verifier.c 79.2 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>

/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
 * analysis is limited to 32k insn, which may be hit even if total number of
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
 * Most of the time the registers have UNKNOWN_VALUE type, which
 * means the register has some value, but it's not a valid pointer.
 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
 *
 * When verifier sees load or store instructions the type of base register
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

129 130 131
struct reg_state {
	enum bpf_reg_type type;
	union {
A
Alexei Starovoitov 已提交
132 133 134 135 136 137 138 139 140
		/* valid when type == CONST_IMM | PTR_TO_STACK | UNKNOWN_VALUE */
		s64 imm;

		/* valid when type == PTR_TO_PACKET* */
		struct {
			u32 id;
			u16 off;
			u16 range;
		};
141 142 143 144 145 146 147 148 149 150

		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
		 *   PTR_TO_MAP_VALUE_OR_NULL
		 */
		struct bpf_map *map_ptr;
	};
};

enum bpf_stack_slot_type {
	STACK_INVALID,    /* nothing was stored in this stack slot */
151
	STACK_SPILL,      /* register spilled into stack */
152 153 154
	STACK_MISC	  /* BPF program wrote some data into this slot */
};

155
#define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
156 157 158 159 160 161

/* state of the program:
 * type of all registers and stack info
 */
struct verifier_state {
	struct reg_state regs[MAX_BPF_REG];
162 163
	u8 stack_slot_type[MAX_BPF_STACK];
	struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
};

/* linked list of verifier states used to prune search */
struct verifier_state_list {
	struct verifier_state state;
	struct verifier_state_list *next;
};

/* verifier_state + insn_idx are pushed to stack when branch is encountered */
struct verifier_stack_elem {
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
	struct verifier_state st;
	int insn_idx;
	int prev_insn_idx;
	struct verifier_stack_elem *next;
};

184 185
#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */

186 187 188 189
/* single container for all structs
 * one verifier_env per bpf_check() call
 */
struct verifier_env {
190
	struct bpf_prog *prog;		/* eBPF program being verified */
191 192 193
	struct verifier_stack_elem *head; /* stack of verifier states to be processed */
	int stack_size;			/* number of states to be processed */
	struct verifier_state cur_state; /* current verifier state */
194
	struct verifier_state_list **explored_states; /* search pruning optimization */
195 196
	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
	u32 used_map_cnt;		/* number of used maps */
197
	u32 id_gen;			/* used to generate unique reg IDs */
198
	bool allow_ptr_leaks;
199 200
};

201 202 203
#define BPF_COMPLEXITY_LIMIT_INSNS	65536
#define BPF_COMPLEXITY_LIMIT_STACK	1024

204 205
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
206 207 208
	bool raw_mode;
	int regno;
	int access_size;
209 210
};

211 212 213 214 215 216 217 218 219 220 221 222
/* verbose verifier prints what it's seeing
 * bpf_check() is called under lock, so no race to access these global vars
 */
static u32 log_level, log_size, log_len;
static char *log_buf;

static DEFINE_MUTEX(bpf_verifier_lock);

/* log_level controls verbosity level of eBPF verifier.
 * verbose() is used to dump the verification trace to the log, so the user
 * can figure out what's wrong with the program
 */
223
static __printf(1, 2) void verbose(const char *fmt, ...)
224 225 226 227 228 229 230 231 232 233 234
{
	va_list args;

	if (log_level == 0 || log_len >= log_size - 1)
		return;

	va_start(args, fmt);
	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
	va_end(args);
}

235 236 237 238 239 240 241 242 243 244 245
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
	[UNKNOWN_VALUE]		= "inv",
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[FRAME_PTR]		= "fp",
	[PTR_TO_STACK]		= "fp",
	[CONST_IMM]		= "imm",
A
Alexei Starovoitov 已提交
246 247
	[PTR_TO_PACKET]		= "pkt",
	[PTR_TO_PACKET_END]	= "pkt_end",
248 249
};

A
Alexei Starovoitov 已提交
250
static void print_verifier_state(struct verifier_state *state)
251
{
A
Alexei Starovoitov 已提交
252
	struct reg_state *reg;
253 254 255 256
	enum bpf_reg_type t;
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
257 258
		reg = &state->regs[i];
		t = reg->type;
259 260 261 262
		if (t == NOT_INIT)
			continue;
		verbose(" R%d=%s", i, reg_type_str[t]);
		if (t == CONST_IMM || t == PTR_TO_STACK)
A
Alexei Starovoitov 已提交
263 264 265 266 267 268
			verbose("%lld", reg->imm);
		else if (t == PTR_TO_PACKET)
			verbose("(id=%d,off=%d,r=%d)",
				reg->id, reg->off, reg->range);
		else if (t == UNKNOWN_VALUE && reg->imm)
			verbose("%lld", reg->imm);
269 270 271
		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
			 t == PTR_TO_MAP_VALUE_OR_NULL)
			verbose("(ks=%d,vs=%d)",
A
Alexei Starovoitov 已提交
272 273
				reg->map_ptr->key_size,
				reg->map_ptr->value_size);
274
	}
275
	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
A
Alexei Starovoitov 已提交
276
		if (state->stack_slot_type[i] == STACK_SPILL)
277
			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
A
Alexei Starovoitov 已提交
278
				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
279 280 281 282
	}
	verbose("\n");
}

283 284 285 286 287 288 289 290 291 292 293
static const char *const bpf_class_string[] = {
	[BPF_LD]    = "ld",
	[BPF_LDX]   = "ldx",
	[BPF_ST]    = "st",
	[BPF_STX]   = "stx",
	[BPF_ALU]   = "alu",
	[BPF_JMP]   = "jmp",
	[BPF_RET]   = "BUG",
	[BPF_ALU64] = "alu64",
};

294
static const char *const bpf_alu_string[16] = {
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	[BPF_ADD >> 4]  = "+=",
	[BPF_SUB >> 4]  = "-=",
	[BPF_MUL >> 4]  = "*=",
	[BPF_DIV >> 4]  = "/=",
	[BPF_OR  >> 4]  = "|=",
	[BPF_AND >> 4]  = "&=",
	[BPF_LSH >> 4]  = "<<=",
	[BPF_RSH >> 4]  = ">>=",
	[BPF_NEG >> 4]  = "neg",
	[BPF_MOD >> 4]  = "%=",
	[BPF_XOR >> 4]  = "^=",
	[BPF_MOV >> 4]  = "=",
	[BPF_ARSH >> 4] = "s>>=",
	[BPF_END >> 4]  = "endian",
};

static const char *const bpf_ldst_string[] = {
	[BPF_W >> 3]  = "u32",
	[BPF_H >> 3]  = "u16",
	[BPF_B >> 3]  = "u8",
	[BPF_DW >> 3] = "u64",
};

318
static const char *const bpf_jmp_string[16] = {
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	[BPF_JA >> 4]   = "jmp",
	[BPF_JEQ >> 4]  = "==",
	[BPF_JGT >> 4]  = ">",
	[BPF_JGE >> 4]  = ">=",
	[BPF_JSET >> 4] = "&",
	[BPF_JNE >> 4]  = "!=",
	[BPF_JSGT >> 4] = "s>",
	[BPF_JSGE >> 4] = "s>=",
	[BPF_CALL >> 4] = "call",
	[BPF_EXIT >> 4] = "exit",
};

static void print_bpf_insn(struct bpf_insn *insn)
{
	u8 class = BPF_CLASS(insn->code);

	if (class == BPF_ALU || class == BPF_ALU64) {
		if (BPF_SRC(insn->code) == BPF_X)
			verbose("(%02x) %sr%d %s %sr%d\n",
				insn->code, class == BPF_ALU ? "(u32) " : "",
				insn->dst_reg,
				bpf_alu_string[BPF_OP(insn->code) >> 4],
				class == BPF_ALU ? "(u32) " : "",
				insn->src_reg);
		else
			verbose("(%02x) %sr%d %s %s%d\n",
				insn->code, class == BPF_ALU ? "(u32) " : "",
				insn->dst_reg,
				bpf_alu_string[BPF_OP(insn->code) >> 4],
				class == BPF_ALU ? "(u32) " : "",
				insn->imm);
	} else if (class == BPF_STX) {
		if (BPF_MODE(insn->code) == BPF_MEM)
			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->dst_reg,
				insn->off, insn->src_reg);
		else if (BPF_MODE(insn->code) == BPF_XADD)
			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->dst_reg, insn->off,
				insn->src_reg);
		else
			verbose("BUG_%02x\n", insn->code);
	} else if (class == BPF_ST) {
		if (BPF_MODE(insn->code) != BPF_MEM) {
			verbose("BUG_st_%02x\n", insn->code);
			return;
		}
		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
			insn->code,
			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
			insn->dst_reg,
			insn->off, insn->imm);
	} else if (class == BPF_LDX) {
		if (BPF_MODE(insn->code) != BPF_MEM) {
			verbose("BUG_ldx_%02x\n", insn->code);
			return;
		}
		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
			insn->code, insn->dst_reg,
			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
			insn->src_reg, insn->off);
	} else if (class == BPF_LD) {
		if (BPF_MODE(insn->code) == BPF_ABS) {
			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->imm);
		} else if (BPF_MODE(insn->code) == BPF_IND) {
			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->src_reg, insn->imm);
		} else if (BPF_MODE(insn->code) == BPF_IMM) {
			verbose("(%02x) r%d = 0x%x\n",
				insn->code, insn->dst_reg, insn->imm);
		} else {
			verbose("BUG_ld_%02x\n", insn->code);
			return;
		}
	} else if (class == BPF_JMP) {
		u8 opcode = BPF_OP(insn->code);

		if (opcode == BPF_CALL) {
			verbose("(%02x) call %d\n", insn->code, insn->imm);
		} else if (insn->code == (BPF_JMP | BPF_JA)) {
			verbose("(%02x) goto pc%+d\n",
				insn->code, insn->off);
		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
			verbose("(%02x) exit\n", insn->code);
		} else if (BPF_SRC(insn->code) == BPF_X) {
			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
				insn->code, insn->dst_reg,
				bpf_jmp_string[BPF_OP(insn->code) >> 4],
				insn->src_reg, insn->off);
		} else {
			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
				insn->code, insn->dst_reg,
				bpf_jmp_string[BPF_OP(insn->code) >> 4],
				insn->imm, insn->off);
		}
	} else {
		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
	}
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
{
	struct verifier_stack_elem *elem;
	int insn_idx;

	if (env->head == NULL)
		return -1;

	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
	insn_idx = env->head->insn_idx;
	if (prev_insn_idx)
		*prev_insn_idx = env->head->prev_insn_idx;
	elem = env->head->next;
	kfree(env->head);
	env->head = elem;
	env->stack_size--;
	return insn_idx;
}

static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
					 int prev_insn_idx)
{
	struct verifier_stack_elem *elem;

	elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
	if (!elem)
		goto err;

	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
462
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
		verbose("BPF program is too complex\n");
		goto err;
	}
	return &elem->st;
err:
	/* pop all elements and return */
	while (pop_stack(env, NULL) >= 0);
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

static void init_reg_state(struct reg_state *regs)
{
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
		regs[i].type = NOT_INIT;
		regs[i].imm = 0;
	}

	/* frame pointer */
	regs[BPF_REG_FP].type = FRAME_PTR;

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
}

static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
{
	BUG_ON(regno >= MAX_BPF_REG);
	regs[regno].type = UNKNOWN_VALUE;
	regs[regno].imm = 0;
}

enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

static int check_reg_arg(struct reg_state *regs, u32 regno,
			 enum reg_arg_type t)
{
	if (regno >= MAX_BPF_REG) {
		verbose("R%d is invalid\n", regno);
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
			verbose("R%d !read_ok\n", regno);
			return -EACCES;
		}
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
			verbose("frame pointer is read only\n");
			return -EACCES;
		}
		if (t == DST_OP)
			mark_reg_unknown_value(regs, regno);
	}
	return 0;
}

static int bpf_size_to_bytes(int bpf_size)
{
	if (bpf_size == BPF_W)
		return 4;
	else if (bpf_size == BPF_H)
		return 2;
	else if (bpf_size == BPF_B)
		return 1;
	else if (bpf_size == BPF_DW)
		return 8;
	else
		return -EINVAL;
}

547 548 549 550 551 552 553
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
554 555
	case PTR_TO_PACKET:
	case PTR_TO_PACKET_END:
556 557 558 559 560 561 562 563
	case FRAME_PTR:
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

564 565 566 567 568 569 570
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
static int check_stack_write(struct verifier_state *state, int off, int size,
			     int value_regno)
{
	int i;
571 572 573
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
574 575

	if (value_regno >= 0 &&
576
	    is_spillable_regtype(state->regs[value_regno].type)) {
577 578

		/* register containing pointer is being spilled into stack */
579
		if (size != BPF_REG_SIZE) {
580 581 582 583 584
			verbose("invalid size of register spill\n");
			return -EACCES;
		}

		/* save register state */
585 586
		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
			state->regs[value_regno];
587

588 589 590
		for (i = 0; i < BPF_REG_SIZE; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
	} else {
591
		/* regular write of data into stack */
592 593 594 595 596
		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
			(struct reg_state) {};

		for (i = 0; i < size; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
597 598 599 600 601 602 603
	}
	return 0;
}

static int check_stack_read(struct verifier_state *state, int off, int size,
			    int value_regno)
{
604
	u8 *slot_type;
605 606
	int i;

607
	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
608

609 610
	if (slot_type[0] == STACK_SPILL) {
		if (size != BPF_REG_SIZE) {
611 612 613
			verbose("invalid size of register spill\n");
			return -EACCES;
		}
614 615
		for (i = 1; i < BPF_REG_SIZE; i++) {
			if (slot_type[i] != STACK_SPILL) {
616 617 618 619 620 621 622
				verbose("corrupted spill memory\n");
				return -EACCES;
			}
		}

		if (value_regno >= 0)
			/* restore register state from stack */
623 624
			state->regs[value_regno] =
				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
625 626 627
		return 0;
	} else {
		for (i = 0; i < size; i++) {
628
			if (slot_type[i] != STACK_MISC) {
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
				verbose("invalid read from stack off %d+%d size %d\n",
					off, i, size);
				return -EACCES;
			}
		}
		if (value_regno >= 0)
			/* have read misc data from the stack */
			mark_reg_unknown_value(state->regs, value_regno);
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
static int check_map_access(struct verifier_env *env, u32 regno, int off,
			    int size)
{
	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;

	if (off < 0 || off + size > map->value_size) {
		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

A
Alexei Starovoitov 已提交
655 656
#define MAX_PACKET_OFF 0xffff

657 658 659 660 661 662 663 664 665 666
static bool may_write_pkt_data(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_XDP:
		return true;
	default:
		return false;
	}
}

A
Alexei Starovoitov 已提交
667 668 669 670 671 672
static int check_packet_access(struct verifier_env *env, u32 regno, int off,
			       int size)
{
	struct reg_state *regs = env->cur_state.regs;
	struct reg_state *reg = &regs[regno];

673
	off += reg->off;
674
	if (off < 0 || size <= 0 || off + size > reg->range) {
675 676
		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
677 678 679 680 681
		return -EACCES;
	}
	return 0;
}

682 683
/* check access to 'struct bpf_context' fields */
static int check_ctx_access(struct verifier_env *env, int off, int size,
684
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
685 686
{
	if (env->prog->aux->ops->is_valid_access &&
687
	    env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
688 689 690
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
691
		return 0;
692
	}
693 694 695 696 697

	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
	return -EACCES;
}

698 699 700 701 702 703 704 705 706 707 708 709 710 711
static bool is_pointer_value(struct verifier_env *env, int regno)
{
	if (env->allow_ptr_leaks)
		return false;

	switch (env->cur_state.regs[regno].type) {
	case UNKNOWN_VALUE:
	case CONST_IMM:
		return false;
	default:
		return true;
	}
}

A
Alexei Starovoitov 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
static int check_ptr_alignment(struct verifier_env *env, struct reg_state *reg,
			       int off, int size)
{
	if (reg->type != PTR_TO_PACKET) {
		if (off % size != 0) {
			verbose("misaligned access off %d size %d\n", off, size);
			return -EACCES;
		} else {
			return 0;
		}
	}

	switch (env->prog->type) {
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
727
	case BPF_PROG_TYPE_XDP:
A
Alexei Starovoitov 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
		break;
	default:
		verbose("verifier is misconfigured\n");
		return -EACCES;
	}

	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
		/* misaligned access to packet is ok on x86,arm,arm64 */
		return 0;

	if (reg->id && size != 1) {
		verbose("Unknown packet alignment. Only byte-sized access allowed\n");
		return -EACCES;
	}

	/* skb->data is NET_IP_ALIGN-ed */
	if ((NET_IP_ALIGN + reg->off + off) % size != 0) {
		verbose("misaligned packet access off %d+%d+%d size %d\n",
			NET_IP_ALIGN, reg->off, off, size);
		return -EACCES;
	}
	return 0;
}

752 753 754 755 756 757 758 759 760 761 762
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
static int check_mem_access(struct verifier_env *env, u32 regno, int off,
			    int bpf_size, enum bpf_access_type t,
			    int value_regno)
{
	struct verifier_state *state = &env->cur_state;
A
Alexei Starovoitov 已提交
763
	struct reg_state *reg = &state->regs[regno];
764 765
	int size, err = 0;

A
Alexei Starovoitov 已提交
766 767
	if (reg->type == PTR_TO_STACK)
		off += reg->imm;
768

769 770 771 772
	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

A
Alexei Starovoitov 已提交
773 774 775
	err = check_ptr_alignment(env, reg, off, size);
	if (err)
		return err;
776

A
Alexei Starovoitov 已提交
777
	if (reg->type == PTR_TO_MAP_VALUE) {
778 779 780 781 782
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into map\n", value_regno);
			return -EACCES;
		}
783 784 785 786
		err = check_map_access(env, regno, off, size);
		if (!err && t == BPF_READ && value_regno >= 0)
			mark_reg_unknown_value(state->regs, value_regno);

A
Alexei Starovoitov 已提交
787
	} else if (reg->type == PTR_TO_CTX) {
788 789
		enum bpf_reg_type reg_type = UNKNOWN_VALUE;

790 791 792 793 794
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into ctx\n", value_regno);
			return -EACCES;
		}
795
		err = check_ctx_access(env, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
796
		if (!err && t == BPF_READ && value_regno >= 0) {
797
			mark_reg_unknown_value(state->regs, value_regno);
798
			if (env->allow_ptr_leaks)
A
Alexei Starovoitov 已提交
799
				/* note that reg.[id|off|range] == 0 */
800
				state->regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
801
		}
802

A
Alexei Starovoitov 已提交
803
	} else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
804 805 806 807
		if (off >= 0 || off < -MAX_BPF_STACK) {
			verbose("invalid stack off=%d size=%d\n", off, size);
			return -EACCES;
		}
808 809 810 811 812 813 814
		if (t == BPF_WRITE) {
			if (!env->allow_ptr_leaks &&
			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
			    size != BPF_REG_SIZE) {
				verbose("attempt to corrupt spilled pointer on stack\n");
				return -EACCES;
			}
815
			err = check_stack_write(state, off, size, value_regno);
816
		} else {
817
			err = check_stack_read(state, off, size, value_regno);
818
		}
A
Alexei Starovoitov 已提交
819
	} else if (state->regs[regno].type == PTR_TO_PACKET) {
820
		if (t == BPF_WRITE && !may_write_pkt_data(env->prog->type)) {
A
Alexei Starovoitov 已提交
821 822 823
			verbose("cannot write into packet\n");
			return -EACCES;
		}
824 825 826 827 828
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into packet\n", value_regno);
			return -EACCES;
		}
A
Alexei Starovoitov 已提交
829 830 831
		err = check_packet_access(env, regno, off, size);
		if (!err && t == BPF_READ && value_regno >= 0)
			mark_reg_unknown_value(state->regs, value_regno);
832 833
	} else {
		verbose("R%d invalid mem access '%s'\n",
A
Alexei Starovoitov 已提交
834
			regno, reg_type_str[reg->type]);
835 836
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
837 838 839 840 841 842 843 844 845

	if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
	    state->regs[value_regno].type == UNKNOWN_VALUE) {
		/* 1 or 2 byte load zero-extends, determine the number of
		 * zero upper bits. Not doing it fo 4 byte load, since
		 * such values cannot be added to ptr_to_packet anyway.
		 */
		state->regs[value_regno].imm = 64 - size * 8;
	}
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	return err;
}

static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
{
	struct reg_state *regs = env->cur_state.regs;
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
		verbose("BPF_XADD uses reserved fields\n");
		return -EINVAL;
	}

	/* check src1 operand */
	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
	if (err)
		return err;

	/* check src2 operand */
	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
	if (err)
		return err;

	/* check whether atomic_add can read the memory */
	err = check_mem_access(env, insn->dst_reg, insn->off,
			       BPF_SIZE(insn->code), BPF_READ, -1);
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
	return check_mem_access(env, insn->dst_reg, insn->off,
				BPF_SIZE(insn->code), BPF_WRITE, -1);
}

/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
 * and all elements of stack are initialized
 */
885
static int check_stack_boundary(struct verifier_env *env, int regno,
886 887
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
888 889 890 891 892
{
	struct verifier_state *state = &env->cur_state;
	struct reg_state *regs = state->regs;
	int off, i;

893 894 895 896 897 898 899 900 901
	if (regs[regno].type != PTR_TO_STACK) {
		if (zero_size_allowed && access_size == 0 &&
		    regs[regno].type == CONST_IMM &&
		    regs[regno].imm  == 0)
			return 0;

		verbose("R%d type=%s expected=%s\n", regno,
			reg_type_str[regs[regno].type],
			reg_type_str[PTR_TO_STACK]);
902
		return -EACCES;
903
	}
904 905 906 907 908 909 910 911 912

	off = regs[regno].imm;
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
	    access_size <= 0) {
		verbose("invalid stack type R%d off=%d access_size=%d\n",
			regno, off, access_size);
		return -EACCES;
	}

913 914 915 916 917 918
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

919
	for (i = 0; i < access_size; i++) {
920
		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
921 922 923 924 925 926 927 928 929
			verbose("invalid indirect read from stack off %d+%d size %d\n",
				off, i, access_size);
			return -EACCES;
		}
	}
	return 0;
}

static int check_func_arg(struct verifier_env *env, u32 regno,
930 931
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
932
{
933 934
	struct reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
	enum bpf_reg_type expected_type, type = reg->type;
935 936
	int err = 0;

937
	if (arg_type == ARG_DONTCARE)
938 939
		return 0;

940
	if (type == NOT_INIT) {
941 942 943 944
		verbose("R%d !read_ok\n", regno);
		return -EACCES;
	}

945 946 947 948 949
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
			verbose("R%d leaks addr into helper function\n", regno);
			return -EACCES;
		}
950
		return 0;
951
	}
952

953 954 955 956 957
	if (type == PTR_TO_PACKET && !may_write_pkt_data(env->prog->type)) {
		verbose("helper access to the packet is not allowed for clsact\n");
		return -EACCES;
	}

958
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
959 960
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
961 962
		if (type != PTR_TO_PACKET && type != expected_type)
			goto err_type;
963 964
	} else if (arg_type == ARG_CONST_STACK_SIZE ||
		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
965
		expected_type = CONST_IMM;
966 967
		if (type != expected_type)
			goto err_type;
968 969
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
970 971
		if (type != expected_type)
			goto err_type;
972 973
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
974 975
		if (type != expected_type)
			goto err_type;
976 977
	} else if (arg_type == ARG_PTR_TO_STACK ||
		   arg_type == ARG_PTR_TO_RAW_STACK) {
978 979 980 981 982
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
		 * passed in as argument, it's a CONST_IMM type. Final test
		 * happens during stack boundary checking.
		 */
983 984 985 986
		if (type == CONST_IMM && reg->imm == 0)
			/* final test in check_stack_boundary() */;
		else if (type != PTR_TO_PACKET && type != expected_type)
			goto err_type;
987
		meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK;
988 989 990 991 992 993 994
	} else {
		verbose("unsupported arg_type %d\n", arg_type);
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
995
		meta->map_ptr = reg->map_ptr;
996 997 998 999 1000
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1001
		if (!meta->map_ptr) {
1002 1003 1004 1005 1006 1007 1008 1009
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
			verbose("invalid map_ptr to access map->key\n");
			return -EACCES;
		}
1010 1011 1012 1013 1014 1015 1016
		if (type == PTR_TO_PACKET)
			err = check_packet_access(env, regno, 0,
						  meta->map_ptr->key_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1017 1018 1019 1020
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1021
		if (!meta->map_ptr) {
1022 1023 1024 1025
			/* kernel subsystem misconfigured verifier */
			verbose("invalid map_ptr to access map->value\n");
			return -EACCES;
		}
1026 1027 1028 1029 1030 1031 1032
		if (type == PTR_TO_PACKET)
			err = check_packet_access(env, regno, 0,
						  meta->map_ptr->value_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1033 1034 1035
	} else if (arg_type == ARG_CONST_STACK_SIZE ||
		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
		bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

		/* bpf_xxx(..., buf, len) call will access 'len' bytes
		 * from stack pointer 'buf'. Check it
		 * note: regno == len, regno - 1 == buf
		 */
		if (regno == 0) {
			/* kernel subsystem misconfigured verifier */
			verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
			return -EACCES;
		}
1046 1047 1048 1049 1050
		if (regs[regno - 1].type == PTR_TO_PACKET)
			err = check_packet_access(env, regno - 1, 0, reg->imm);
		else
			err = check_stack_boundary(env, regno - 1, reg->imm,
						   zero_size_allowed, meta);
1051 1052 1053
	}

	return err;
1054 1055 1056 1057
err_type:
	verbose("R%d type=%s expected=%s\n", regno,
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
1058 1059
}

1060 1061 1062 1063 1064
static int check_map_func_compatibility(struct bpf_map *map, int func_id)
{
	if (!map)
		return 0;

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
		    func_id != BPF_FUNC_perf_event_output)
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
1080
	case BPF_MAP_TYPE_CGROUP_ARRAY:
1081
		if (func_id != BPF_FUNC_skb_under_cgroup &&
1082
		    func_id != BPF_FUNC_current_task_under_cgroup)
1083 1084
			goto error;
		break;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
1104
	case BPF_FUNC_current_task_under_cgroup:
1105
	case BPF_FUNC_skb_under_cgroup:
1106 1107 1108
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
1109 1110
	default:
		break;
1111 1112 1113
	}

	return 0;
1114 1115 1116 1117
error:
	verbose("cannot pass map_type %d into func %d\n",
		map->map_type, func_id);
	return -EINVAL;
1118 1119
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
static int check_raw_mode(const struct bpf_func_proto *fn)
{
	int count = 0;

	if (fn->arg1_type == ARG_PTR_TO_RAW_STACK)
		count++;
	if (fn->arg2_type == ARG_PTR_TO_RAW_STACK)
		count++;
	if (fn->arg3_type == ARG_PTR_TO_RAW_STACK)
		count++;
	if (fn->arg4_type == ARG_PTR_TO_RAW_STACK)
		count++;
	if (fn->arg5_type == ARG_PTR_TO_RAW_STACK)
		count++;

	return count > 1 ? -EINVAL : 0;
}

A
Alexei Starovoitov 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
static void clear_all_pkt_pointers(struct verifier_env *env)
{
	struct verifier_state *state = &env->cur_state;
	struct reg_state *regs = state->regs, *reg;
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
		if (regs[i].type == PTR_TO_PACKET ||
		    regs[i].type == PTR_TO_PACKET_END)
			mark_reg_unknown_value(regs, i);

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
		if (reg->type != PTR_TO_PACKET &&
		    reg->type != PTR_TO_PACKET_END)
			continue;
		reg->type = UNKNOWN_VALUE;
		reg->imm = 0;
	}
}

1161 1162 1163 1164 1165 1166
static int check_call(struct verifier_env *env, int func_id)
{
	struct verifier_state *state = &env->cur_state;
	const struct bpf_func_proto *fn = NULL;
	struct reg_state *regs = state->regs;
	struct reg_state *reg;
1167
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
1168
	bool changes_data;
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
		verbose("invalid func %d\n", func_id);
		return -EINVAL;
	}

	if (env->prog->aux->ops->get_func_proto)
		fn = env->prog->aux->ops->get_func_proto(func_id);

	if (!fn) {
		verbose("unknown func %d\n", func_id);
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1186
	if (!env->prog->gpl_compatible && fn->gpl_only) {
1187 1188 1189 1190
		verbose("cannot call GPL only function from proprietary program\n");
		return -EINVAL;
	}

A
Alexei Starovoitov 已提交
1191 1192
	changes_data = bpf_helper_changes_skb_data(fn->func);

1193 1194
	memset(&meta, 0, sizeof(meta));

1195 1196 1197 1198 1199 1200 1201 1202 1203
	/* We only support one arg being in raw mode at the moment, which
	 * is sufficient for the helper functions we have right now.
	 */
	err = check_raw_mode(fn);
	if (err) {
		verbose("kernel subsystem misconfigured func %d\n", func_id);
		return err;
	}

1204
	/* check args */
1205
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1206 1207
	if (err)
		return err;
1208
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1209 1210
	if (err)
		return err;
1211
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1212 1213
	if (err)
		return err;
1214
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1215 1216
	if (err)
		return err;
1217
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1218 1219 1220
	if (err)
		return err;

1221 1222 1223 1224 1225 1226 1227 1228 1229
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
		err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
		if (err)
			return err;
	}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	/* reset caller saved regs */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		reg = regs + caller_saved[i];
		reg->type = NOT_INIT;
		reg->imm = 0;
	}

	/* update return register */
	if (fn->ret_type == RET_INTEGER) {
		regs[BPF_REG_0].type = UNKNOWN_VALUE;
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
1248
		if (meta.map_ptr == NULL) {
1249 1250 1251
			verbose("kernel subsystem misconfigured verifier\n");
			return -EINVAL;
		}
1252
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1253 1254 1255 1256 1257
	} else {
		verbose("unknown return type %d of func %d\n",
			fn->ret_type, func_id);
		return -EINVAL;
	}
1258

1259
	err = check_map_func_compatibility(meta.map_ptr, func_id);
1260 1261
	if (err)
		return err;
1262

A
Alexei Starovoitov 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

static int check_packet_ptr_add(struct verifier_env *env, struct bpf_insn *insn)
{
	struct reg_state *regs = env->cur_state.regs;
	struct reg_state *dst_reg = &regs[insn->dst_reg];
	struct reg_state *src_reg = &regs[insn->src_reg];
1273
	struct reg_state tmp_reg;
A
Alexei Starovoitov 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	s32 imm;

	if (BPF_SRC(insn->code) == BPF_K) {
		/* pkt_ptr += imm */
		imm = insn->imm;

add_imm:
		if (imm <= 0) {
			verbose("addition of negative constant to packet pointer is not allowed\n");
			return -EACCES;
		}
		if (imm >= MAX_PACKET_OFF ||
		    imm + dst_reg->off >= MAX_PACKET_OFF) {
			verbose("constant %d is too large to add to packet pointer\n",
				imm);
			return -EACCES;
		}
		/* a constant was added to pkt_ptr.
		 * Remember it while keeping the same 'id'
		 */
		dst_reg->off += imm;
	} else {
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		if (src_reg->type == PTR_TO_PACKET) {
			/* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
			tmp_reg = *dst_reg;  /* save r7 state */
			*dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
			src_reg = &tmp_reg;  /* pretend it's src_reg state */
			/* if the checks below reject it, the copy won't matter,
			 * since we're rejecting the whole program. If all ok,
			 * then imm22 state will be added to r7
			 * and r7 will be pkt(id=0,off=22,r=62) while
			 * r6 will stay as pkt(id=0,off=0,r=62)
			 */
		}

A
Alexei Starovoitov 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
		if (src_reg->type == CONST_IMM) {
			/* pkt_ptr += reg where reg is known constant */
			imm = src_reg->imm;
			goto add_imm;
		}
		/* disallow pkt_ptr += reg
		 * if reg is not uknown_value with guaranteed zero upper bits
		 * otherwise pkt_ptr may overflow and addition will become
		 * subtraction which is not allowed
		 */
		if (src_reg->type != UNKNOWN_VALUE) {
			verbose("cannot add '%s' to ptr_to_packet\n",
				reg_type_str[src_reg->type]);
			return -EACCES;
		}
		if (src_reg->imm < 48) {
			verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
				src_reg->imm);
			return -EACCES;
		}
		/* dst_reg stays as pkt_ptr type and since some positive
		 * integer value was added to the pointer, increment its 'id'
		 */
1332
		dst_reg->id = ++env->id_gen;
A
Alexei Starovoitov 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

		/* something was added to pkt_ptr, set range and off to zero */
		dst_reg->off = 0;
		dst_reg->range = 0;
	}
	return 0;
}

static int evaluate_reg_alu(struct verifier_env *env, struct bpf_insn *insn)
{
	struct reg_state *regs = env->cur_state.regs;
	struct reg_state *dst_reg = &regs[insn->dst_reg];
	u8 opcode = BPF_OP(insn->code);
	s64 imm_log2;

	/* for type == UNKNOWN_VALUE:
	 * imm > 0 -> number of zero upper bits
	 * imm == 0 -> don't track which is the same as all bits can be non-zero
	 */

	if (BPF_SRC(insn->code) == BPF_X) {
		struct reg_state *src_reg = &regs[insn->src_reg];

		if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
		    dst_reg->imm && opcode == BPF_ADD) {
			/* dreg += sreg
			 * where both have zero upper bits. Adding them
			 * can only result making one more bit non-zero
			 * in the larger value.
			 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
			 *     0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
			 */
			dst_reg->imm = min(dst_reg->imm, src_reg->imm);
			dst_reg->imm--;
			return 0;
		}
		if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
		    dst_reg->imm && opcode == BPF_ADD) {
			/* dreg += sreg
			 * where dreg has zero upper bits and sreg is const.
			 * Adding them can only result making one more bit
			 * non-zero in the larger value.
			 */
			imm_log2 = __ilog2_u64((long long)src_reg->imm);
			dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
			dst_reg->imm--;
			return 0;
		}
		/* all other cases non supported yet, just mark dst_reg */
		dst_reg->imm = 0;
		return 0;
	}

	/* sign extend 32-bit imm into 64-bit to make sure that
	 * negative values occupy bit 63. Note ilog2() would have
	 * been incorrect, since sizeof(insn->imm) == 4
	 */
	imm_log2 = __ilog2_u64((long long)insn->imm);

	if (dst_reg->imm && opcode == BPF_LSH) {
		/* reg <<= imm
		 * if reg was a result of 2 byte load, then its imm == 48
		 * which means that upper 48 bits are zero and shifting this reg
		 * left by 4 would mean that upper 44 bits are still zero
		 */
		dst_reg->imm -= insn->imm;
	} else if (dst_reg->imm && opcode == BPF_MUL) {
		/* reg *= imm
		 * if multiplying by 14 subtract 4
		 * This is conservative calculation of upper zero bits.
		 * It's not trying to special case insn->imm == 1 or 0 cases
		 */
		dst_reg->imm -= imm_log2 + 1;
	} else if (opcode == BPF_AND) {
		/* reg &= imm */
		dst_reg->imm = 63 - imm_log2;
	} else if (dst_reg->imm && opcode == BPF_ADD) {
		/* reg += imm */
		dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
		dst_reg->imm--;
	} else if (opcode == BPF_RSH) {
		/* reg >>= imm
		 * which means that after right shift, upper bits will be zero
		 * note that verifier already checked that
		 * 0 <= imm < 64 for shift insn
		 */
		dst_reg->imm += insn->imm;
		if (unlikely(dst_reg->imm > 64))
			/* some dumb code did:
			 * r2 = *(u32 *)mem;
			 * r2 >>= 32;
			 * and all bits are zero now */
			dst_reg->imm = 64;
	} else {
		/* all other alu ops, means that we don't know what will
		 * happen to the value, mark it with unknown number of zero bits
		 */
		dst_reg->imm = 0;
	}

	if (dst_reg->imm < 0) {
		/* all 64 bits of the register can contain non-zero bits
		 * and such value cannot be added to ptr_to_packet, since it
		 * may overflow, mark it as unknown to avoid further eval
		 */
		dst_reg->imm = 0;
	}
	return 0;
}

static int evaluate_reg_imm_alu(struct verifier_env *env, struct bpf_insn *insn)
{
	struct reg_state *regs = env->cur_state.regs;
	struct reg_state *dst_reg = &regs[insn->dst_reg];
	struct reg_state *src_reg = &regs[insn->src_reg];
	u8 opcode = BPF_OP(insn->code);

	/* dst_reg->type == CONST_IMM here, simulate execution of 'add' insn.
	 * Don't care about overflow or negative values, just add them
	 */
	if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
		dst_reg->imm += insn->imm;
	else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
		 src_reg->type == CONST_IMM)
		dst_reg->imm += src_reg->imm;
	else
		mark_reg_unknown_value(regs, insn->dst_reg);
1460 1461 1462 1463
	return 0;
}

/* check validity of 32-bit and 64-bit arithmetic operations */
1464
static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn)
1465
{
A
Alexei Starovoitov 已提交
1466
	struct reg_state *regs = env->cur_state.regs, *dst_reg;
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
				verbose("BPF_NEG uses reserved fields\n");
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
				verbose("BPF_END uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check src operand */
		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
		if (err)
			return err;

1491 1492 1493 1494 1495 1496
		if (is_pointer_value(env, insn->dst_reg)) {
			verbose("R%d pointer arithmetic prohibited\n",
				insn->dst_reg);
			return -EACCES;
		}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		/* check dest operand */
		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
				verbose("BPF_MOV uses reserved fields\n");
				return -EINVAL;
			}

			/* check src operand */
			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
				verbose("BPF_MOV uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check dest operand */
		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
			} else {
1533 1534 1535 1536 1537
				if (is_pointer_value(env, insn->src_reg)) {
					verbose("R%d partial copy of pointer\n",
						insn->src_reg);
					return -EACCES;
				}
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
				regs[insn->dst_reg].type = UNKNOWN_VALUE;
				regs[insn->dst_reg].map_ptr = NULL;
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
			regs[insn->dst_reg].type = CONST_IMM;
			regs[insn->dst_reg].imm = insn->imm;
		}

	} else if (opcode > BPF_END) {
		verbose("invalid BPF_ALU opcode %x\n", opcode);
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
				verbose("BPF_ALU uses reserved fields\n");
				return -EINVAL;
			}
			/* check src1 operand */
			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
				verbose("BPF_ALU uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check src2 operand */
		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
			verbose("div by zero\n");
			return -EINVAL;
		}

R
Rabin Vincent 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
				verbose("invalid shift %d\n", insn->imm);
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
1592 1593 1594 1595 1596 1597 1598
		/* check dest operand */
		err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
		if (err)
			return err;

		dst_reg = &regs[insn->dst_reg];

1599 1600
		/* pattern match 'bpf_add Rx, imm' instruction */
		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
A
Alexei Starovoitov 已提交
1601 1602 1603 1604
		    dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
			dst_reg->type = PTR_TO_STACK;
			dst_reg->imm = insn->imm;
			return 0;
A
Alexei Starovoitov 已提交
1605 1606
		} else if (opcode == BPF_ADD &&
			   BPF_CLASS(insn->code) == BPF_ALU64 &&
1607 1608 1609
			   (dst_reg->type == PTR_TO_PACKET ||
			    (BPF_SRC(insn->code) == BPF_X &&
			     regs[insn->src_reg].type == PTR_TO_PACKET))) {
A
Alexei Starovoitov 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
			/* ptr_to_packet += K|X */
			return check_packet_ptr_add(env, insn);
		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
			   dst_reg->type == UNKNOWN_VALUE &&
			   env->allow_ptr_leaks) {
			/* unknown += K|X */
			return evaluate_reg_alu(env, insn);
		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
			   dst_reg->type == CONST_IMM &&
			   env->allow_ptr_leaks) {
			/* reg_imm += K|X */
			return evaluate_reg_imm_alu(env, insn);
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
		} else if (is_pointer_value(env, insn->dst_reg)) {
			verbose("R%d pointer arithmetic prohibited\n",
				insn->dst_reg);
			return -EACCES;
		} else if (BPF_SRC(insn->code) == BPF_X &&
			   is_pointer_value(env, insn->src_reg)) {
			verbose("R%d pointer arithmetic prohibited\n",
				insn->src_reg);
			return -EACCES;
		}
1632

A
Alexei Starovoitov 已提交
1633 1634
		/* mark dest operand */
		mark_reg_unknown_value(regs, insn->dst_reg);
1635 1636 1637 1638 1639
	}

	return 0;
}

1640 1641
static void find_good_pkt_pointers(struct verifier_state *state,
				   const struct reg_state *dst_reg)
A
Alexei Starovoitov 已提交
1642 1643 1644
{
	struct reg_state *regs = state->regs, *reg;
	int i;
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

	/* LLVM can generate two kind of checks:
	 *
	 * Type 1:
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Type 2:
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
	 * so that range of bytes [r3, r3 + 8) is safe to access.
A
Alexei Starovoitov 已提交
1674
	 */
1675

A
Alexei Starovoitov 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	for (i = 0; i < MAX_BPF_REG; i++)
		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
			regs[i].range = dst_reg->off;

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
			reg->range = dst_reg->off;
	}
}

1689 1690 1691
static int check_cond_jmp_op(struct verifier_env *env,
			     struct bpf_insn *insn, int *insn_idx)
{
1692 1693
	struct verifier_state *other_branch, *this_branch = &env->cur_state;
	struct reg_state *regs = this_branch->regs, *dst_reg;
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode > BPF_EXIT) {
		verbose("invalid BPF_JMP opcode %x\n", opcode);
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
			verbose("BPF_JMP uses reserved fields\n");
			return -EINVAL;
		}

		/* check src1 operand */
		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
		if (err)
			return err;
1712 1713 1714 1715 1716 1717

		if (is_pointer_value(env, insn->src_reg)) {
			verbose("R%d pointer comparison prohibited\n",
				insn->src_reg);
			return -EACCES;
		}
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	} else {
		if (insn->src_reg != BPF_REG_0) {
			verbose("BPF_JMP uses reserved fields\n");
			return -EINVAL;
		}
	}

	/* check src2 operand */
	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
	if (err)
		return err;

A
Alexei Starovoitov 已提交
1730 1731
	dst_reg = &regs[insn->dst_reg];

1732 1733 1734
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
A
Alexei Starovoitov 已提交
1735
	    dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
		if (opcode == BPF_JEQ) {
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;

	/* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
1757 1758
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1759 1760 1761 1762 1763 1764
		if (opcode == BPF_JEQ) {
			/* next fallthrough insn can access memory via
			 * this register
			 */
			regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
			/* branch targer cannot access it, since reg == 0 */
1765 1766
			mark_reg_unknown_value(other_branch->regs,
					       insn->dst_reg);
1767 1768
		} else {
			other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1769
			mark_reg_unknown_value(regs, insn->dst_reg);
1770
		}
A
Alexei Starovoitov 已提交
1771 1772 1773
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
1774 1775 1776 1777 1778
		find_good_pkt_pointers(this_branch, dst_reg);
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
1779 1780 1781
	} else if (is_pointer_value(env, insn->dst_reg)) {
		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
		return -EACCES;
1782 1783
	}
	if (log_level)
1784
		print_verifier_state(this_branch);
1785 1786 1787
	return 0;
}

1788 1789 1790 1791 1792 1793 1794 1795
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
/* verify BPF_LD_IMM64 instruction */
static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
{
	struct reg_state *regs = env->cur_state.regs;
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
		verbose("invalid BPF_LD_IMM insn\n");
		return -EINVAL;
	}
	if (insn->off != 0) {
		verbose("BPF_LD_IMM64 uses reserved fields\n");
		return -EINVAL;
	}

	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
	if (err)
		return err;

	if (insn->src_reg == 0)
		/* generic move 64-bit immediate into a register */
		return 0;

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

1827 1828 1829 1830 1831
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
1832
	case BPF_PROG_TYPE_SCHED_ACT:
1833 1834 1835 1836 1837 1838
		return true;
	default:
		return false;
	}
}

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn)
{
	struct reg_state *regs = env->cur_state.regs;
	u8 mode = BPF_MODE(insn->code);
	struct reg_state *reg;
	int i, err;

1861
	if (!may_access_skb(env->prog->type)) {
A
Alexei Starovoitov 已提交
1862
		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
1863 1864 1865 1866
		return -EINVAL;
	}

	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
1867
	    BPF_SIZE(insn->code) == BPF_DW ||
1868
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
A
Alexei Starovoitov 已提交
1869
		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		reg = regs + caller_saved[i];
		reg->type = NOT_INIT;
		reg->imm = 0;
	}

	/* mark destination R0 register as readable, since it contains
	 * the value fetched from the packet
	 */
	regs[BPF_REG_0].type = UNKNOWN_VALUE;
	return 0;
}

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

1944 1945
#define STATE_LIST_MARK ((struct verifier_state_list *) -1L)

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
static int push_insn(int t, int w, int e, struct verifier_env *env)
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
		verbose("jump out of range from insn %d to %d\n", t, w);
		return -EINVAL;
	}

1968 1969 1970 1971
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
		verbose("back-edge from insn %d to %d\n", t, w);
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
		verbose("insn state internal bug\n");
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
static int check_cfg(struct verifier_env *env)
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
2033 2034
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
2047 2048 2049
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
2050 2051
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
		} else {
			/* conditional jump with two edges */
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
		verbose("pop stack internal bug\n");
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
			verbose("unreachable insn %d\n", i);
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

A
Alexei Starovoitov 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
/* the following conditions reduce the number of explored insns
 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
 */
static bool compare_ptrs_to_packet(struct reg_state *old, struct reg_state *cur)
{
	if (old->id != cur->id)
		return false;

	/* old ptr_to_packet is more conservative, since it allows smaller
	 * range. Ex:
	 * old(off=0,r=10) is equal to cur(off=0,r=20), because
	 * old(off=0,r=10) means that with range=10 the verifier proceeded
	 * further and found no issues with the program. Now we're in the same
	 * spot with cur(off=0,r=20), so we're safe too, since anything further
	 * will only be looking at most 10 bytes after this pointer.
	 */
	if (old->off == cur->off && old->range < cur->range)
		return true;

	/* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
	 * since both cannot be used for packet access and safe(old)
	 * pointer has smaller off that could be used for further
	 * 'if (ptr > data_end)' check
	 * Ex:
	 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
	 * that we cannot access the packet.
	 * The safe range is:
	 * [ptr, ptr + range - off)
	 * so whenever off >=range, it means no safe bytes from this pointer.
	 * When comparing old->off <= cur->off, it means that older code
	 * went with smaller offset and that offset was later
	 * used to figure out the safe range after 'if (ptr > data_end)' check
	 * Say, 'old' state was explored like:
	 * ... R3(off=0, r=0)
	 * R4 = R3 + 20
	 * ... now R4(off=20,r=0)  <-- here
	 * if (R4 > data_end)
	 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
	 * ... the code further went all the way to bpf_exit.
	 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
	 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
	 * goes further, such cur_R4 will give larger safe packet range after
	 * 'if (R4 > data_end)' and all further insn were already good with r=20,
	 * so they will be good with r=30 and we can prune the search.
	 */
	if (old->off <= cur->off &&
	    old->off >= old->range && cur->off >= cur->range)
		return true;

	return false;
}

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
{
A
Alexei Starovoitov 已提交
2182
	struct reg_state *rold, *rcur;
2183 2184 2185
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		rold = &old->regs[i];
		rcur = &cur->regs[i];

		if (memcmp(rold, rcur, sizeof(*rold)) == 0)
			continue;

		if (rold->type == NOT_INIT ||
		    (rold->type == UNKNOWN_VALUE && rcur->type != NOT_INIT))
			continue;

A
Alexei Starovoitov 已提交
2196 2197 2198 2199
		if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
		    compare_ptrs_to_packet(rold, rcur))
			continue;

A
Alexei Starovoitov 已提交
2200
		return false;
2201 2202 2203
	}

	for (i = 0; i < MAX_BPF_STACK; i++) {
2204 2205 2206 2207 2208 2209 2210 2211
		if (old->stack_slot_type[i] == STACK_INVALID)
			continue;
		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
2212
			return false;
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
		if (i % BPF_REG_SIZE)
			continue;
		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
			   &cur->spilled_regs[i / BPF_REG_SIZE],
			   sizeof(old->spilled_regs[0])))
			/* when explored and current stack slot types are
			 * the same, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
			 * but current path has stored:
			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
		else
			continue;
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
	}
	return true;
}

static int is_state_visited(struct verifier_env *env, int insn_idx)
{
	struct verifier_state_list *new_sl;
	struct verifier_state_list *sl;

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
		if (states_equal(&sl->state, &env->cur_state))
			/* reached equivalent register/stack state,
			 * prune the search
			 */
			return 1;
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
	 * but it will either reach bpf_exit (which means it's safe) or
	 * it will be rejected. Since there are no loops, we won't be
	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
	 */
	new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
	return 0;
}

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
static int do_check(struct verifier_env *env)
{
	struct verifier_state *state = &env->cur_state;
	struct bpf_insn *insns = env->prog->insnsi;
	struct reg_state *regs = state->regs;
	int insn_cnt = env->prog->len;
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

	init_reg_state(regs);
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
			verbose("invalid insn idx %d insn_cnt %d\n",
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

2299
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2300 2301 2302 2303 2304
			verbose("BPF program is too large. Proccessed %d insn\n",
				insn_processed);
			return -E2BIG;
		}

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
			if (log_level) {
				if (do_print_state)
					verbose("\nfrom %d to %d: safe\n",
						prev_insn_idx, insn_idx);
				else
					verbose("%d: safe\n", insn_idx);
			}
			goto process_bpf_exit;
		}

2320 2321
		if (log_level && do_print_state) {
			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
A
Alexei Starovoitov 已提交
2322
			print_verifier_state(&env->cur_state);
2323 2324 2325 2326 2327 2328 2329 2330 2331
			do_print_state = false;
		}

		if (log_level) {
			verbose("%d: ", insn_idx);
			print_bpf_insn(insn);
		}

		if (class == BPF_ALU || class == BPF_ALU64) {
2332
			err = check_alu_op(env, insn);
2333 2334 2335 2336
			if (err)
				return err;

		} else if (class == BPF_LDX) {
2337 2338 2339 2340
			enum bpf_reg_type src_reg_type;

			/* check for reserved fields is already done */

2341 2342 2343 2344 2345 2346 2347 2348 2349
			/* check src operand */
			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
			if (err)
				return err;

			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
			if (err)
				return err;

2350 2351
			src_reg_type = regs[insn->src_reg].type;

2352 2353 2354 2355 2356 2357 2358 2359 2360
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
			err = check_mem_access(env, insn->src_reg, insn->off,
					       BPF_SIZE(insn->code), BPF_READ,
					       insn->dst_reg);
			if (err)
				return err;

2361 2362
			if (BPF_SIZE(insn->code) != BPF_W &&
			    BPF_SIZE(insn->code) != BPF_DW) {
2363 2364 2365
				insn_idx++;
				continue;
			}
2366

2367
			if (insn->imm == 0) {
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
				 * use reserved 'imm' field to mark this insn
				 */
				insn->imm = src_reg_type;

			} else if (src_reg_type != insn->imm &&
				   (src_reg_type == PTR_TO_CTX ||
				    insn->imm == PTR_TO_CTX)) {
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
				verbose("same insn cannot be used with different pointers\n");
				return -EINVAL;
			}

2388
		} else if (class == BPF_STX) {
2389 2390
			enum bpf_reg_type dst_reg_type;

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
			if (BPF_MODE(insn->code) == BPF_XADD) {
				err = check_xadd(env, insn);
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
			if (err)
				return err;
			/* check src2 operand */
			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
			if (err)
				return err;

2408 2409
			dst_reg_type = regs[insn->dst_reg].type;

2410 2411 2412 2413 2414 2415 2416
			/* check that memory (dst_reg + off) is writeable */
			err = check_mem_access(env, insn->dst_reg, insn->off,
					       BPF_SIZE(insn->code), BPF_WRITE,
					       insn->src_reg);
			if (err)
				return err;

2417 2418 2419 2420 2421 2422 2423 2424 2425
			if (insn->imm == 0) {
				insn->imm = dst_reg_type;
			} else if (dst_reg_type != insn->imm &&
				   (dst_reg_type == PTR_TO_CTX ||
				    insn->imm == PTR_TO_CTX)) {
				verbose("same insn cannot be used with different pointers\n");
				return -EINVAL;
			}

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
				verbose("BPF_ST uses reserved fields\n");
				return -EINVAL;
			}
			/* check src operand */
			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
			if (err)
				return err;

			/* check that memory (dst_reg + off) is writeable */
			err = check_mem_access(env, insn->dst_reg, insn->off,
					       BPF_SIZE(insn->code), BPF_WRITE,
					       -1);
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_CALL uses reserved fields\n");
					return -EINVAL;
				}

				err = check_call(env, insn->imm);
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_JA uses reserved fields\n");
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_EXIT uses reserved fields\n");
					return -EINVAL;
				}

				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
				if (err)
					return err;

2491 2492 2493 2494 2495
				if (is_pointer_value(env, BPF_REG_0)) {
					verbose("R0 leaks addr as return value\n");
					return -EACCES;
				}

2496
process_bpf_exit:
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
				insn_idx = pop_stack(env, &prev_insn_idx);
				if (insn_idx < 0) {
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
2513 2514 2515 2516
				err = check_ld_abs(env, insn);
				if (err)
					return err;

2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
			} else {
				verbose("invalid BPF_LD mode\n");
				return -EINVAL;
			}
		} else {
			verbose("unknown insn class %d\n", class);
			return -EINVAL;
		}

		insn_idx++;
	}

A
Alexei Starovoitov 已提交
2535
	verbose("processed %d insns\n", insn_processed);
2536 2537 2538
	return 0;
}

2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
static int check_map_prog_compatibility(struct bpf_map *map,
					struct bpf_prog *prog)

{
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT &&
	    (map->map_type == BPF_MAP_TYPE_HASH ||
	     map->map_type == BPF_MAP_TYPE_PERCPU_HASH) &&
	    (map->map_flags & BPF_F_NO_PREALLOC)) {
		verbose("perf_event programs can only use preallocated hash map\n");
		return -EINVAL;
	}
	return 0;
}

2553 2554 2555 2556 2557 2558 2559
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
static int replace_map_fd_with_map_ptr(struct verifier_env *env)
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
2560
	int i, j, err;
2561 2562

	for (i = 0; i < insn_cnt; i++, insn++) {
2563
		if (BPF_CLASS(insn->code) == BPF_LDX &&
2564
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
2565 2566 2567 2568
			verbose("BPF_LDX uses reserved fields\n");
			return -EINVAL;
		}

2569 2570 2571 2572 2573 2574 2575
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
			verbose("BPF_STX uses reserved fields\n");
			return -EINVAL;
		}

2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
				verbose("invalid bpf_ld_imm64 insn\n");
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
				verbose("unrecognized bpf_ld_imm64 insn\n");
				return -EINVAL;
			}

			f = fdget(insn->imm);
2597
			map = __bpf_map_get(f);
2598 2599 2600 2601 2602 2603
			if (IS_ERR(map)) {
				verbose("fd %d is not pointing to valid bpf_map\n",
					insn->imm);
				return PTR_ERR(map);
			}

2604 2605 2606 2607 2608 2609
			err = check_map_prog_compatibility(map, env->prog);
			if (err) {
				fdput(f);
				return err;
			}

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
2631 2632 2633 2634 2635 2636 2637
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
			fdput(f);
next_insn:
			insn++;
			i++;
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
static void release_maps(struct verifier_env *env)
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
static void convert_pseudo_ld_imm64(struct verifier_env *env)
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

2673 2674 2675 2676 2677 2678 2679 2680 2681
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
static int convert_ctx_accesses(struct verifier_env *env)
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
2682
	enum bpf_access_type type;
2683
	int i;
2684 2685 2686 2687 2688

	if (!env->prog->aux->ops->convert_ctx_access)
		return 0;

	for (i = 0; i < insn_cnt; i++, insn++) {
2689 2690
		u32 insn_delta, cnt;

2691 2692
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
2693
			type = BPF_READ;
2694 2695
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
2696 2697
			type = BPF_WRITE;
		else
2698 2699 2700 2701 2702 2703 2704 2705 2706
			continue;

		if (insn->imm != PTR_TO_CTX) {
			/* clear internal mark */
			insn->imm = 0;
			continue;
		}

		cnt = env->prog->aux->ops->
2707
			convert_ctx_access(type, insn->dst_reg, insn->src_reg,
2708
					   insn->off, insn_buf, env->prog);
2709 2710 2711 2712 2713
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
			verbose("bpf verifier is misconfigured\n");
			return -EINVAL;
		}

2714
		new_prog = bpf_patch_insn_single(env->prog, i, insn_buf, cnt);
2715 2716 2717
		if (!new_prog)
			return -ENOMEM;

2718
		insn_delta = cnt - 1;
2719 2720 2721

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
2722 2723 2724 2725
		insn      = new_prog->insnsi + i + insn_delta;

		insn_cnt += insn_delta;
		i        += insn_delta;
2726 2727 2728 2729 2730
	}

	return 0;
}

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
static void free_states(struct verifier_env *env)
{
	struct verifier_state_list *sl, *sln;
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

2753
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
2754
{
2755 2756
	char __user *log_ubuf = NULL;
	struct verifier_env *env;
A
Alexei Starovoitov 已提交
2757 2758
	int ret = -EINVAL;

2759
	if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
2760 2761 2762 2763 2764 2765 2766 2767 2768
		return -E2BIG;

	/* 'struct verifier_env' can be global, but since it's not small,
	 * allocate/free it every time bpf_check() is called
	 */
	env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
	if (!env)
		return -ENOMEM;

2769
	env->prog = *prog;
2770

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
		log_level = attr->log_level;
		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
		log_size = attr->log_size;
		log_len = 0;

		ret = -EINVAL;
		/* log_* values have to be sane */
		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
		    log_level == 0 || log_ubuf == NULL)
			goto free_env;

		ret = -ENOMEM;
		log_buf = vmalloc(log_size);
		if (!log_buf)
			goto free_env;
	} else {
		log_level = 0;
	}

2797 2798 2799 2800
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

2801
	env->explored_states = kcalloc(env->prog->len,
2802 2803 2804 2805 2806 2807
				       sizeof(struct verifier_state_list *),
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

2808 2809 2810 2811
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

2812 2813
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

2814
	ret = do_check(env);
2815

2816
skip_full_check:
2817
	while (pop_stack(env, NULL) >= 0);
2818
	free_states(env);
2819

2820 2821 2822 2823
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
	if (log_level && log_len >= log_size - 1) {
		BUG_ON(log_len >= log_size);
		/* verifier log exceeded user supplied buffer */
		ret = -ENOSPC;
		/* fall through to return what was recorded */
	}

	/* copy verifier log back to user space including trailing zero */
	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
		ret = -EFAULT;
		goto free_log_buf;
	}

2837 2838
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
2839 2840 2841
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
2842

2843
		if (!env->prog->aux->used_maps) {
2844 2845 2846 2847
			ret = -ENOMEM;
			goto free_log_buf;
		}

2848
		memcpy(env->prog->aux->used_maps, env->used_maps,
2849
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
2850
		env->prog->aux->used_map_cnt = env->used_map_cnt;
2851 2852 2853 2854 2855 2856

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
2857 2858 2859 2860 2861

free_log_buf:
	if (log_level)
		vfree(log_buf);
free_env:
2862
	if (!env->prog->aux->used_maps)
2863 2864 2865 2866
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
2867
	*prog = env->prog;
2868 2869
	kfree(env);
	mutex_unlock(&bpf_verifier_lock);
A
Alexei Starovoitov 已提交
2870 2871
	return ret;
}