map:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
1596 1597
	default:
		break;
1598 1599 1600
	}

	return 0;
1601
error:
1602
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
1603
		map->map_type, func_id_name(func_id), func_id);
1604
	return -EINVAL;
1605 1606
}

1607 1608 1609 1610
static int check_raw_mode(const struct bpf_func_proto *fn)
{
	int count = 0;

1611
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1612
		count++;
1613
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1614
		count++;
1615
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1616
		count++;
1617
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1618
		count++;
1619
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1620 1621 1622 1623 1624
		count++;

	return count > 1 ? -EINVAL : 0;
}

1625 1626
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
1627
 */
1628
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
A
Alexei Starovoitov 已提交
1629
{
1630
	struct bpf_verifier_state *state = env->cur_state;
1631
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
1632 1633 1634
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
1635
		if (reg_is_pkt_pointer_any(&regs[i]))
1636
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
1637

1638 1639
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
1640
			continue;
1641
		reg = &state->stack[i].spilled_ptr;
1642 1643
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
1644 1645 1646
	}
}

1647
static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1648 1649
{
	const struct bpf_func_proto *fn = NULL;
1650
	struct bpf_reg_state *regs;
1651
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
1652
	bool changes_data;
1653 1654 1655 1656
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1657 1658
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
1659 1660 1661
		return -EINVAL;
	}

1662 1663
	if (env->ops->get_func_proto)
		fn = env->ops->get_func_proto(func_id);
1664 1665

	if (!fn) {
1666 1667
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
1668 1669 1670 1671
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1672
	if (!env->prog->gpl_compatible && fn->gpl_only) {
1673
		verbose(env, "cannot call GPL only function from proprietary program\n");
1674 1675 1676
		return -EINVAL;
	}

1677
	/* With LD_ABS/IND some JITs save/restore skb from r1. */
1678
	changes_data = bpf_helper_changes_pkt_data(fn->func);
1679 1680 1681 1682 1683
	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
			func_id_name(func_id), func_id);
		return -EINVAL;
	}
A
Alexei Starovoitov 已提交
1684

1685
	memset(&meta, 0, sizeof(meta));
1686
	meta.pkt_access = fn->pkt_access;
1687

1688 1689 1690 1691 1692
	/* We only support one arg being in raw mode at the moment, which
	 * is sufficient for the helper functions we have right now.
	 */
	err = check_raw_mode(fn);
	if (err) {
1693
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1694
			func_id_name(func_id), func_id);
1695 1696 1697
		return err;
	}

1698
	/* check args */
1699
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1700 1701
	if (err)
		return err;
1702
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1703 1704
	if (err)
		return err;
1705
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1706 1707
	if (err)
		return err;
1708
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1709 1710
	if (err)
		return err;
1711
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1712 1713 1714
	if (err)
		return err;

1715 1716 1717 1718
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
1719
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1720 1721 1722 1723
		if (err)
			return err;
	}

1724
	regs = cur_regs(env);
1725
	/* reset caller saved regs */
1726
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1727
		mark_reg_not_init(env, regs, caller_saved[i]);
1728 1729
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
1730

1731
	/* update return register (already marked as written above) */
1732
	if (fn->ret_type == RET_INTEGER) {
1733
		/* sets type to SCALAR_VALUE */
1734
		mark_reg_unknown(env, regs, BPF_REG_0);
1735 1736 1737
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1738 1739
		struct bpf_insn_aux_data *insn_aux;

1740
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1741
		/* There is no offset yet applied, variable or fixed */
1742
		mark_reg_known_zero(env, regs, BPF_REG_0);
1743
		regs[BPF_REG_0].off = 0;
1744 1745 1746 1747
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
1748
		if (meta.map_ptr == NULL) {
1749 1750
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
1751 1752
			return -EINVAL;
		}
1753
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1754
		regs[BPF_REG_0].id = ++env->id_gen;
1755 1756 1757 1758 1759
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1760
	} else {
1761
		verbose(env, "unknown return type %d of func %s#%d\n",
1762
			fn->ret_type, func_id_name(func_id), func_id);
1763 1764
		return -EINVAL;
	}
1765

1766
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1767 1768
	if (err)
		return err;
1769

A
Alexei Starovoitov 已提交
1770 1771 1772 1773 1774
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

1775 1776 1777 1778
static void coerce_reg_to_32(struct bpf_reg_state *reg)
{
	/* clear high 32 bits */
	reg->var_off = tnum_cast(reg->var_off, 4);
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	/* Update bounds */
	__update_reg_bounds(reg);
}

static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
1801 1802
}

1803 1804 1805 1806 1807 1808 1809 1810 1811
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
1812
{
1813
	struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
1814
	bool known = tnum_is_const(off_reg->var_off);
1815 1816 1817 1818
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
1819
	u8 opcode = BPF_OP(insn->code);
1820
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
1821

1822
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
1823

1824
	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1825
		print_verifier_state(env, env->cur_state);
1826 1827
		verbose(env,
			"verifier internal error: known but bad sbounds\n");
1828 1829 1830
		return -EINVAL;
	}
	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1831
		print_verifier_state(env, env->cur_state);
1832 1833
		verbose(env,
			"verifier internal error: known but bad ubounds\n");
1834 1835 1836 1837 1838 1839
		return -EINVAL;
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
		if (!env->allow_ptr_leaks)
1840 1841
			verbose(env,
				"R%d 32-bit pointer arithmetic prohibited\n",
1842 1843
				dst);
		return -EACCES;
A
Alexei Starovoitov 已提交
1844 1845
	}

1846 1847
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
		if (!env->allow_ptr_leaks)
1848
			verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1849 1850 1851 1852 1853
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
		if (!env->allow_ptr_leaks)
1854
			verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1855 1856 1857 1858 1859
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
		if (!env->allow_ptr_leaks)
1860
			verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1861 1862 1863 1864 1865 1866
				dst);
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
1867
	 */
1868 1869
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
1870

1871 1872 1873 1874
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
1875
		 */
1876 1877
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
1878
			/* pointer += K.  Accumulate it into fixed offset */
1879 1880 1881 1882
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1883
			dst_reg->var_off = ptr_reg->var_off;
1884
			dst_reg->off = ptr_reg->off + smin_val;
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
1896
		 */
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
1913 1914
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
1915
		if (reg_is_pkt_pointer(ptr_reg)) {
1916 1917 1918 1919 1920 1921 1922 1923 1924
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
			if (!env->allow_ptr_leaks)
1925
				verbose(env, "R%d tried to subtract pointer from scalar\n",
1926 1927 1928 1929 1930 1931
					dst);
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
1932
		 */
1933 1934
		if (ptr_reg->type == PTR_TO_STACK) {
			if (!env->allow_ptr_leaks)
1935
				verbose(env, "R%d subtraction from stack pointer prohibited\n",
1936 1937 1938
					dst);
			return -EACCES;
		}
1939 1940
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
1941
			/* pointer -= K.  Subtract it from fixed offset */
1942 1943 1944 1945
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1946 1947
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
1948
			dst_reg->off = ptr_reg->off - smin_val;
1949 1950 1951 1952 1953
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
1954
		 */
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
1973 1974
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
1975
		if (reg_is_pkt_pointer(ptr_reg)) {
1976 1977
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
1978
			if (smin_val < 0)
1979
				dst_reg->range = 0;
1980
		}
1981 1982 1983 1984 1985 1986 1987 1988 1989
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
		/* bitwise ops on pointers are troublesome, prohibit for now.
		 * (However, in principle we could allow some cases, e.g.
		 * ptr &= ~3 which would reduce min_value by 3.)
		 */
		if (!env->allow_ptr_leaks)
1990
			verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
1991 1992 1993 1994 1995
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
		if (!env->allow_ptr_leaks)
1996
			verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
1997 1998
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
1999 2000
	}

2001 2002 2003
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2004 2005 2006
	return 0;
}

2007 2008 2009 2010
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
2011
{
2012
	struct bpf_reg_state *regs = cur_regs(env);
2013
	u8 opcode = BPF_OP(insn->code);
2014
	bool src_known, dst_known;
2015 2016
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
2017

2018 2019 2020 2021
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->64 */
		coerce_reg_to_32(dst_reg);
		coerce_reg_to_32(&src_reg);
2022
	}
2023 2024 2025 2026
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
2027 2028
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
2029

2030 2031
	switch (opcode) {
	case BPF_ADD:
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2048
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2049 2050
		break;
	case BPF_SUB:
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2069
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2070 2071
		break;
	case BPF_MUL:
2072 2073
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2074
			/* Ain't nobody got time to multiply that sign */
2075 2076
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2077 2078
			break;
		}
2079 2080
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2081
		 */
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2099 2100
		break;
	case BPF_AND:
2101
		if (src_known && dst_known) {
2102 2103
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2104 2105
			break;
		}
2106 2107
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2108
		 */
2109
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2127 2128 2129
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2130 2131
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2132 2133
			break;
		}
2134 2135
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2136 2137
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2138 2139 2140 2141 2142 2143 2144 2145 2146
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2147
		} else {
2148 2149 2150 2151 2152
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2153
		}
2154 2155
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2156 2157
		break;
	case BPF_LSH:
2158 2159 2160 2161
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2162
			mark_reg_unknown(env, regs, insn->dst_reg);
2163 2164
			break;
		}
2165 2166
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2167
		 */
2168 2169 2170 2171 2172 2173
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2174
		} else {
2175 2176
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2177
		}
2178 2179 2180 2181 2182 2183
		if (src_known)
			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
		else
			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2184 2185
		break;
	case BPF_RSH:
2186 2187 2188 2189
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2190
			mark_reg_unknown(env, regs, insn->dst_reg);
2191 2192
			break;
		}
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
		 * be negative, then either:
		 * 1) src_reg might be zero, so the sign bit of the result is
		 *    unknown, so we lose our signed bounds
		 * 2) it's known negative, thus the unsigned bounds capture the
		 *    signed bounds
		 * 3) the signed bounds cross zero, so they tell us nothing
		 *    about the result
		 * If the value in dst_reg is known nonnegative, then again the
		 * unsigned bounts capture the signed bounds.
		 * Thus, in all cases it suffices to blow away our signed bounds
		 * and rely on inferring new ones from the unsigned bounds and
		 * var_off of the result.
		 */
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
2209
		if (src_known)
2210 2211
			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
						       umin_val);
2212
		else
2213 2214 2215 2216 2217
			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2218 2219
		break;
	default:
2220
		mark_reg_unknown(env, regs, insn->dst_reg);
2221 2222 2223
		break;
	}

2224 2225
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2226 2227 2228 2229 2230 2231 2232 2233 2234
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
2235
	struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);
	int rc;

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
				 * an arbitrary scalar.
				 */
				if (!env->allow_ptr_leaks) {
2252
					verbose(env, "R%d pointer %s pointer prohibited\n",
2253 2254 2255 2256
						insn->dst_reg,
						bpf_alu_string[opcode >> 4]);
					return -EACCES;
				}
2257
				mark_reg_unknown(env, regs, insn->dst_reg);
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
				return 0;
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
				rc = adjust_ptr_min_max_vals(env, insn,
							     src_reg, dst_reg);
				if (rc == -EACCES && env->allow_ptr_leaks) {
					/* scalar += unknown scalar */
					__mark_reg_unknown(&off_reg);
					return adjust_scalar_min_max_vals(
							env, insn,
							dst_reg, off_reg);
				}
				return rc;
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
			rc = adjust_ptr_min_max_vals(env, insn,
						     dst_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += scalar */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, *src_reg);
			}
			return rc;
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
2292
		__mark_reg_known(&off_reg, insn->imm);
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
		src_reg = &off_reg;
		if (ptr_reg) { /* pointer += K */
			rc = adjust_ptr_min_max_vals(env, insn,
						     ptr_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += K */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, off_reg);
			}
			return rc;
		}
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
2309
		print_verifier_state(env, env->cur_state);
2310
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
2311 2312 2313
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
2314
		print_verifier_state(env, env->cur_state);
2315
		verbose(env, "verifier internal error: no src_reg\n");
2316 2317 2318
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2319 2320
}

2321
/* check validity of 32-bit and 64-bit arithmetic operations */
2322
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2323
{
2324
	struct bpf_reg_state *regs = cur_regs(env);
2325 2326 2327 2328 2329 2330 2331 2332
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
2333
				verbose(env, "BPF_NEG uses reserved fields\n");
2334 2335 2336 2337
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2338 2339
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
2340
				verbose(env, "BPF_END uses reserved fields\n");
2341 2342 2343 2344 2345
				return -EINVAL;
			}
		}

		/* check src operand */
2346
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2347 2348 2349
		if (err)
			return err;

2350
		if (is_pointer_value(env, insn->dst_reg)) {
2351
			verbose(env, "R%d pointer arithmetic prohibited\n",
2352 2353 2354 2355
				insn->dst_reg);
			return -EACCES;
		}

2356
		/* check dest operand */
2357
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2358 2359 2360 2361 2362 2363 2364
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2365
				verbose(env, "BPF_MOV uses reserved fields\n");
2366 2367 2368 2369
				return -EINVAL;
			}

			/* check src operand */
2370
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2371 2372 2373 2374
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2375
				verbose(env, "BPF_MOV uses reserved fields\n");
2376 2377 2378 2379 2380
				return -EINVAL;
			}
		}

		/* check dest operand */
2381
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2382 2383 2384 2385 2386 2387 2388 2389 2390
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
2391
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2392
			} else {
2393
				/* R1 = (u32) R2 */
2394
				if (is_pointer_value(env, insn->src_reg)) {
2395 2396
					verbose(env,
						"R%d partial copy of pointer\n",
2397 2398 2399
						insn->src_reg);
					return -EACCES;
				}
2400
				mark_reg_unknown(env, regs, insn->dst_reg);
2401
				/* high 32 bits are known zero. */
2402 2403
				regs[insn->dst_reg].var_off = tnum_cast(
						regs[insn->dst_reg].var_off, 4);
2404
				__update_reg_bounds(&regs[insn->dst_reg]);
2405 2406 2407 2408 2409
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
2410
			regs[insn->dst_reg].type = SCALAR_VALUE;
2411 2412 2413 2414 2415 2416 2417
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				__mark_reg_known(regs + insn->dst_reg,
						 insn->imm);
			} else {
				__mark_reg_known(regs + insn->dst_reg,
						 (u32)insn->imm);
			}
2418 2419 2420
		}

	} else if (opcode > BPF_END) {
2421
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2422 2423 2424 2425 2426 2427
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2428
				verbose(env, "BPF_ALU uses reserved fields\n");
2429 2430 2431
				return -EINVAL;
			}
			/* check src1 operand */
2432
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2433 2434 2435 2436
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2437
				verbose(env, "BPF_ALU uses reserved fields\n");
2438 2439 2440 2441 2442
				return -EINVAL;
			}
		}

		/* check src2 operand */
2443
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2444 2445 2446 2447 2448
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2449
			verbose(env, "div by zero\n");
2450 2451 2452
			return -EINVAL;
		}

R
Rabin Vincent 已提交
2453 2454 2455 2456 2457
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
2458
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
2459 2460 2461 2462
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
2463
		/* check dest operand */
2464
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
2465 2466 2467
		if (err)
			return err;

2468
		return adjust_reg_min_max_vals(env, insn);
2469 2470 2471 2472 2473
	}

	return 0;
}

2474
static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2475
				   struct bpf_reg_state *dst_reg,
2476
				   enum bpf_reg_type type,
2477
				   bool range_right_open)
A
Alexei Starovoitov 已提交
2478
{
2479
	struct bpf_reg_state *regs = state->regs, *reg;
2480
	u16 new_range;
A
Alexei Starovoitov 已提交
2481
	int i;
2482

2483 2484
	if (dst_reg->off < 0 ||
	    (dst_reg->off == 0 && range_right_open))
2485 2486 2487
		/* This doesn't give us any range */
		return;

2488 2489
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2490 2491 2492 2493 2494
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

2495 2496 2497 2498 2499
	new_range = dst_reg->off;
	if (range_right_open)
		new_range--;

	/* Examples for register markings:
2500
	 *
2501
	 * pkt_data in dst register:
2502 2503 2504 2505 2506 2507
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
2508 2509 2510 2511 2512
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
2513 2514 2515 2516 2517
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
2518
	 * pkt_data in src register:
2519 2520 2521 2522 2523 2524
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
2525 2526 2527 2528 2529
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
2530 2531 2532 2533 2534 2535
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2536 2537 2538
	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
	 * and [r3, r3 + 8-1) respectively is safe to access depending on
	 * the check.
A
Alexei Starovoitov 已提交
2539
	 */
2540

2541 2542 2543 2544 2545
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
2546
	for (i = 0; i < MAX_BPF_REG; i++)
2547
		if (regs[i].type == type && regs[i].id == dst_reg->id)
2548
			/* keep the maximum range already checked */
2549
			regs[i].range = max(regs[i].range, new_range);
A
Alexei Starovoitov 已提交
2550

2551 2552
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
2553
			continue;
2554
		reg = &state->stack[i].spilled_ptr;
2555
		if (reg->type == type && reg->id == dst_reg->id)
D
Daniel Borkmann 已提交
2556
			reg->range = max(reg->range, new_range);
A
Alexei Starovoitov 已提交
2557 2558 2559
	}
}

2560 2561 2562
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
2563
 * In JEQ/JNE cases we also adjust the var_off values.
2564 2565 2566 2567 2568
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
2569 2570 2571 2572 2573 2574 2575 2576
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
2577

2578 2579 2580 2581 2582
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2583
		__mark_reg_known(true_reg, val);
2584 2585 2586 2587 2588
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2589
		__mark_reg_known(false_reg, val);
2590 2591
		break;
	case BPF_JGT:
2592 2593 2594
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
2595
	case BPF_JSGT:
2596 2597
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2598
		break;
2599 2600 2601 2602 2603 2604 2605 2606
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
2607
	case BPF_JGE:
2608 2609 2610
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
2611
	case BPF_JSGE:
2612 2613
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2614
		break;
2615 2616 2617 2618 2619 2620 2621 2622
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
2623 2624 2625 2626
	default:
		break;
	}

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2638 2639
}

2640 2641
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
2642 2643 2644 2645 2646
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
2647 2648
	if (__is_pointer_value(false, false_reg))
		return;
2649

2650 2651 2652 2653 2654
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2655
		__mark_reg_known(true_reg, val);
2656 2657 2658 2659 2660
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2661
		__mark_reg_known(false_reg, val);
2662 2663
		break;
	case BPF_JGT:
2664 2665 2666
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
2667
	case BPF_JSGT:
2668 2669
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2670
		break;
2671 2672 2673 2674 2675 2676 2677 2678
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
2679
	case BPF_JGE:
2680 2681 2682
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
2683
	case BPF_JSGE:
2684 2685
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2686
		break;
2687 2688 2689 2690 2691 2692 2693 2694
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
2695 2696 2697 2698
	default:
		break;
	}

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2710 2711 2712 2713 2714 2715
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
2716 2717 2718 2719 2720 2721 2722 2723
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
2724 2725
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
2755
		break;
2756
	}
2757 2758
}

2759
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2760
			 bool is_null)
2761 2762 2763 2764
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2765 2766 2767 2768
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
2769 2770
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
2771
				 reg->off)) {
2772 2773
			__mark_reg_known_zero(reg);
			reg->off = 0;
2774 2775 2776
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
2777 2778 2779 2780
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
2781
			reg->type = PTR_TO_MAP_VALUE;
2782
		}
2783 2784 2785 2786 2787
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
2788 2789 2790 2791 2792 2793 2794
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2795
			  bool is_null)
2796 2797
{
	struct bpf_reg_state *regs = state->regs;
2798
	u32 id = regs[regno].id;
2799 2800 2801
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2802
		mark_map_reg(regs, i, id, is_null);
2803

2804 2805
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
2806
			continue;
2807
		mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
2808 2809 2810
	}
}

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
static bool try_match_pkt_pointers(const struct bpf_insn *insn,
				   struct bpf_reg_state *dst_reg,
				   struct bpf_reg_state *src_reg,
				   struct bpf_verifier_state *this_branch,
				   struct bpf_verifier_state *other_branch)
{
	if (BPF_SRC(insn->code) != BPF_X)
		return false;

	switch (BPF_OP(insn->code)) {
	case BPF_JGT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	case BPF_JLT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JGE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JLE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	default:
		return false;
	}

	return true;
}

2904
static int check_cond_jmp_op(struct bpf_verifier_env *env,
2905 2906
			     struct bpf_insn *insn, int *insn_idx)
{
2907
	struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
2908
	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2909 2910 2911
	u8 opcode = BPF_OP(insn->code);
	int err;

2912
	if (opcode > BPF_JSLE) {
2913
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2914 2915 2916 2917 2918
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
2919
			verbose(env, "BPF_JMP uses reserved fields\n");
2920 2921 2922 2923
			return -EINVAL;
		}

		/* check src1 operand */
2924
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2925 2926
		if (err)
			return err;
2927 2928

		if (is_pointer_value(env, insn->src_reg)) {
2929
			verbose(env, "R%d pointer comparison prohibited\n",
2930 2931 2932
				insn->src_reg);
			return -EACCES;
		}
2933 2934
	} else {
		if (insn->src_reg != BPF_REG_0) {
2935
			verbose(env, "BPF_JMP uses reserved fields\n");
2936 2937 2938 2939 2940
			return -EINVAL;
		}
	}

	/* check src2 operand */
2941
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2942 2943 2944
	if (err)
		return err;

A
Alexei Starovoitov 已提交
2945 2946
	dst_reg = &regs[insn->dst_reg];

2947 2948 2949
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2950 2951
	    dst_reg->type == SCALAR_VALUE &&
	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
		if (opcode == BPF_JEQ) {
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;

2971 2972
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
2973 2974 2975 2976
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
2977 2978
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
				reg_set_min_max(&other_branch->regs[insn->dst_reg],
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
				reg_combine_min_max(&other_branch->regs[insn->src_reg],
						    &other_branch->regs[insn->dst_reg],
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
2997 2998 2999 3000
		reg_set_min_max(&other_branch->regs[insn->dst_reg],
					dst_reg, insn->imm, opcode);
	}

3001
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3002
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
3003 3004
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3005 3006 3007
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
3008 3009
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3010 3011 3012
	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
					   this_branch, other_branch) &&
		   is_pointer_value(env, insn->dst_reg)) {
3013 3014
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
3015
		return -EACCES;
3016
	}
3017 3018
	if (env->log.level)
		print_verifier_state(env, this_branch);
3019 3020 3021
	return 0;
}

3022 3023 3024 3025 3026 3027 3028 3029
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

3030
/* verify BPF_LD_IMM64 instruction */
3031
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3032
{
3033
	struct bpf_reg_state *regs = cur_regs(env);
3034 3035 3036
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
3037
		verbose(env, "invalid BPF_LD_IMM insn\n");
3038 3039 3040
		return -EINVAL;
	}
	if (insn->off != 0) {
3041
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3042 3043 3044
		return -EINVAL;
	}

3045
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3046 3047 3048
	if (err)
		return err;

3049 3050 3051
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

3052
		regs[insn->dst_reg].type = SCALAR_VALUE;
3053
		__mark_reg_known(&regs[insn->dst_reg], imm);
3054
		return 0;
3055
	}
3056 3057 3058 3059 3060 3061 3062 3063 3064

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

3065 3066 3067 3068 3069
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
3070
	case BPF_PROG_TYPE_SCHED_ACT:
3071 3072 3073 3074 3075 3076
		return true;
	default:
		return false;
	}
}

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
3092
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3093
{
3094
	struct bpf_reg_state *regs = cur_regs(env);
3095 3096 3097
	u8 mode = BPF_MODE(insn->code);
	int i, err;

3098
	if (!may_access_skb(env->prog->type)) {
3099
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3100 3101 3102 3103
		return -EINVAL;
	}

	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3104
	    BPF_SIZE(insn->code) == BPF_DW ||
3105
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3106
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3107 3108 3109 3110
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
3111
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3112 3113 3114 3115
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3116 3117
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3118 3119 3120 3121 3122
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
3123
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3124 3125 3126 3127 3128
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
3129
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3130
		mark_reg_not_init(env, regs, caller_saved[i]);
3131 3132
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
3133 3134

	/* mark destination R0 register as readable, since it contains
3135 3136
	 * the value fetched from the packet.
	 * Already marked as written above.
3137
	 */
3138
	mark_reg_unknown(env, regs, BPF_REG_0);
3139 3140 3141
	return 0;
}

3142 3143 3144 3145 3146 3147 3148 3149 3150
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
	case BPF_PROG_TYPE_SOCK_OPS:
3151
	case BPF_PROG_TYPE_CGROUP_DEVICE:
3152 3153 3154 3155 3156
		break;
	default:
		return 0;
	}

3157
	reg = cur_regs(env) + BPF_REG_0;
3158
	if (reg->type != SCALAR_VALUE) {
3159
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3160 3161 3162 3163 3164
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
3165
		verbose(env, "At program exit the register R0 ");
3166 3167 3168 3169
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3170
			verbose(env, "has value %s", tn_buf);
3171
		} else {
3172
			verbose(env, "has unknown scalar value");
3173
		}
3174
		verbose(env, " should have been 0 or 1\n");
3175 3176 3177 3178 3179
		return -EINVAL;
	}
	return 0;
}

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

3220
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3221

3222 3223 3224 3225 3226 3227 3228 3229 3230
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
3231
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3232 3233 3234 3235 3236 3237 3238 3239
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
3240
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3241 3242 3243
		return -EINVAL;
	}

3244 3245 3246 3247
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

3248 3249 3250 3251 3252 3253 3254 3255 3256
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3257
		verbose(env, "back-edge from insn %d to %d\n", t, w);
3258 3259 3260 3261 3262
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
3263
		verbose(env, "insn state internal bug\n");
3264 3265 3266 3267 3268 3269 3270 3271
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
3272
static int check_cfg(struct bpf_verifier_env *env)
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3309 3310
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3323 3324 3325
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
3326 3327
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3328 3329
		} else {
			/* conditional jump with two edges */
3330
			env->explored_states[t] = STATE_LIST_MARK;
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
3357
		verbose(env, "pop stack internal bug\n");
3358 3359 3360 3361 3362 3363 3364 3365
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
3366
			verbose(env, "unreachable insn %d\n", i);
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

3379 3380 3381 3382
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
3383 3384 3385 3386
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
3405
 */
3406
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
3407
{
3408
	unsigned int i;
A
Alexei Starovoitov 已提交
3409

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
3426 3427
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
3428
{
3429 3430 3431 3432 3433
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
A
Alexei Starovoitov 已提交
3434 3435
		return true;

3436 3437
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
3438
		return true;
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
			/* if we knew anything about the old value, we're not
			 * equal, because we can't know anything about the
			 * scalar value of the pointer in the new value.
			 */
3452 3453 3454 3455
			return rold->umin_value == 0 &&
			       rold->umax_value == U64_MAX &&
			       rold->smin_value == S64_MIN &&
			       rold->smax_value == S64_MAX &&
3456 3457 3458
			       tnum_is_unknown(rold->var_off);
		}
	case PTR_TO_MAP_VALUE:
3459 3460 3461 3462 3463 3464 3465 3466
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
3481
	case PTR_TO_PACKET_META:
3482
	case PTR_TO_PACKET:
3483
		if (rcur->type != rold->type)
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_STACK:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
3515

3516 3517
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
3518 3519 3520
	return false;
}

3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
static bool stacksafe(struct bpf_verifier_state *old,
		      struct bpf_verifier_state *cur,
		      struct idpair *idmap)
{
	int i, spi;

	/* if explored stack has more populated slots than current stack
	 * such stacks are not equivalent
	 */
	if (old->allocated_stack > cur->allocated_stack)
		return false;

	/* walk slots of the explored stack and ignore any additional
	 * slots in the current stack, since explored(safe) state
	 * didn't use them
	 */
	for (i = 0; i < old->allocated_stack; i++) {
		spi = i / BPF_REG_SIZE;

		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
			continue;
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
			return false;
		if (i % BPF_REG_SIZE)
			continue;
		if (old->stack[spi].slot_type[0] != STACK_SPILL)
			continue;
		if (!regsafe(&old->stack[spi].spilled_ptr,
			     &cur->stack[spi].spilled_ptr,
			     idmap))
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
			 * but current path has stored:
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
	}
	return true;
}

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
3598 3599
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
3600
			 struct bpf_verifier_state *cur)
3601
{
3602 3603
	struct idpair *idmap;
	bool ret = false;
3604 3605
	int i;

3606 3607 3608
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
3609
		return false;
3610 3611

	for (i = 0; i < MAX_BPF_REG; i++) {
3612
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3613
			goto out_free;
3614 3615
	}

3616 3617
	if (!stacksafe(old, cur, idmap))
		goto out_free;
3618 3619 3620 3621
	ret = true;
out_free:
	kfree(idmap);
	return ret;
3622 3623
}

3624 3625 3626 3627 3628 3629
/* A write screens off any subsequent reads; but write marks come from the
 * straight-line code between a state and its parent.  When we arrive at a
 * jump target (in the first iteration of the propagate_liveness() loop),
 * we didn't arrive by the straight-line code, so read marks in state must
 * propagate to parent regardless of state's write marks.
 */
3630 3631 3632
static bool do_propagate_liveness(const struct bpf_verifier_state *state,
				  struct bpf_verifier_state *parent)
{
3633
	bool writes = parent == state->parent; /* Observe write marks */
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
	bool touched = false; /* any changes made? */
	int i;

	if (!parent)
		return touched;
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
		if (parent->regs[i].live & REG_LIVE_READ)
			continue;
3645 3646 3647
		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
			continue;
		if (state->regs[i].live & REG_LIVE_READ) {
3648 3649 3650 3651 3652
			parent->regs[i].live |= REG_LIVE_READ;
			touched = true;
		}
	}
	/* ... and stack slots */
3653 3654 3655
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
		    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
		if (parent->stack[i].slot_type[0] != STACK_SPILL)
3656
			continue;
3657
		if (state->stack[i].slot_type[0] != STACK_SPILL)
3658
			continue;
3659
		if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
3660
			continue;
3661 3662
		if (writes &&
		    (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
3663
			continue;
3664 3665
		if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
			parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
3666 3667 3668 3669 3670 3671
			touched = true;
		}
	}
	return touched;
}

3672 3673 3674 3675 3676 3677 3678 3679 3680
/* "parent" is "a state from which we reach the current state", but initially
 * it is not the state->parent (i.e. "the state whose straight-line code leads
 * to the current state"), instead it is the state that happened to arrive at
 * a (prunable) equivalent of the current state.  See comment above
 * do_propagate_liveness() for consequences of this.
 * This function is just a more efficient way of calling mark_reg_read() or
 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
 * though it requires that parent != state->parent in the call arguments.
 */
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
static void propagate_liveness(const struct bpf_verifier_state *state,
			       struct bpf_verifier_state *parent)
{
	while (do_propagate_liveness(state, parent)) {
		/* Something changed, so we need to feed those changes onward */
		state = parent;
		parent = state->parent;
	}
}

3691
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3692
{
3693 3694
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
3695
	struct bpf_verifier_state *cur = env->cur_state;
3696
	int i, err;
3697 3698 3699 3700 3701 3702 3703 3704 3705

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
3706
		if (states_equal(env, &sl->state, cur)) {
3707
			/* reached equivalent register/stack state,
3708 3709
			 * prune the search.
			 * Registers read by the continuation are read by us.
3710 3711 3712 3713 3714 3715
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
3716
			 */
3717
			propagate_liveness(&sl->state, cur);
3718
			return 1;
3719
		}
3720 3721 3722 3723 3724 3725 3726 3727 3728
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
	 * but it will either reach bpf_exit (which means it's safe) or
	 * it will be rejected. Since there are no loops, we won't be
	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
	 */
3729
	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
3730 3731 3732 3733
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
3734 3735 3736 3737 3738 3739
	err = copy_verifier_state(&new_sl->state, cur);
	if (err) {
		free_verifier_state(&new_sl->state, false);
		kfree(new_sl);
		return err;
	}
3740 3741
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
3742
	/* connect new state to parentage chain */
3743
	cur->parent = &new_sl->state;
3744 3745 3746 3747 3748 3749
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
3750
	for (i = 0; i < BPF_REG_FP; i++)
3751 3752 3753 3754
		cur->regs[i].live = REG_LIVE_NONE;
	for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
		if (cur->stack[i].slot_type[0] == STACK_SPILL)
			cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
3755 3756 3757
	return 0;
}

3758 3759 3760
static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
				  int insn_idx, int prev_insn_idx)
{
3761 3762
	if (env->dev_ops && env->dev_ops->insn_hook)
		return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
3763

3764
	return 0;
3765 3766
}

3767
static int do_check(struct bpf_verifier_env *env)
3768
{
3769
	struct bpf_verifier_state *state;
3770
	struct bpf_insn *insns = env->prog->insnsi;
3771
	struct bpf_reg_state *regs;
3772 3773 3774 3775 3776
	int insn_cnt = env->prog->len;
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

3777 3778 3779 3780 3781
	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;
	env->cur_state = state;
	init_reg_state(env, state->regs);
3782
	state->parent = NULL;
3783 3784 3785 3786 3787 3788 3789
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
3790
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
3791 3792 3793 3794 3795 3796 3797
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

3798
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3799 3800
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
3801 3802 3803 3804
				insn_processed);
			return -E2BIG;
		}

3805 3806 3807 3808 3809
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
3810
			if (env->log.level) {
3811
				if (do_print_state)
3812
					verbose(env, "\nfrom %d to %d: safe\n",
3813 3814
						prev_insn_idx, insn_idx);
				else
3815
					verbose(env, "%d: safe\n", insn_idx);
3816 3817 3818 3819
			}
			goto process_bpf_exit;
		}

3820 3821 3822
		if (need_resched())
			cond_resched();

3823 3824 3825
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
3826
			else
3827
				verbose(env, "\nfrom %d to %d:",
3828
					prev_insn_idx, insn_idx);
3829
			print_verifier_state(env, state);
3830 3831 3832
			do_print_state = false;
		}

3833 3834
		if (env->log.level) {
			verbose(env, "%d: ", insn_idx);
3835 3836
			print_bpf_insn(verbose, env, insn,
				       env->allow_ptr_leaks);
3837 3838
		}

3839 3840 3841 3842
		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
		if (err)
			return err;

3843
		regs = cur_regs(env);
A
Alexei Starovoitov 已提交
3844
		env->insn_aux_data[insn_idx].seen = true;
3845
		if (class == BPF_ALU || class == BPF_ALU64) {
3846
			err = check_alu_op(env, insn);
3847 3848 3849 3850
			if (err)
				return err;

		} else if (class == BPF_LDX) {
3851
			enum bpf_reg_type *prev_src_type, src_reg_type;
3852 3853 3854

			/* check for reserved fields is already done */

3855
			/* check src operand */
3856
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3857 3858 3859
			if (err)
				return err;

3860
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3861 3862 3863
			if (err)
				return err;

3864 3865
			src_reg_type = regs[insn->src_reg].type;

3866 3867 3868
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
3869
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3870 3871 3872 3873 3874
					       BPF_SIZE(insn->code), BPF_READ,
					       insn->dst_reg);
			if (err)
				return err;

3875 3876 3877
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
3878 3879
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
3880
				 * save type to validate intersecting paths
3881
				 */
3882
				*prev_src_type = src_reg_type;
3883

3884
			} else if (src_reg_type != *prev_src_type &&
3885
				   (src_reg_type == PTR_TO_CTX ||
3886
				    *prev_src_type == PTR_TO_CTX)) {
3887 3888 3889 3890 3891 3892 3893
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
3894
				verbose(env, "same insn cannot be used with different pointers\n");
3895 3896 3897
				return -EINVAL;
			}

3898
		} else if (class == BPF_STX) {
3899
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3900

3901
			if (BPF_MODE(insn->code) == BPF_XADD) {
3902
				err = check_xadd(env, insn_idx, insn);
3903 3904 3905 3906 3907 3908 3909
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
3910
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3911 3912 3913
			if (err)
				return err;
			/* check src2 operand */
3914
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3915 3916 3917
			if (err)
				return err;

3918 3919
			dst_reg_type = regs[insn->dst_reg].type;

3920
			/* check that memory (dst_reg + off) is writeable */
3921
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3922 3923 3924 3925 3926
					       BPF_SIZE(insn->code), BPF_WRITE,
					       insn->src_reg);
			if (err)
				return err;

3927 3928 3929 3930 3931
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
3932
				   (dst_reg_type == PTR_TO_CTX ||
3933
				    *prev_dst_type == PTR_TO_CTX)) {
3934
				verbose(env, "same insn cannot be used with different pointers\n");
3935 3936 3937
				return -EINVAL;
			}

3938 3939 3940
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
3941
				verbose(env, "BPF_ST uses reserved fields\n");
3942 3943 3944
				return -EINVAL;
			}
			/* check src operand */
3945
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3946 3947 3948 3949
			if (err)
				return err;

			/* check that memory (dst_reg + off) is writeable */
3950
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
					       BPF_SIZE(insn->code), BPF_WRITE,
					       -1);
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3964
					verbose(env, "BPF_CALL uses reserved fields\n");
3965 3966 3967
					return -EINVAL;
				}

3968
				err = check_call(env, insn->imm, insn_idx);
3969 3970 3971 3972 3973 3974 3975 3976
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3977
					verbose(env, "BPF_JA uses reserved fields\n");
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3989
					verbose(env, "BPF_EXIT uses reserved fields\n");
3990 3991 3992 3993 3994 3995 3996 3997 3998
					return -EINVAL;
				}

				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
3999
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4000 4001 4002
				if (err)
					return err;

4003
				if (is_pointer_value(env, BPF_REG_0)) {
4004
					verbose(env, "R0 leaks addr as return value\n");
4005 4006 4007
					return -EACCES;
				}

4008 4009 4010
				err = check_return_code(env);
				if (err)
					return err;
4011
process_bpf_exit:
4012 4013 4014 4015
				err = pop_stack(env, &prev_insn_idx, &insn_idx);
				if (err < 0) {
					if (err != -ENOENT)
						return err;
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
4030 4031 4032 4033
				err = check_ld_abs(env, insn);
				if (err)
					return err;

4034 4035 4036 4037 4038 4039
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
A
Alexei Starovoitov 已提交
4040
				env->insn_aux_data[insn_idx].seen = true;
4041
			} else {
4042
				verbose(env, "invalid BPF_LD mode\n");
4043 4044 4045
				return -EINVAL;
			}
		} else {
4046
			verbose(env, "unknown insn class %d\n", class);
4047 4048 4049 4050 4051 4052
			return -EINVAL;
		}

		insn_idx++;
	}

4053 4054
	verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
		env->prog->aux->stack_depth);
4055 4056 4057
	return 0;
}

4058 4059 4060
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
4061 4062
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4063 4064 4065
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

4066 4067
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
4068 4069 4070
					struct bpf_prog *prog)

{
4071 4072 4073 4074 4075 4076 4077
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
4078
			verbose(env, "perf_event programs can only use preallocated hash map\n");
4079 4080 4081 4082
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
4083
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4084 4085
			return -EINVAL;
		}
4086 4087 4088 4089
	}
	return 0;
}

4090 4091 4092
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
4093
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4094 4095 4096
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
4097
	int i, j, err;
4098

4099
	err = bpf_prog_calc_tag(env->prog);
4100 4101 4102
	if (err)
		return err;

4103
	for (i = 0; i < insn_cnt; i++, insn++) {
4104
		if (BPF_CLASS(insn->code) == BPF_LDX &&
4105
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4106
			verbose(env, "BPF_LDX uses reserved fields\n");
4107 4108 4109
			return -EINVAL;
		}

4110 4111 4112
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4113
			verbose(env, "BPF_STX uses reserved fields\n");
4114 4115 4116
			return -EINVAL;
		}

4117 4118 4119 4120 4121 4122 4123
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
4124
				verbose(env, "invalid bpf_ld_imm64 insn\n");
4125 4126 4127 4128 4129 4130 4131 4132
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4133 4134
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
4135 4136 4137 4138
				return -EINVAL;
			}

			f = fdget(insn->imm);
4139
			map = __bpf_map_get(f);
4140
			if (IS_ERR(map)) {
4141
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
4142 4143 4144 4145
					insn->imm);
				return PTR_ERR(map);
			}

4146
			err = check_map_prog_compatibility(env, map, env->prog);
4147 4148 4149 4150 4151
			if (err) {
				fdput(f);
				return err;
			}

4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
4173 4174 4175 4176 4177 4178 4179
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
			fdput(f);
next_insn:
			insn++;
			i++;
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
4195
static void release_maps(struct bpf_verifier_env *env)
4196 4197 4198 4199 4200 4201 4202 4203
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4204
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

4215 4216 4217 4218 4219 4220 4221 4222
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
A
Alexei Starovoitov 已提交
4223
	int i;
4224 4225 4226 4227 4228 4229 4230 4231 4232

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
A
Alexei Starovoitov 已提交
4233 4234
	for (i = off; i < off + cnt - 1; i++)
		new_data[i].seen = true;
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
	return new_prog;
}

A
Alexei Starovoitov 已提交
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
/* The verifier does more data flow analysis than llvm and will not explore
 * branches that are dead at run time. Malicious programs can have dead code
 * too. Therefore replace all dead at-run-time code with nops.
 */
static void sanitize_dead_code(struct bpf_verifier_env *env)
{
	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
	struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
	struct bpf_insn *insn = env->prog->insnsi;
	const int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++) {
		if (aux_data[i].seen)
			continue;
		memcpy(insn + i, &nop, sizeof(nop));
	}
}

4272 4273 4274
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
4275
static int convert_ctx_accesses(struct bpf_verifier_env *env)
4276
{
4277
	const struct bpf_verifier_ops *ops = env->ops;
4278
	int i, cnt, size, ctx_field_size, delta = 0;
4279
	const int insn_cnt = env->prog->len;
4280
	struct bpf_insn insn_buf[16], *insn;
4281
	struct bpf_prog *new_prog;
4282
	enum bpf_access_type type;
4283 4284
	bool is_narrower_load;
	u32 target_size;
4285

4286 4287 4288 4289
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
4290
			verbose(env, "bpf verifier is misconfigured\n");
4291 4292
			return -EINVAL;
		} else if (cnt) {
4293
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4294 4295
			if (!new_prog)
				return -ENOMEM;
4296

4297
			env->prog = new_prog;
4298
			delta += cnt - 1;
4299 4300 4301 4302
		}
	}

	if (!ops->convert_ctx_access)
4303 4304
		return 0;

4305
	insn = env->prog->insnsi + delta;
4306

4307
	for (i = 0; i < insn_cnt; i++, insn++) {
4308 4309 4310
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4311
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4312
			type = BPF_READ;
4313 4314 4315
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4316
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4317 4318
			type = BPF_WRITE;
		else
4319 4320
			continue;

4321
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4322 4323
			continue;

4324
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4325
		size = BPF_LDST_BYTES(insn);
4326 4327 4328 4329 4330 4331

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
4332
		is_narrower_load = size < ctx_field_size;
4333
		if (is_narrower_load) {
4334 4335 4336 4337
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
4338
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4339 4340
				return -EINVAL;
			}
4341

4342
			size_code = BPF_H;
4343 4344 4345 4346
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
4347

4348 4349 4350
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
4351 4352 4353 4354 4355 4356

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
4357
			verbose(env, "bpf verifier is misconfigured\n");
4358 4359
			return -EINVAL;
		}
4360 4361

		if (is_narrower_load && size < target_size) {
4362 4363
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4364
								(1 << size * 8) - 1);
4365 4366
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4367
								(1 << size * 8) - 1);
4368
		}
4369

4370
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4371 4372 4373
		if (!new_prog)
			return -ENOMEM;

4374
		delta += cnt - 1;
4375 4376 4377

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
4378
		insn      = new_prog->insnsi + i + delta;
4379 4380 4381 4382 4383
	}

	return 0;
}

4384
/* fixup insn->imm field of bpf_call instructions
4385
 * and inline eligible helpers as explicit sequence of BPF instructions
4386 4387 4388
 *
 * this function is called after eBPF program passed verification
 */
4389
static int fixup_bpf_calls(struct bpf_verifier_env *env)
4390
{
4391 4392
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
4393
	const struct bpf_func_proto *fn;
4394
	const int insn_cnt = prog->len;
4395 4396 4397 4398
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
4399

4400 4401 4402
	for (i = 0; i < insn_cnt; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
4403

4404 4405 4406 4407 4408
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
		if (insn->imm == BPF_FUNC_tail_call) {
4409 4410 4411 4412 4413 4414
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
4415
			env->prog->aux->stack_depth = MAX_BPF_STACK;
4416

4417 4418 4419 4420
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
4421
			 */
4422
			insn->imm = 0;
4423
			insn->code = BPF_JMP | BPF_TAIL_CALL;
4424 4425
			continue;
		}
4426

4427 4428 4429 4430 4431
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
		    insn->imm == BPF_FUNC_map_lookup_elem) {
4432
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4433 4434
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
4435 4436 4437 4438
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4439
				verbose(env, "bpf verifier is misconfigured\n");
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

4456
		if (insn->imm == BPF_FUNC_redirect_map) {
4457 4458 4459 4460 4461 4462
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
4477
patch_call_imm:
4478
		fn = env->ops->get_func_proto(insn->imm);
4479 4480 4481 4482
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
4483 4484
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
4485 4486
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
4487
		}
4488
		insn->imm = fn->func - __bpf_call_base;
4489 4490
	}

4491 4492
	return 0;
}
4493

4494
static void free_states(struct bpf_verifier_env *env)
4495
{
4496
	struct bpf_verifier_state_list *sl, *sln;
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
4508
				free_verifier_state(&sl->state, false);
4509 4510 4511 4512 4513 4514 4515 4516
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

4517
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
4518
{
4519
	struct bpf_verifier_env *env;
4520
	struct bpf_verifer_log *log;
A
Alexei Starovoitov 已提交
4521 4522
	int ret = -EINVAL;

4523 4524 4525 4526
	/* no program is valid */
	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
		return -EINVAL;

4527
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4528 4529
	 * allocate/free it every time bpf_check() is called
	 */
4530
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4531 4532
	if (!env)
		return -ENOMEM;
4533
	log = &env->log;
4534

4535 4536 4537 4538 4539
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
4540
	env->prog = *prog;
4541
	env->ops = bpf_verifier_ops[env->prog->type];
4542

4543 4544 4545 4546 4547 4548 4549
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
4550 4551 4552
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
4553 4554

		ret = -EINVAL;
4555 4556 4557
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
4558
			goto err_unlock;
4559
	}
4560 4561 4562

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4563
		env->strict_alignment = true;
4564

4565 4566 4567 4568 4569 4570
	if (env->prog->aux->offload) {
		ret = bpf_prog_offload_verifier_prep(env);
		if (ret)
			goto err_unlock;
	}

4571 4572 4573 4574
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

4575
	env->explored_states = kcalloc(env->prog->len,
4576
				       sizeof(struct bpf_verifier_state_list *),
4577 4578 4579 4580 4581
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

4582 4583 4584 4585
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

4586 4587
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

4588
	ret = do_check(env);
4589 4590 4591 4592
	if (env->cur_state) {
		free_verifier_state(env->cur_state, true);
		env->cur_state = NULL;
	}
4593

4594
skip_full_check:
4595
	while (!pop_stack(env, NULL, NULL));
4596
	free_states(env);
4597

A
Alexei Starovoitov 已提交
4598 4599 4600
	if (ret == 0)
		sanitize_dead_code(env);

4601 4602 4603 4604
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

4605
	if (ret == 0)
4606
		ret = fixup_bpf_calls(env);
4607

4608
	if (log->level && bpf_verifier_log_full(log))
4609
		ret = -ENOSPC;
4610
	if (log->level && !log->ubuf) {
4611
		ret = -EFAULT;
4612
		goto err_release_maps;
4613 4614
	}

4615 4616
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
4617 4618 4619
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
4620

4621
		if (!env->prog->aux->used_maps) {
4622
			ret = -ENOMEM;
4623
			goto err_release_maps;
4624 4625
		}

4626
		memcpy(env->prog->aux->used_maps, env->used_maps,
4627
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4628
		env->prog->aux->used_map_cnt = env->used_map_cnt;
4629 4630 4631 4632 4633 4634

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
4635

4636
err_release_maps:
4637
	if (!env->prog->aux->used_maps)
4638 4639 4640 4641
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
4642
	*prog = env->prog;
4643
err_unlock:
4644
	mutex_unlock(&bpf_verifier_lock);
4645 4646 4647
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
4648 4649
	return ret;
}