verifier.c 89.5 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>

/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
 * analysis is limited to 32k insn, which may be hit even if total number of
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
 * Most of the time the registers have UNKNOWN_VALUE type, which
 * means the register has some value, but it's not a valid pointer.
 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
 *
 * When verifier sees load or store instructions the type of base register
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

130
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
131
struct bpf_verifier_stack_elem {
132 133 134 135
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
136
	struct bpf_verifier_state st;
137 138
	int insn_idx;
	int prev_insn_idx;
139
	struct bpf_verifier_stack_elem *next;
140 141
};

142 143 144
#define BPF_COMPLEXITY_LIMIT_INSNS	65536
#define BPF_COMPLEXITY_LIMIT_STACK	1024

145 146
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
147
	bool raw_mode;
148
	bool pkt_access;
149 150
	int regno;
	int access_size;
151 152
};

153 154 155 156 157 158 159 160 161 162 163 164
/* verbose verifier prints what it's seeing
 * bpf_check() is called under lock, so no race to access these global vars
 */
static u32 log_level, log_size, log_len;
static char *log_buf;

static DEFINE_MUTEX(bpf_verifier_lock);

/* log_level controls verbosity level of eBPF verifier.
 * verbose() is used to dump the verification trace to the log, so the user
 * can figure out what's wrong with the program
 */
165
static __printf(1, 2) void verbose(const char *fmt, ...)
166 167 168 169 170 171 172 173 174 175 176
{
	va_list args;

	if (log_level == 0 || log_len >= log_size - 1)
		return;

	va_start(args, fmt);
	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
	va_end(args);
}

177 178 179 180 181 182 183 184
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
	[UNKNOWN_VALUE]		= "inv",
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
185
	[PTR_TO_MAP_VALUE_ADJ]	= "map_value_adj",
186 187 188
	[FRAME_PTR]		= "fp",
	[PTR_TO_STACK]		= "fp",
	[CONST_IMM]		= "imm",
A
Alexei Starovoitov 已提交
189 190
	[PTR_TO_PACKET]		= "pkt",
	[PTR_TO_PACKET_END]	= "pkt_end",
191 192
};

193
static void print_verifier_state(struct bpf_verifier_state *state)
194
{
195
	struct bpf_reg_state *reg;
196 197 198 199
	enum bpf_reg_type t;
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
200 201
		reg = &state->regs[i];
		t = reg->type;
202 203 204 205
		if (t == NOT_INIT)
			continue;
		verbose(" R%d=%s", i, reg_type_str[t]);
		if (t == CONST_IMM || t == PTR_TO_STACK)
A
Alexei Starovoitov 已提交
206 207 208 209 210 211
			verbose("%lld", reg->imm);
		else if (t == PTR_TO_PACKET)
			verbose("(id=%d,off=%d,r=%d)",
				reg->id, reg->off, reg->range);
		else if (t == UNKNOWN_VALUE && reg->imm)
			verbose("%lld", reg->imm);
212
		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
213 214
			 t == PTR_TO_MAP_VALUE_OR_NULL ||
			 t == PTR_TO_MAP_VALUE_ADJ)
215
			verbose("(ks=%d,vs=%d)",
A
Alexei Starovoitov 已提交
216 217
				reg->map_ptr->key_size,
				reg->map_ptr->value_size);
218 219 220 221 222 223
		if (reg->min_value != BPF_REGISTER_MIN_RANGE)
			verbose(",min_value=%llu",
				(unsigned long long)reg->min_value);
		if (reg->max_value != BPF_REGISTER_MAX_RANGE)
			verbose(",max_value=%llu",
				(unsigned long long)reg->max_value);
224
	}
225
	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
A
Alexei Starovoitov 已提交
226
		if (state->stack_slot_type[i] == STACK_SPILL)
227
			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
A
Alexei Starovoitov 已提交
228
				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
229 230 231 232
	}
	verbose("\n");
}

233 234 235 236 237 238 239 240 241 242 243
static const char *const bpf_class_string[] = {
	[BPF_LD]    = "ld",
	[BPF_LDX]   = "ldx",
	[BPF_ST]    = "st",
	[BPF_STX]   = "stx",
	[BPF_ALU]   = "alu",
	[BPF_JMP]   = "jmp",
	[BPF_RET]   = "BUG",
	[BPF_ALU64] = "alu64",
};

244
static const char *const bpf_alu_string[16] = {
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
	[BPF_ADD >> 4]  = "+=",
	[BPF_SUB >> 4]  = "-=",
	[BPF_MUL >> 4]  = "*=",
	[BPF_DIV >> 4]  = "/=",
	[BPF_OR  >> 4]  = "|=",
	[BPF_AND >> 4]  = "&=",
	[BPF_LSH >> 4]  = "<<=",
	[BPF_RSH >> 4]  = ">>=",
	[BPF_NEG >> 4]  = "neg",
	[BPF_MOD >> 4]  = "%=",
	[BPF_XOR >> 4]  = "^=",
	[BPF_MOV >> 4]  = "=",
	[BPF_ARSH >> 4] = "s>>=",
	[BPF_END >> 4]  = "endian",
};

static const char *const bpf_ldst_string[] = {
	[BPF_W >> 3]  = "u32",
	[BPF_H >> 3]  = "u16",
	[BPF_B >> 3]  = "u8",
	[BPF_DW >> 3] = "u64",
};

268
static const char *const bpf_jmp_string[16] = {
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
	[BPF_JA >> 4]   = "jmp",
	[BPF_JEQ >> 4]  = "==",
	[BPF_JGT >> 4]  = ">",
	[BPF_JGE >> 4]  = ">=",
	[BPF_JSET >> 4] = "&",
	[BPF_JNE >> 4]  = "!=",
	[BPF_JSGT >> 4] = "s>",
	[BPF_JSGE >> 4] = "s>=",
	[BPF_CALL >> 4] = "call",
	[BPF_EXIT >> 4] = "exit",
};

static void print_bpf_insn(struct bpf_insn *insn)
{
	u8 class = BPF_CLASS(insn->code);

	if (class == BPF_ALU || class == BPF_ALU64) {
		if (BPF_SRC(insn->code) == BPF_X)
			verbose("(%02x) %sr%d %s %sr%d\n",
				insn->code, class == BPF_ALU ? "(u32) " : "",
				insn->dst_reg,
				bpf_alu_string[BPF_OP(insn->code) >> 4],
				class == BPF_ALU ? "(u32) " : "",
				insn->src_reg);
		else
			verbose("(%02x) %sr%d %s %s%d\n",
				insn->code, class == BPF_ALU ? "(u32) " : "",
				insn->dst_reg,
				bpf_alu_string[BPF_OP(insn->code) >> 4],
				class == BPF_ALU ? "(u32) " : "",
				insn->imm);
	} else if (class == BPF_STX) {
		if (BPF_MODE(insn->code) == BPF_MEM)
			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->dst_reg,
				insn->off, insn->src_reg);
		else if (BPF_MODE(insn->code) == BPF_XADD)
			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->dst_reg, insn->off,
				insn->src_reg);
		else
			verbose("BUG_%02x\n", insn->code);
	} else if (class == BPF_ST) {
		if (BPF_MODE(insn->code) != BPF_MEM) {
			verbose("BUG_st_%02x\n", insn->code);
			return;
		}
		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
			insn->code,
			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
			insn->dst_reg,
			insn->off, insn->imm);
	} else if (class == BPF_LDX) {
		if (BPF_MODE(insn->code) != BPF_MEM) {
			verbose("BUG_ldx_%02x\n", insn->code);
			return;
		}
		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
			insn->code, insn->dst_reg,
			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
			insn->src_reg, insn->off);
	} else if (class == BPF_LD) {
		if (BPF_MODE(insn->code) == BPF_ABS) {
			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->imm);
		} else if (BPF_MODE(insn->code) == BPF_IND) {
			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
				insn->code,
				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
				insn->src_reg, insn->imm);
		} else if (BPF_MODE(insn->code) == BPF_IMM) {
			verbose("(%02x) r%d = 0x%x\n",
				insn->code, insn->dst_reg, insn->imm);
		} else {
			verbose("BUG_ld_%02x\n", insn->code);
			return;
		}
	} else if (class == BPF_JMP) {
		u8 opcode = BPF_OP(insn->code);

		if (opcode == BPF_CALL) {
			verbose("(%02x) call %d\n", insn->code, insn->imm);
		} else if (insn->code == (BPF_JMP | BPF_JA)) {
			verbose("(%02x) goto pc%+d\n",
				insn->code, insn->off);
		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
			verbose("(%02x) exit\n", insn->code);
		} else if (BPF_SRC(insn->code) == BPF_X) {
			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
				insn->code, insn->dst_reg,
				bpf_jmp_string[BPF_OP(insn->code) >> 4],
				insn->src_reg, insn->off);
		} else {
			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
				insn->code, insn->dst_reg,
				bpf_jmp_string[BPF_OP(insn->code) >> 4],
				insn->imm, insn->off);
		}
	} else {
		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
	}
}

378
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
379
{
380
	struct bpf_verifier_stack_elem *elem;
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
	int insn_idx;

	if (env->head == NULL)
		return -1;

	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
	insn_idx = env->head->insn_idx;
	if (prev_insn_idx)
		*prev_insn_idx = env->head->prev_insn_idx;
	elem = env->head->next;
	kfree(env->head);
	env->head = elem;
	env->stack_size--;
	return insn_idx;
}

397 398
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
399
{
400
	struct bpf_verifier_stack_elem *elem;
401

402
	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
403 404 405 406 407 408 409 410 411
	if (!elem)
		goto err;

	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
412
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
		verbose("BPF program is too complex\n");
		goto err;
	}
	return &elem->st;
err:
	/* pop all elements and return */
	while (pop_stack(env, NULL) >= 0);
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

428
static void init_reg_state(struct bpf_reg_state *regs)
429 430 431 432 433 434
{
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
		regs[i].type = NOT_INIT;
		regs[i].imm = 0;
435 436
		regs[i].min_value = BPF_REGISTER_MIN_RANGE;
		regs[i].max_value = BPF_REGISTER_MAX_RANGE;
437 438 439 440 441 442 443 444 445
	}

	/* frame pointer */
	regs[BPF_REG_FP].type = FRAME_PTR;

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
}

446
static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
447 448 449 450 451 452
{
	BUG_ON(regno >= MAX_BPF_REG);
	regs[regno].type = UNKNOWN_VALUE;
	regs[regno].imm = 0;
}

453 454 455 456 457 458
static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
{
	regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
	regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
}

459 460 461 462 463 464
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

465
static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
			 enum reg_arg_type t)
{
	if (regno >= MAX_BPF_REG) {
		verbose("R%d is invalid\n", regno);
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
			verbose("R%d !read_ok\n", regno);
			return -EACCES;
		}
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
			verbose("frame pointer is read only\n");
			return -EACCES;
		}
		if (t == DST_OP)
			mark_reg_unknown_value(regs, regno);
	}
	return 0;
}

static int bpf_size_to_bytes(int bpf_size)
{
	if (bpf_size == BPF_W)
		return 4;
	else if (bpf_size == BPF_H)
		return 2;
	else if (bpf_size == BPF_B)
		return 1;
	else if (bpf_size == BPF_DW)
		return 8;
	else
		return -EINVAL;
}

505 506 507 508 509 510 511
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
512 513
	case PTR_TO_PACKET:
	case PTR_TO_PACKET_END:
514 515 516 517 518 519 520 521
	case FRAME_PTR:
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

522 523 524
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
525 526
static int check_stack_write(struct bpf_verifier_state *state, int off,
			     int size, int value_regno)
527 528
{
	int i;
529 530 531
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
532 533

	if (value_regno >= 0 &&
534
	    is_spillable_regtype(state->regs[value_regno].type)) {
535 536

		/* register containing pointer is being spilled into stack */
537
		if (size != BPF_REG_SIZE) {
538 539 540 541 542
			verbose("invalid size of register spill\n");
			return -EACCES;
		}

		/* save register state */
543 544
		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
			state->regs[value_regno];
545

546 547 548
		for (i = 0; i < BPF_REG_SIZE; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
	} else {
549
		/* regular write of data into stack */
550
		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
551
			(struct bpf_reg_state) {};
552 553 554

		for (i = 0; i < size; i++)
			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
555 556 557 558
	}
	return 0;
}

559
static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
560 561
			    int value_regno)
{
562
	u8 *slot_type;
563 564
	int i;

565
	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
566

567 568
	if (slot_type[0] == STACK_SPILL) {
		if (size != BPF_REG_SIZE) {
569 570 571
			verbose("invalid size of register spill\n");
			return -EACCES;
		}
572 573
		for (i = 1; i < BPF_REG_SIZE; i++) {
			if (slot_type[i] != STACK_SPILL) {
574 575 576 577 578 579 580
				verbose("corrupted spill memory\n");
				return -EACCES;
			}
		}

		if (value_regno >= 0)
			/* restore register state from stack */
581 582
			state->regs[value_regno] =
				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
583 584 585
		return 0;
	} else {
		for (i = 0; i < size; i++) {
586
			if (slot_type[i] != STACK_MISC) {
587 588 589 590 591 592 593 594 595 596 597 598 599
				verbose("invalid read from stack off %d+%d size %d\n",
					off, i, size);
				return -EACCES;
			}
		}
		if (value_regno >= 0)
			/* have read misc data from the stack */
			mark_reg_unknown_value(state->regs, value_regno);
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
600
static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
601 602 603 604 605 606 607 608 609 610 611 612
			    int size)
{
	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;

	if (off < 0 || off + size > map->value_size) {
		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

A
Alexei Starovoitov 已提交
613 614
#define MAX_PACKET_OFF 0xffff

615
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
616
				       const struct bpf_call_arg_meta *meta)
617
{
618 619 620
	switch (env->prog->type) {
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
621
	case BPF_PROG_TYPE_XDP:
622 623 624 625
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
626 627 628 629 630 631
		return true;
	default:
		return false;
	}
}

632
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
A
Alexei Starovoitov 已提交
633 634
			       int size)
{
635 636
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
637

638
	off += reg->off;
639
	if (off < 0 || size <= 0 || off + size > reg->range) {
640 641
		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
642 643 644 645 646
		return -EACCES;
	}
	return 0;
}

647
/* check access to 'struct bpf_context' fields */
648
static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
649
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
650
{
651 652 653 654
	/* for analyzer ctx accesses are already validated and converted */
	if (env->analyzer_ops)
		return 0;

655
	if (env->prog->aux->ops->is_valid_access &&
656
	    env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
657 658 659
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
660
		return 0;
661
	}
662 663 664 665 666

	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
	return -EACCES;
}

667
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
668 669 670 671 672 673 674 675 676 677 678 679 680
{
	if (env->allow_ptr_leaks)
		return false;

	switch (env->cur_state.regs[regno].type) {
	case UNKNOWN_VALUE:
	case CONST_IMM:
		return false;
	default:
		return true;
	}
}

681 682
static int check_ptr_alignment(struct bpf_verifier_env *env,
			       struct bpf_reg_state *reg, int off, int size)
A
Alexei Starovoitov 已提交
683
{
684
	if (reg->type != PTR_TO_PACKET && reg->type != PTR_TO_MAP_VALUE_ADJ) {
A
Alexei Starovoitov 已提交
685
		if (off % size != 0) {
686 687
			verbose("misaligned access off %d size %d\n",
				off, size);
A
Alexei Starovoitov 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
			return -EACCES;
		} else {
			return 0;
		}
	}

	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
		/* misaligned access to packet is ok on x86,arm,arm64 */
		return 0;

	if (reg->id && size != 1) {
		verbose("Unknown packet alignment. Only byte-sized access allowed\n");
		return -EACCES;
	}

	/* skb->data is NET_IP_ALIGN-ed */
704 705
	if (reg->type == PTR_TO_PACKET &&
	    (NET_IP_ALIGN + reg->off + off) % size != 0) {
A
Alexei Starovoitov 已提交
706 707 708 709 710 711 712
		verbose("misaligned packet access off %d+%d+%d size %d\n",
			NET_IP_ALIGN, reg->off, off, size);
		return -EACCES;
	}
	return 0;
}

713 714 715 716 717 718
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
719
static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
720 721 722
			    int bpf_size, enum bpf_access_type t,
			    int value_regno)
{
723 724
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *reg = &state->regs[regno];
725 726
	int size, err = 0;

A
Alexei Starovoitov 已提交
727 728
	if (reg->type == PTR_TO_STACK)
		off += reg->imm;
729

730 731 732 733
	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

A
Alexei Starovoitov 已提交
734 735 736
	err = check_ptr_alignment(env, reg, off, size);
	if (err)
		return err;
737

738 739
	if (reg->type == PTR_TO_MAP_VALUE ||
	    reg->type == PTR_TO_MAP_VALUE_ADJ) {
740 741 742 743 744
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into map\n", value_regno);
			return -EACCES;
		}
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783

		/* If we adjusted the register to this map value at all then we
		 * need to change off and size to min_value and max_value
		 * respectively to make sure our theoretical access will be
		 * safe.
		 */
		if (reg->type == PTR_TO_MAP_VALUE_ADJ) {
			if (log_level)
				print_verifier_state(state);
			env->varlen_map_value_access = true;
			/* The minimum value is only important with signed
			 * comparisons where we can't assume the floor of a
			 * value is 0.  If we are using signed variables for our
			 * index'es we need to make sure that whatever we use
			 * will have a set floor within our range.
			 */
			if ((s64)reg->min_value < 0) {
				verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
					regno);
				return -EACCES;
			}
			err = check_map_access(env, regno, reg->min_value + off,
					       size);
			if (err) {
				verbose("R%d min value is outside of the array range\n",
					regno);
				return err;
			}

			/* If we haven't set a max value then we need to bail
			 * since we can't be sure we won't do bad things.
			 */
			if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
				verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
					regno);
				return -EACCES;
			}
			off += reg->max_value;
		}
784 785 786 787
		err = check_map_access(env, regno, off, size);
		if (!err && t == BPF_READ && value_regno >= 0)
			mark_reg_unknown_value(state->regs, value_regno);

A
Alexei Starovoitov 已提交
788
	} else if (reg->type == PTR_TO_CTX) {
789 790
		enum bpf_reg_type reg_type = UNKNOWN_VALUE;

791 792 793 794 795
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into ctx\n", value_regno);
			return -EACCES;
		}
796
		err = check_ctx_access(env, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
797
		if (!err && t == BPF_READ && value_regno >= 0) {
798
			mark_reg_unknown_value(state->regs, value_regno);
799 800
			/* note that reg.[id|off|range] == 0 */
			state->regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
801
		}
802

A
Alexei Starovoitov 已提交
803
	} else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
804 805 806 807
		if (off >= 0 || off < -MAX_BPF_STACK) {
			verbose("invalid stack off=%d size=%d\n", off, size);
			return -EACCES;
		}
808 809 810 811 812 813 814
		if (t == BPF_WRITE) {
			if (!env->allow_ptr_leaks &&
			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
			    size != BPF_REG_SIZE) {
				verbose("attempt to corrupt spilled pointer on stack\n");
				return -EACCES;
			}
815
			err = check_stack_write(state, off, size, value_regno);
816
		} else {
817
			err = check_stack_read(state, off, size, value_regno);
818
		}
A
Alexei Starovoitov 已提交
819
	} else if (state->regs[regno].type == PTR_TO_PACKET) {
820
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL)) {
A
Alexei Starovoitov 已提交
821 822 823
			verbose("cannot write into packet\n");
			return -EACCES;
		}
824 825 826 827 828
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
			verbose("R%d leaks addr into packet\n", value_regno);
			return -EACCES;
		}
A
Alexei Starovoitov 已提交
829 830 831
		err = check_packet_access(env, regno, off, size);
		if (!err && t == BPF_READ && value_regno >= 0)
			mark_reg_unknown_value(state->regs, value_regno);
832 833
	} else {
		verbose("R%d invalid mem access '%s'\n",
A
Alexei Starovoitov 已提交
834
			regno, reg_type_str[reg->type]);
835 836
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
837 838 839 840 841 842 843 844 845

	if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
	    state->regs[value_regno].type == UNKNOWN_VALUE) {
		/* 1 or 2 byte load zero-extends, determine the number of
		 * zero upper bits. Not doing it fo 4 byte load, since
		 * such values cannot be added to ptr_to_packet anyway.
		 */
		state->regs[value_regno].imm = 64 - size * 8;
	}
846 847 848
	return err;
}

849
static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
850
{
851
	struct bpf_reg_state *regs = env->cur_state.regs;
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
		verbose("BPF_XADD uses reserved fields\n");
		return -EINVAL;
	}

	/* check src1 operand */
	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
	if (err)
		return err;

	/* check src2 operand */
	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
	if (err)
		return err;

	/* check whether atomic_add can read the memory */
	err = check_mem_access(env, insn->dst_reg, insn->off,
			       BPF_SIZE(insn->code), BPF_READ, -1);
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
	return check_mem_access(env, insn->dst_reg, insn->off,
				BPF_SIZE(insn->code), BPF_WRITE, -1);
}

/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
 * and all elements of stack are initialized
 */
885
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
886 887
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
888
{
889 890
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *regs = state->regs;
891 892
	int off, i;

893 894 895 896 897 898 899 900 901
	if (regs[regno].type != PTR_TO_STACK) {
		if (zero_size_allowed && access_size == 0 &&
		    regs[regno].type == CONST_IMM &&
		    regs[regno].imm  == 0)
			return 0;

		verbose("R%d type=%s expected=%s\n", regno,
			reg_type_str[regs[regno].type],
			reg_type_str[PTR_TO_STACK]);
902
		return -EACCES;
903
	}
904 905 906 907 908 909 910 911 912

	off = regs[regno].imm;
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
	    access_size <= 0) {
		verbose("invalid stack type R%d off=%d access_size=%d\n",
			regno, off, access_size);
		return -EACCES;
	}

913 914 915 916 917 918
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

919
	for (i = 0; i < access_size; i++) {
920
		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
921 922 923 924 925 926 927 928
			verbose("invalid indirect read from stack off %d+%d size %d\n",
				off, i, access_size);
			return -EACCES;
		}
	}
	return 0;
}

929
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
930 931
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
932
{
933
	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
934
	enum bpf_reg_type expected_type, type = reg->type;
935 936
	int err = 0;

937
	if (arg_type == ARG_DONTCARE)
938 939
		return 0;

940
	if (type == NOT_INIT) {
941 942 943 944
		verbose("R%d !read_ok\n", regno);
		return -EACCES;
	}

945 946 947 948 949
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
			verbose("R%d leaks addr into helper function\n", regno);
			return -EACCES;
		}
950
		return 0;
951
	}
952

953 954
	if (type == PTR_TO_PACKET && !may_access_direct_pkt_data(env, meta)) {
		verbose("helper access to the packet is not allowed\n");
955 956 957
		return -EACCES;
	}

958
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
959 960
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
961 962
		if (type != PTR_TO_PACKET && type != expected_type)
			goto err_type;
963 964
	} else if (arg_type == ARG_CONST_STACK_SIZE ||
		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
965
		expected_type = CONST_IMM;
966 967
		if (type != expected_type)
			goto err_type;
968 969
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
970 971
		if (type != expected_type)
			goto err_type;
972 973
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
974 975
		if (type != expected_type)
			goto err_type;
976 977
	} else if (arg_type == ARG_PTR_TO_STACK ||
		   arg_type == ARG_PTR_TO_RAW_STACK) {
978 979 980 981 982
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
		 * passed in as argument, it's a CONST_IMM type. Final test
		 * happens during stack boundary checking.
		 */
983 984 985 986
		if (type == CONST_IMM && reg->imm == 0)
			/* final test in check_stack_boundary() */;
		else if (type != PTR_TO_PACKET && type != expected_type)
			goto err_type;
987
		meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK;
988 989 990 991 992 993 994
	} else {
		verbose("unsupported arg_type %d\n", arg_type);
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
995
		meta->map_ptr = reg->map_ptr;
996 997 998 999 1000
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1001
		if (!meta->map_ptr) {
1002 1003 1004 1005 1006 1007 1008 1009
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
			verbose("invalid map_ptr to access map->key\n");
			return -EACCES;
		}
1010 1011 1012 1013 1014 1015 1016
		if (type == PTR_TO_PACKET)
			err = check_packet_access(env, regno, 0,
						  meta->map_ptr->key_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1017 1018 1019 1020
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1021
		if (!meta->map_ptr) {
1022 1023 1024 1025
			/* kernel subsystem misconfigured verifier */
			verbose("invalid map_ptr to access map->value\n");
			return -EACCES;
		}
1026 1027 1028 1029 1030 1031 1032
		if (type == PTR_TO_PACKET)
			err = check_packet_access(env, regno, 0,
						  meta->map_ptr->value_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1033 1034 1035
	} else if (arg_type == ARG_CONST_STACK_SIZE ||
		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
		bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

		/* bpf_xxx(..., buf, len) call will access 'len' bytes
		 * from stack pointer 'buf'. Check it
		 * note: regno == len, regno - 1 == buf
		 */
		if (regno == 0) {
			/* kernel subsystem misconfigured verifier */
			verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
			return -EACCES;
		}
1046 1047 1048 1049 1050
		if (regs[regno - 1].type == PTR_TO_PACKET)
			err = check_packet_access(env, regno - 1, 0, reg->imm);
		else
			err = check_stack_boundary(env, regno - 1, reg->imm,
						   zero_size_allowed, meta);
1051 1052 1053
	}

	return err;
1054 1055 1056 1057
err_type:
	verbose("R%d type=%s expected=%s\n", regno,
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
1058 1059
}

1060 1061 1062 1063 1064
static int check_map_func_compatibility(struct bpf_map *map, int func_id)
{
	if (!map)
		return 0;

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
		    func_id != BPF_FUNC_perf_event_output)
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
1080
	case BPF_MAP_TYPE_CGROUP_ARRAY:
1081
		if (func_id != BPF_FUNC_skb_under_cgroup &&
1082
		    func_id != BPF_FUNC_current_task_under_cgroup)
1083 1084
			goto error;
		break;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
1104
	case BPF_FUNC_current_task_under_cgroup:
1105
	case BPF_FUNC_skb_under_cgroup:
1106 1107 1108
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
1109 1110
	default:
		break;
1111 1112 1113
	}

	return 0;
1114 1115 1116 1117
error:
	verbose("cannot pass map_type %d into func %d\n",
		map->map_type, func_id);
	return -EINVAL;
1118 1119
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
static int check_raw_mode(const struct bpf_func_proto *fn)
{
	int count = 0;

	if (fn->arg1_type == ARG_PTR_TO_RAW_STACK)
		count++;
	if (fn->arg2_type == ARG_PTR_TO_RAW_STACK)
		count++;
	if (fn->arg3_type == ARG_PTR_TO_RAW_STACK)
		count++;
	if (fn->arg4_type == ARG_PTR_TO_RAW_STACK)
		count++;
	if (fn->arg5_type == ARG_PTR_TO_RAW_STACK)
		count++;

	return count > 1 ? -EINVAL : 0;
}

1138
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
A
Alexei Starovoitov 已提交
1139
{
1140 1141
	struct bpf_verifier_state *state = &env->cur_state;
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
		if (regs[i].type == PTR_TO_PACKET ||
		    regs[i].type == PTR_TO_PACKET_END)
			mark_reg_unknown_value(regs, i);

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
		if (reg->type != PTR_TO_PACKET &&
		    reg->type != PTR_TO_PACKET_END)
			continue;
		reg->type = UNKNOWN_VALUE;
		reg->imm = 0;
	}
}

1161
static int check_call(struct bpf_verifier_env *env, int func_id)
1162
{
1163
	struct bpf_verifier_state *state = &env->cur_state;
1164
	const struct bpf_func_proto *fn = NULL;
1165 1166
	struct bpf_reg_state *regs = state->regs;
	struct bpf_reg_state *reg;
1167
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
1168
	bool changes_data;
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
		verbose("invalid func %d\n", func_id);
		return -EINVAL;
	}

	if (env->prog->aux->ops->get_func_proto)
		fn = env->prog->aux->ops->get_func_proto(func_id);

	if (!fn) {
		verbose("unknown func %d\n", func_id);
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1186
	if (!env->prog->gpl_compatible && fn->gpl_only) {
1187 1188 1189 1190
		verbose("cannot call GPL only function from proprietary program\n");
		return -EINVAL;
	}

A
Alexei Starovoitov 已提交
1191 1192
	changes_data = bpf_helper_changes_skb_data(fn->func);

1193
	memset(&meta, 0, sizeof(meta));
1194
	meta.pkt_access = fn->pkt_access;
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204
	/* We only support one arg being in raw mode at the moment, which
	 * is sufficient for the helper functions we have right now.
	 */
	err = check_raw_mode(fn);
	if (err) {
		verbose("kernel subsystem misconfigured func %d\n", func_id);
		return err;
	}

1205
	/* check args */
1206
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1207 1208
	if (err)
		return err;
1209
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1210 1211
	if (err)
		return err;
1212
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1213 1214
	if (err)
		return err;
1215
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1216 1217
	if (err)
		return err;
1218
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1219 1220 1221
	if (err)
		return err;

1222 1223 1224 1225 1226 1227 1228 1229 1230
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
		err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
		if (err)
			return err;
	}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	/* reset caller saved regs */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		reg = regs + caller_saved[i];
		reg->type = NOT_INIT;
		reg->imm = 0;
	}

	/* update return register */
	if (fn->ret_type == RET_INTEGER) {
		regs[BPF_REG_0].type = UNKNOWN_VALUE;
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1245
		regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
1246 1247 1248 1249
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
1250
		if (meta.map_ptr == NULL) {
1251 1252 1253
			verbose("kernel subsystem misconfigured verifier\n");
			return -EINVAL;
		}
1254
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1255 1256 1257 1258 1259
	} else {
		verbose("unknown return type %d of func %d\n",
			fn->ret_type, func_id);
		return -EINVAL;
	}
1260

1261
	err = check_map_func_compatibility(meta.map_ptr, func_id);
1262 1263
	if (err)
		return err;
1264

A
Alexei Starovoitov 已提交
1265 1266 1267 1268 1269
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

1270 1271
static int check_packet_ptr_add(struct bpf_verifier_env *env,
				struct bpf_insn *insn)
A
Alexei Starovoitov 已提交
1272
{
1273 1274 1275 1276
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
	struct bpf_reg_state tmp_reg;
A
Alexei Starovoitov 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	s32 imm;

	if (BPF_SRC(insn->code) == BPF_K) {
		/* pkt_ptr += imm */
		imm = insn->imm;

add_imm:
		if (imm <= 0) {
			verbose("addition of negative constant to packet pointer is not allowed\n");
			return -EACCES;
		}
		if (imm >= MAX_PACKET_OFF ||
		    imm + dst_reg->off >= MAX_PACKET_OFF) {
			verbose("constant %d is too large to add to packet pointer\n",
				imm);
			return -EACCES;
		}
		/* a constant was added to pkt_ptr.
		 * Remember it while keeping the same 'id'
		 */
		dst_reg->off += imm;
	} else {
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
		if (src_reg->type == PTR_TO_PACKET) {
			/* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
			tmp_reg = *dst_reg;  /* save r7 state */
			*dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
			src_reg = &tmp_reg;  /* pretend it's src_reg state */
			/* if the checks below reject it, the copy won't matter,
			 * since we're rejecting the whole program. If all ok,
			 * then imm22 state will be added to r7
			 * and r7 will be pkt(id=0,off=22,r=62) while
			 * r6 will stay as pkt(id=0,off=0,r=62)
			 */
		}

A
Alexei Starovoitov 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		if (src_reg->type == CONST_IMM) {
			/* pkt_ptr += reg where reg is known constant */
			imm = src_reg->imm;
			goto add_imm;
		}
		/* disallow pkt_ptr += reg
		 * if reg is not uknown_value with guaranteed zero upper bits
		 * otherwise pkt_ptr may overflow and addition will become
		 * subtraction which is not allowed
		 */
		if (src_reg->type != UNKNOWN_VALUE) {
			verbose("cannot add '%s' to ptr_to_packet\n",
				reg_type_str[src_reg->type]);
			return -EACCES;
		}
		if (src_reg->imm < 48) {
			verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
				src_reg->imm);
			return -EACCES;
		}
		/* dst_reg stays as pkt_ptr type and since some positive
		 * integer value was added to the pointer, increment its 'id'
		 */
1335
		dst_reg->id = ++env->id_gen;
A
Alexei Starovoitov 已提交
1336 1337 1338 1339 1340 1341 1342 1343

		/* something was added to pkt_ptr, set range and off to zero */
		dst_reg->off = 0;
		dst_reg->range = 0;
	}
	return 0;
}

1344
static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
A
Alexei Starovoitov 已提交
1345
{
1346 1347
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
A
Alexei Starovoitov 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356
	u8 opcode = BPF_OP(insn->code);
	s64 imm_log2;

	/* for type == UNKNOWN_VALUE:
	 * imm > 0 -> number of zero upper bits
	 * imm == 0 -> don't track which is the same as all bits can be non-zero
	 */

	if (BPF_SRC(insn->code) == BPF_X) {
1357
		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
A
Alexei Starovoitov 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

		if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
		    dst_reg->imm && opcode == BPF_ADD) {
			/* dreg += sreg
			 * where both have zero upper bits. Adding them
			 * can only result making one more bit non-zero
			 * in the larger value.
			 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
			 *     0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
			 */
			dst_reg->imm = min(dst_reg->imm, src_reg->imm);
			dst_reg->imm--;
			return 0;
		}
		if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
		    dst_reg->imm && opcode == BPF_ADD) {
			/* dreg += sreg
			 * where dreg has zero upper bits and sreg is const.
			 * Adding them can only result making one more bit
			 * non-zero in the larger value.
			 */
			imm_log2 = __ilog2_u64((long long)src_reg->imm);
			dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
			dst_reg->imm--;
			return 0;
		}
		/* all other cases non supported yet, just mark dst_reg */
		dst_reg->imm = 0;
		return 0;
	}

	/* sign extend 32-bit imm into 64-bit to make sure that
	 * negative values occupy bit 63. Note ilog2() would have
	 * been incorrect, since sizeof(insn->imm) == 4
	 */
	imm_log2 = __ilog2_u64((long long)insn->imm);

	if (dst_reg->imm && opcode == BPF_LSH) {
		/* reg <<= imm
		 * if reg was a result of 2 byte load, then its imm == 48
		 * which means that upper 48 bits are zero and shifting this reg
		 * left by 4 would mean that upper 44 bits are still zero
		 */
		dst_reg->imm -= insn->imm;
	} else if (dst_reg->imm && opcode == BPF_MUL) {
		/* reg *= imm
		 * if multiplying by 14 subtract 4
		 * This is conservative calculation of upper zero bits.
		 * It's not trying to special case insn->imm == 1 or 0 cases
		 */
		dst_reg->imm -= imm_log2 + 1;
	} else if (opcode == BPF_AND) {
		/* reg &= imm */
		dst_reg->imm = 63 - imm_log2;
	} else if (dst_reg->imm && opcode == BPF_ADD) {
		/* reg += imm */
		dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
		dst_reg->imm--;
	} else if (opcode == BPF_RSH) {
		/* reg >>= imm
		 * which means that after right shift, upper bits will be zero
		 * note that verifier already checked that
		 * 0 <= imm < 64 for shift insn
		 */
		dst_reg->imm += insn->imm;
		if (unlikely(dst_reg->imm > 64))
			/* some dumb code did:
			 * r2 = *(u32 *)mem;
			 * r2 >>= 32;
			 * and all bits are zero now */
			dst_reg->imm = 64;
	} else {
		/* all other alu ops, means that we don't know what will
		 * happen to the value, mark it with unknown number of zero bits
		 */
		dst_reg->imm = 0;
	}

	if (dst_reg->imm < 0) {
		/* all 64 bits of the register can contain non-zero bits
		 * and such value cannot be added to ptr_to_packet, since it
		 * may overflow, mark it as unknown to avoid further eval
		 */
		dst_reg->imm = 0;
	}
	return 0;
}

1446 1447
static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
				struct bpf_insn *insn)
A
Alexei Starovoitov 已提交
1448
{
1449 1450 1451
	struct bpf_reg_state *regs = env->cur_state.regs;
	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
A
Alexei Starovoitov 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	u8 opcode = BPF_OP(insn->code);

	/* dst_reg->type == CONST_IMM here, simulate execution of 'add' insn.
	 * Don't care about overflow or negative values, just add them
	 */
	if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
		dst_reg->imm += insn->imm;
	else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
		 src_reg->type == CONST_IMM)
		dst_reg->imm += src_reg->imm;
	else
		mark_reg_unknown_value(regs, insn->dst_reg);
1464 1465 1466
	return 0;
}

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
static void check_reg_overflow(struct bpf_reg_state *reg)
{
	if (reg->max_value > BPF_REGISTER_MAX_RANGE)
		reg->max_value = BPF_REGISTER_MAX_RANGE;
	if ((s64)reg->min_value < BPF_REGISTER_MIN_RANGE)
		reg->min_value = BPF_REGISTER_MIN_RANGE;
}

static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				    struct bpf_insn *insn)
{
	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
	u64 min_val = BPF_REGISTER_MIN_RANGE, max_val = BPF_REGISTER_MAX_RANGE;
	bool min_set = false, max_set = false;
	u8 opcode = BPF_OP(insn->code);

	dst_reg = &regs[insn->dst_reg];
	if (BPF_SRC(insn->code) == BPF_X) {
		check_reg_overflow(&regs[insn->src_reg]);
		min_val = regs[insn->src_reg].min_value;
		max_val = regs[insn->src_reg].max_value;

		/* If the source register is a random pointer then the
		 * min_value/max_value values represent the range of the known
		 * accesses into that value, not the actual min/max value of the
		 * register itself.  In this case we have to reset the reg range
		 * values so we know it is not safe to look at.
		 */
		if (regs[insn->src_reg].type != CONST_IMM &&
		    regs[insn->src_reg].type != UNKNOWN_VALUE) {
			min_val = BPF_REGISTER_MIN_RANGE;
			max_val = BPF_REGISTER_MAX_RANGE;
		}
	} else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
		   (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
		min_val = max_val = insn->imm;
		min_set = max_set = true;
	}

	/* We don't know anything about what was done to this register, mark it
	 * as unknown.
	 */
	if (min_val == BPF_REGISTER_MIN_RANGE &&
	    max_val == BPF_REGISTER_MAX_RANGE) {
		reset_reg_range_values(regs, insn->dst_reg);
		return;
	}

	switch (opcode) {
	case BPF_ADD:
		dst_reg->min_value += min_val;
		dst_reg->max_value += max_val;
		break;
	case BPF_SUB:
		dst_reg->min_value -= min_val;
		dst_reg->max_value -= max_val;
		break;
	case BPF_MUL:
		dst_reg->min_value *= min_val;
		dst_reg->max_value *= max_val;
		break;
	case BPF_AND:
		/* & is special since it could end up with 0 bits set. */
		dst_reg->min_value &= min_val;
		dst_reg->max_value = max_val;
		break;
	case BPF_LSH:
		/* Gotta have special overflow logic here, if we're shifting
		 * more than MAX_RANGE then just assume we have an invalid
		 * range.
		 */
		if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
		else
			dst_reg->min_value <<= min_val;

		if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
			dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
		else
			dst_reg->max_value <<= max_val;
		break;
	case BPF_RSH:
		dst_reg->min_value >>= min_val;
		dst_reg->max_value >>= max_val;
		break;
	case BPF_MOD:
		/* % is special since it is an unsigned modulus, so the floor
		 * will always be 0.
		 */
		dst_reg->min_value = 0;
		dst_reg->max_value = max_val - 1;
		break;
	default:
		reset_reg_range_values(regs, insn->dst_reg);
		break;
	}

	check_reg_overflow(dst_reg);
}

1567
/* check validity of 32-bit and 64-bit arithmetic operations */
1568
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
1569
{
1570
	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
				verbose("BPF_NEG uses reserved fields\n");
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
				verbose("BPF_END uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check src operand */
		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
		if (err)
			return err;

1595 1596 1597 1598 1599 1600
		if (is_pointer_value(env, insn->dst_reg)) {
			verbose("R%d pointer arithmetic prohibited\n",
				insn->dst_reg);
			return -EACCES;
		}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
		/* check dest operand */
		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
				verbose("BPF_MOV uses reserved fields\n");
				return -EINVAL;
			}

			/* check src operand */
			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
				verbose("BPF_MOV uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check dest operand */
		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
		if (err)
			return err;

1630 1631 1632 1633 1634
		/* we are setting our register to something new, we need to
		 * reset its range values.
		 */
		reset_reg_range_values(regs, insn->dst_reg);

1635 1636 1637 1638 1639 1640 1641
		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
			} else {
1642 1643 1644 1645 1646
				if (is_pointer_value(env, insn->src_reg)) {
					verbose("R%d partial copy of pointer\n",
						insn->src_reg);
					return -EACCES;
				}
1647 1648 1649 1650 1651 1652 1653 1654 1655
				regs[insn->dst_reg].type = UNKNOWN_VALUE;
				regs[insn->dst_reg].map_ptr = NULL;
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
			regs[insn->dst_reg].type = CONST_IMM;
			regs[insn->dst_reg].imm = insn->imm;
1656 1657
			regs[insn->dst_reg].max_value = insn->imm;
			regs[insn->dst_reg].min_value = insn->imm;
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		}

	} else if (opcode > BPF_END) {
		verbose("invalid BPF_ALU opcode %x\n", opcode);
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
				verbose("BPF_ALU uses reserved fields\n");
				return -EINVAL;
			}
			/* check src1 operand */
			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
				verbose("BPF_ALU uses reserved fields\n");
				return -EINVAL;
			}
		}

		/* check src2 operand */
		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
			verbose("div by zero\n");
			return -EINVAL;
		}

R
Rabin Vincent 已提交
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
				verbose("invalid shift %d\n", insn->imm);
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
1703 1704 1705 1706 1707 1708 1709
		/* check dest operand */
		err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
		if (err)
			return err;

		dst_reg = &regs[insn->dst_reg];

1710 1711 1712
		/* first we want to adjust our ranges. */
		adjust_reg_min_max_vals(env, insn);

1713 1714
		/* pattern match 'bpf_add Rx, imm' instruction */
		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
A
Alexei Starovoitov 已提交
1715 1716 1717 1718
		    dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
			dst_reg->type = PTR_TO_STACK;
			dst_reg->imm = insn->imm;
			return 0;
A
Alexei Starovoitov 已提交
1719 1720
		} else if (opcode == BPF_ADD &&
			   BPF_CLASS(insn->code) == BPF_ALU64 &&
1721 1722 1723
			   (dst_reg->type == PTR_TO_PACKET ||
			    (BPF_SRC(insn->code) == BPF_X &&
			     regs[insn->src_reg].type == PTR_TO_PACKET))) {
A
Alexei Starovoitov 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
			/* ptr_to_packet += K|X */
			return check_packet_ptr_add(env, insn);
		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
			   dst_reg->type == UNKNOWN_VALUE &&
			   env->allow_ptr_leaks) {
			/* unknown += K|X */
			return evaluate_reg_alu(env, insn);
		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
			   dst_reg->type == CONST_IMM &&
			   env->allow_ptr_leaks) {
			/* reg_imm += K|X */
			return evaluate_reg_imm_alu(env, insn);
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
		} else if (is_pointer_value(env, insn->dst_reg)) {
			verbose("R%d pointer arithmetic prohibited\n",
				insn->dst_reg);
			return -EACCES;
		} else if (BPF_SRC(insn->code) == BPF_X &&
			   is_pointer_value(env, insn->src_reg)) {
			verbose("R%d pointer arithmetic prohibited\n",
				insn->src_reg);
			return -EACCES;
		}
1746

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
		/* If we did pointer math on a map value then just set it to our
		 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
		 * loads to this register appropriately, otherwise just mark the
		 * register as unknown.
		 */
		if (env->allow_ptr_leaks &&
		    (dst_reg->type == PTR_TO_MAP_VALUE ||
		     dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
			dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
		else
			mark_reg_unknown_value(regs, insn->dst_reg);
1758 1759 1760 1761 1762
	}

	return 0;
}

1763 1764
static void find_good_pkt_pointers(struct bpf_verifier_state *state,
				   struct bpf_reg_state *dst_reg)
A
Alexei Starovoitov 已提交
1765
{
1766
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
1767
	int i;
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

	/* LLVM can generate two kind of checks:
	 *
	 * Type 1:
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Type 2:
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
	 * so that range of bytes [r3, r3 + 8) is safe to access.
A
Alexei Starovoitov 已提交
1797
	 */
1798

A
Alexei Starovoitov 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	for (i = 0; i < MAX_BPF_REG; i++)
		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
			regs[i].range = dst_reg->off;

	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
		if (state->stack_slot_type[i] != STACK_SPILL)
			continue;
		reg = &state->spilled_regs[i / BPF_REG_SIZE];
		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
			reg->range = dst_reg->off;
	}
}

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
		true_reg->max_value = true_reg->min_value = val;
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
		false_reg->max_value = false_reg->min_value = val;
		break;
	case BPF_JGT:
		/* Unsigned comparison, the minimum value is 0. */
		false_reg->min_value = 0;
	case BPF_JSGT:
		/* If this is false then we know the maximum val is val,
		 * otherwise we know the min val is val+1.
		 */
		false_reg->max_value = val;
		true_reg->min_value = val + 1;
		break;
	case BPF_JGE:
		/* Unsigned comparison, the minimum value is 0. */
		false_reg->min_value = 0;
	case BPF_JSGE:
		/* If this is false then we know the maximum value is val - 1,
		 * otherwise we know the mimimum value is val.
		 */
		false_reg->max_value = val - 1;
		true_reg->min_value = val;
		break;
	default:
		break;
	}

	check_reg_overflow(false_reg);
	check_reg_overflow(true_reg);
}

/* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
 * is the variable reg.
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
		true_reg->max_value = true_reg->min_value = val;
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
		false_reg->max_value = false_reg->min_value = val;
		break;
	case BPF_JGT:
		/* Unsigned comparison, the minimum value is 0. */
		true_reg->min_value = 0;
	case BPF_JSGT:
		/*
		 * If this is false, then the val is <= the register, if it is
		 * true the register <= to the val.
		 */
		false_reg->min_value = val;
		true_reg->max_value = val - 1;
		break;
	case BPF_JGE:
		/* Unsigned comparison, the minimum value is 0. */
		true_reg->min_value = 0;
	case BPF_JSGE:
		/* If this is false then constant < register, if it is true then
		 * the register < constant.
		 */
		false_reg->min_value = val + 1;
		true_reg->max_value = val;
		break;
	default:
		break;
	}

	check_reg_overflow(false_reg);
	check_reg_overflow(true_reg);
}

1910
static int check_cond_jmp_op(struct bpf_verifier_env *env,
1911 1912
			     struct bpf_insn *insn, int *insn_idx)
{
1913 1914
	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode > BPF_EXIT) {
		verbose("invalid BPF_JMP opcode %x\n", opcode);
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
			verbose("BPF_JMP uses reserved fields\n");
			return -EINVAL;
		}

		/* check src1 operand */
		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
		if (err)
			return err;
1933 1934 1935 1936 1937 1938

		if (is_pointer_value(env, insn->src_reg)) {
			verbose("R%d pointer comparison prohibited\n",
				insn->src_reg);
			return -EACCES;
		}
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	} else {
		if (insn->src_reg != BPF_REG_0) {
			verbose("BPF_JMP uses reserved fields\n");
			return -EINVAL;
		}
	}

	/* check src2 operand */
	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
	if (err)
		return err;

A
Alexei Starovoitov 已提交
1951 1952
	dst_reg = &regs[insn->dst_reg];

1953 1954 1955
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
A
Alexei Starovoitov 已提交
1956
	    dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
		if (opcode == BPF_JEQ) {
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
		if (regs[insn->src_reg].type == CONST_IMM)
			reg_set_min_max(&other_branch->regs[insn->dst_reg],
					dst_reg, regs[insn->src_reg].imm,
					opcode);
		else if (dst_reg->type == CONST_IMM)
			reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
					    &regs[insn->src_reg], dst_reg->imm,
					    opcode);
	} else {
		reg_set_min_max(&other_branch->regs[insn->dst_reg],
					dst_reg, insn->imm, opcode);
	}

1993
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
1994
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
1995 1996
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1997 1998 1999 2000 2001 2002
		if (opcode == BPF_JEQ) {
			/* next fallthrough insn can access memory via
			 * this register
			 */
			regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
			/* branch targer cannot access it, since reg == 0 */
2003 2004
			mark_reg_unknown_value(other_branch->regs,
					       insn->dst_reg);
2005 2006
		} else {
			other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
2007
			mark_reg_unknown_value(regs, insn->dst_reg);
2008
		}
A
Alexei Starovoitov 已提交
2009 2010 2011
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2012 2013 2014 2015 2016
		find_good_pkt_pointers(this_branch, dst_reg);
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2017 2018 2019
	} else if (is_pointer_value(env, insn->dst_reg)) {
		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
		return -EACCES;
2020 2021
	}
	if (log_level)
2022
		print_verifier_state(this_branch);
2023 2024 2025
	return 0;
}

2026 2027 2028 2029 2030 2031 2032 2033
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

2034
/* verify BPF_LD_IMM64 instruction */
2035
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2036
{
2037
	struct bpf_reg_state *regs = env->cur_state.regs;
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
		verbose("invalid BPF_LD_IMM insn\n");
		return -EINVAL;
	}
	if (insn->off != 0) {
		verbose("BPF_LD_IMM64 uses reserved fields\n");
		return -EINVAL;
	}

	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
	if (err)
		return err;

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	if (insn->src_reg == 0) {
		/* generic move 64-bit immediate into a register,
		 * only analyzer needs to collect the ld_imm value.
		 */
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

		if (!env->analyzer_ops)
			return 0;

		regs[insn->dst_reg].type = CONST_IMM;
		regs[insn->dst_reg].imm = imm;
2064
		return 0;
2065
	}
2066 2067 2068 2069 2070 2071 2072 2073 2074

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

2075 2076 2077 2078 2079
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
2080
	case BPF_PROG_TYPE_SCHED_ACT:
2081 2082 2083 2084 2085 2086
		return true;
	default:
		return false;
	}
}

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
2102
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2103
{
2104
	struct bpf_reg_state *regs = env->cur_state.regs;
2105
	u8 mode = BPF_MODE(insn->code);
2106
	struct bpf_reg_state *reg;
2107 2108
	int i, err;

2109
	if (!may_access_skb(env->prog->type)) {
A
Alexei Starovoitov 已提交
2110
		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2111 2112 2113 2114
		return -EINVAL;
	}

	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2115
	    BPF_SIZE(insn->code) == BPF_DW ||
2116
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
A
Alexei Starovoitov 已提交
2117
		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
		reg = regs + caller_saved[i];
		reg->type = NOT_INIT;
		reg->imm = 0;
	}

	/* mark destination R0 register as readable, since it contains
	 * the value fetched from the packet
	 */
	regs[BPF_REG_0].type = UNKNOWN_VALUE;
	return 0;
}

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

2192
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
2193

2194 2195 2196 2197 2198 2199 2200 2201 2202
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
2203
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
		verbose("jump out of range from insn %d to %d\n", t, w);
		return -EINVAL;
	}

2216 2217 2218 2219
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
		verbose("back-edge from insn %d to %d\n", t, w);
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
		verbose("insn state internal bug\n");
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
2244
static int check_cfg(struct bpf_verifier_env *env)
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
2281 2282
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
2295 2296 2297
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
2298 2299
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
		} else {
			/* conditional jump with two edges */
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
		verbose("pop stack internal bug\n");
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
			verbose("unreachable insn %d\n", i);
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

A
Alexei Starovoitov 已提交
2350 2351 2352
/* the following conditions reduce the number of explored insns
 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
 */
2353 2354
static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
				   struct bpf_reg_state *cur)
A
Alexei Starovoitov 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
{
	if (old->id != cur->id)
		return false;

	/* old ptr_to_packet is more conservative, since it allows smaller
	 * range. Ex:
	 * old(off=0,r=10) is equal to cur(off=0,r=20), because
	 * old(off=0,r=10) means that with range=10 the verifier proceeded
	 * further and found no issues with the program. Now we're in the same
	 * spot with cur(off=0,r=20), so we're safe too, since anything further
	 * will only be looking at most 10 bytes after this pointer.
	 */
	if (old->off == cur->off && old->range < cur->range)
		return true;

	/* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
	 * since both cannot be used for packet access and safe(old)
	 * pointer has smaller off that could be used for further
	 * 'if (ptr > data_end)' check
	 * Ex:
	 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
	 * that we cannot access the packet.
	 * The safe range is:
	 * [ptr, ptr + range - off)
	 * so whenever off >=range, it means no safe bytes from this pointer.
	 * When comparing old->off <= cur->off, it means that older code
	 * went with smaller offset and that offset was later
	 * used to figure out the safe range after 'if (ptr > data_end)' check
	 * Say, 'old' state was explored like:
	 * ... R3(off=0, r=0)
	 * R4 = R3 + 20
	 * ... now R4(off=20,r=0)  <-- here
	 * if (R4 > data_end)
	 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
	 * ... the code further went all the way to bpf_exit.
	 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
	 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
	 * goes further, such cur_R4 will give larger safe packet range after
	 * 'if (R4 > data_end)' and all further insn were already good with r=20,
	 * so they will be good with r=30 and we can prune the search.
	 */
	if (old->off <= cur->off &&
	    old->off >= old->range && cur->off >= cur->range)
		return true;

	return false;
}

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
2429 2430
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
2431
			 struct bpf_verifier_state *cur)
2432
{
2433
	struct bpf_reg_state *rold, *rcur;
2434 2435 2436
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
2437 2438 2439 2440 2441 2442
		rold = &old->regs[i];
		rcur = &cur->regs[i];

		if (memcmp(rold, rcur, sizeof(*rold)) == 0)
			continue;

2443 2444 2445 2446 2447 2448 2449
		/* If the ranges were not the same, but everything else was and
		 * we didn't do a variable access into a map then we are a-ok.
		 */
		if (!env->varlen_map_value_access &&
		    rold->type == rcur->type && rold->imm == rcur->imm)
			continue;

A
Alexei Starovoitov 已提交
2450 2451 2452 2453
		if (rold->type == NOT_INIT ||
		    (rold->type == UNKNOWN_VALUE && rcur->type != NOT_INIT))
			continue;

A
Alexei Starovoitov 已提交
2454 2455 2456 2457
		if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
		    compare_ptrs_to_packet(rold, rcur))
			continue;

A
Alexei Starovoitov 已提交
2458
		return false;
2459 2460 2461
	}

	for (i = 0; i < MAX_BPF_STACK; i++) {
2462 2463 2464 2465 2466 2467 2468 2469
		if (old->stack_slot_type[i] == STACK_INVALID)
			continue;
		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
2470
			return false;
2471 2472 2473 2474 2475 2476 2477 2478 2479
		if (i % BPF_REG_SIZE)
			continue;
		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
			   &cur->spilled_regs[i / BPF_REG_SIZE],
			   sizeof(old->spilled_regs[0])))
			/* when explored and current stack slot types are
			 * the same, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
2480
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
2481
			 * but current path has stored:
2482
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
2483 2484 2485 2486 2487 2488
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
		else
			continue;
2489 2490 2491 2492
	}
	return true;
}

2493
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
2494
{
2495 2496
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
2497 2498 2499 2500 2501 2502 2503 2504 2505

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
2506
		if (states_equal(env, &sl->state, &env->cur_state))
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
			/* reached equivalent register/stack state,
			 * prune the search
			 */
			return 1;
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
	 * but it will either reach bpf_exit (which means it's safe) or
	 * it will be rejected. Since there are no loops, we won't be
	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
	 */
2520
	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
	return 0;
}

2531 2532 2533 2534 2535 2536 2537 2538 2539
static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
				  int insn_idx, int prev_insn_idx)
{
	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
		return 0;

	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
}

2540
static int do_check(struct bpf_verifier_env *env)
2541
{
2542
	struct bpf_verifier_state *state = &env->cur_state;
2543
	struct bpf_insn *insns = env->prog->insnsi;
2544
	struct bpf_reg_state *regs = state->regs;
2545 2546 2547 2548 2549 2550 2551
	int insn_cnt = env->prog->len;
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

	init_reg_state(regs);
	insn_idx = 0;
2552
	env->varlen_map_value_access = false;
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
			verbose("invalid insn idx %d insn_cnt %d\n",
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

2567
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2568 2569 2570 2571 2572
			verbose("BPF program is too large. Proccessed %d insn\n",
				insn_processed);
			return -E2BIG;
		}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
			if (log_level) {
				if (do_print_state)
					verbose("\nfrom %d to %d: safe\n",
						prev_insn_idx, insn_idx);
				else
					verbose("%d: safe\n", insn_idx);
			}
			goto process_bpf_exit;
		}

2588 2589
		if (log_level && do_print_state) {
			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
A
Alexei Starovoitov 已提交
2590
			print_verifier_state(&env->cur_state);
2591 2592 2593 2594 2595 2596 2597 2598
			do_print_state = false;
		}

		if (log_level) {
			verbose("%d: ", insn_idx);
			print_bpf_insn(insn);
		}

2599 2600 2601 2602
		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
		if (err)
			return err;

2603
		if (class == BPF_ALU || class == BPF_ALU64) {
2604
			err = check_alu_op(env, insn);
2605 2606 2607 2608
			if (err)
				return err;

		} else if (class == BPF_LDX) {
2609
			enum bpf_reg_type *prev_src_type, src_reg_type;
2610 2611 2612

			/* check for reserved fields is already done */

2613 2614 2615 2616 2617 2618 2619 2620 2621
			/* check src operand */
			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
			if (err)
				return err;

			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
			if (err)
				return err;

2622 2623
			src_reg_type = regs[insn->src_reg].type;

2624 2625 2626 2627 2628 2629 2630 2631 2632
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
			err = check_mem_access(env, insn->src_reg, insn->off,
					       BPF_SIZE(insn->code), BPF_READ,
					       insn->dst_reg);
			if (err)
				return err;

2633
			reset_reg_range_values(regs, insn->dst_reg);
2634 2635
			if (BPF_SIZE(insn->code) != BPF_W &&
			    BPF_SIZE(insn->code) != BPF_DW) {
2636 2637 2638
				insn_idx++;
				continue;
			}
2639

2640 2641 2642
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
2643 2644
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
2645
				 * save type to validate intersecting paths
2646
				 */
2647
				*prev_src_type = src_reg_type;
2648

2649
			} else if (src_reg_type != *prev_src_type &&
2650
				   (src_reg_type == PTR_TO_CTX ||
2651
				    *prev_src_type == PTR_TO_CTX)) {
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
				verbose("same insn cannot be used with different pointers\n");
				return -EINVAL;
			}

2663
		} else if (class == BPF_STX) {
2664
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
2665

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
			if (BPF_MODE(insn->code) == BPF_XADD) {
				err = check_xadd(env, insn);
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
			if (err)
				return err;
			/* check src2 operand */
			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
			if (err)
				return err;

2683 2684
			dst_reg_type = regs[insn->dst_reg].type;

2685 2686 2687 2688 2689 2690 2691
			/* check that memory (dst_reg + off) is writeable */
			err = check_mem_access(env, insn->dst_reg, insn->off,
					       BPF_SIZE(insn->code), BPF_WRITE,
					       insn->src_reg);
			if (err)
				return err;

2692 2693 2694 2695 2696
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
2697
				   (dst_reg_type == PTR_TO_CTX ||
2698
				    *prev_dst_type == PTR_TO_CTX)) {
2699 2700 2701 2702
				verbose("same insn cannot be used with different pointers\n");
				return -EINVAL;
			}

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
				verbose("BPF_ST uses reserved fields\n");
				return -EINVAL;
			}
			/* check src operand */
			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
			if (err)
				return err;

			/* check that memory (dst_reg + off) is writeable */
			err = check_mem_access(env, insn->dst_reg, insn->off,
					       BPF_SIZE(insn->code), BPF_WRITE,
					       -1);
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_CALL uses reserved fields\n");
					return -EINVAL;
				}

				err = check_call(env, insn->imm);
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_JA uses reserved fields\n");
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
					verbose("BPF_EXIT uses reserved fields\n");
					return -EINVAL;
				}

				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
				if (err)
					return err;

2768 2769 2770 2771 2772
				if (is_pointer_value(env, BPF_REG_0)) {
					verbose("R0 leaks addr as return value\n");
					return -EACCES;
				}

2773
process_bpf_exit:
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
				insn_idx = pop_stack(env, &prev_insn_idx);
				if (insn_idx < 0) {
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
2790 2791 2792 2793
				err = check_ld_abs(env, insn);
				if (err)
					return err;

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
			} else {
				verbose("invalid BPF_LD mode\n");
				return -EINVAL;
			}
2804
			reset_reg_range_values(regs, insn->dst_reg);
2805 2806 2807 2808 2809 2810 2811 2812
		} else {
			verbose("unknown insn class %d\n", class);
			return -EINVAL;
		}

		insn_idx++;
	}

A
Alexei Starovoitov 已提交
2813
	verbose("processed %d insns\n", insn_processed);
2814 2815 2816
	return 0;
}

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
static int check_map_prog_compatibility(struct bpf_map *map,
					struct bpf_prog *prog)

{
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT &&
	    (map->map_type == BPF_MAP_TYPE_HASH ||
	     map->map_type == BPF_MAP_TYPE_PERCPU_HASH) &&
	    (map->map_flags & BPF_F_NO_PREALLOC)) {
		verbose("perf_event programs can only use preallocated hash map\n");
		return -EINVAL;
	}
	return 0;
}

2831 2832 2833
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
2834
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
2835 2836 2837
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
2838
	int i, j, err;
2839 2840

	for (i = 0; i < insn_cnt; i++, insn++) {
2841
		if (BPF_CLASS(insn->code) == BPF_LDX &&
2842
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
2843 2844 2845 2846
			verbose("BPF_LDX uses reserved fields\n");
			return -EINVAL;
		}

2847 2848 2849 2850 2851 2852 2853
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
			verbose("BPF_STX uses reserved fields\n");
			return -EINVAL;
		}

2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
				verbose("invalid bpf_ld_imm64 insn\n");
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
				verbose("unrecognized bpf_ld_imm64 insn\n");
				return -EINVAL;
			}

			f = fdget(insn->imm);
2875
			map = __bpf_map_get(f);
2876 2877 2878 2879 2880 2881
			if (IS_ERR(map)) {
				verbose("fd %d is not pointing to valid bpf_map\n",
					insn->imm);
				return PTR_ERR(map);
			}

2882 2883 2884 2885 2886 2887
			err = check_map_prog_compatibility(map, env->prog);
			if (err) {
				fdput(f);
				return err;
			}

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
2909 2910 2911 2912 2913 2914 2915
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
			fdput(f);
next_insn:
			insn++;
			i++;
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
2931
static void release_maps(struct bpf_verifier_env *env)
2932 2933 2934 2935 2936 2937 2938 2939
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
2940
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

2951 2952 2953
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
2954
static int convert_ctx_accesses(struct bpf_verifier_env *env)
2955
{
2956
	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
2957
	const int insn_cnt = env->prog->len;
2958
	struct bpf_insn insn_buf[16], *insn;
2959
	struct bpf_prog *new_prog;
2960
	enum bpf_access_type type;
2961
	int i, cnt, delta = 0;
2962

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
			verbose("bpf verifier is misconfigured\n");
			return -EINVAL;
		} else if (cnt) {
			new_prog = bpf_patch_insn_single(env->prog, 0,
							 insn_buf, cnt);
			if (!new_prog)
				return -ENOMEM;
			env->prog = new_prog;
2975
			delta += cnt - 1;
2976 2977 2978 2979
		}
	}

	if (!ops->convert_ctx_access)
2980 2981
		return 0;

2982
	insn = env->prog->insnsi + delta;
2983

2984
	for (i = 0; i < insn_cnt; i++, insn++) {
2985 2986
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
2987
			type = BPF_READ;
2988 2989
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
2990 2991
			type = BPF_WRITE;
		else
2992 2993
			continue;

2994
		if (env->insn_aux_data[i].ptr_type != PTR_TO_CTX)
2995 2996
			continue;

2997 2998
		cnt = ops->convert_ctx_access(type, insn->dst_reg, insn->src_reg,
					      insn->off, insn_buf, env->prog);
2999 3000 3001 3002 3003
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
			verbose("bpf verifier is misconfigured\n");
			return -EINVAL;
		}

3004 3005
		new_prog = bpf_patch_insn_single(env->prog, i + delta, insn_buf,
						 cnt);
3006 3007 3008
		if (!new_prog)
			return -ENOMEM;

3009
		delta += cnt - 1;
3010 3011 3012

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
3013
		insn      = new_prog->insnsi + i + delta;
3014 3015 3016 3017 3018
	}

	return 0;
}

3019
static void free_states(struct bpf_verifier_env *env)
3020
{
3021
	struct bpf_verifier_state_list *sl, *sln;
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

3041
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
3042
{
3043
	char __user *log_ubuf = NULL;
3044
	struct bpf_verifier_env *env;
A
Alexei Starovoitov 已提交
3045 3046
	int ret = -EINVAL;

3047
	if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
3048 3049
		return -E2BIG;

3050
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
3051 3052
	 * allocate/free it every time bpf_check() is called
	 */
3053
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3054 3055 3056
	if (!env)
		return -ENOMEM;

3057 3058 3059 3060 3061
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
3062
	env->prog = *prog;
3063

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
		log_level = attr->log_level;
		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
		log_size = attr->log_size;
		log_len = 0;

		ret = -EINVAL;
		/* log_* values have to be sane */
		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
		    log_level == 0 || log_ubuf == NULL)
3080
			goto err_unlock;
3081 3082 3083 3084

		ret = -ENOMEM;
		log_buf = vmalloc(log_size);
		if (!log_buf)
3085
			goto err_unlock;
3086 3087 3088 3089
	} else {
		log_level = 0;
	}

3090 3091 3092 3093
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

3094
	env->explored_states = kcalloc(env->prog->len,
3095
				       sizeof(struct bpf_verifier_state_list *),
3096 3097 3098 3099 3100
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

3101 3102 3103 3104
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

3105 3106
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

3107
	ret = do_check(env);
3108

3109
skip_full_check:
3110
	while (pop_stack(env, NULL) >= 0);
3111
	free_states(env);
3112

3113 3114 3115 3116
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	if (log_level && log_len >= log_size - 1) {
		BUG_ON(log_len >= log_size);
		/* verifier log exceeded user supplied buffer */
		ret = -ENOSPC;
		/* fall through to return what was recorded */
	}

	/* copy verifier log back to user space including trailing zero */
	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
		ret = -EFAULT;
		goto free_log_buf;
	}

3130 3131
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
3132 3133 3134
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
3135

3136
		if (!env->prog->aux->used_maps) {
3137 3138 3139 3140
			ret = -ENOMEM;
			goto free_log_buf;
		}

3141
		memcpy(env->prog->aux->used_maps, env->used_maps,
3142
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
3143
		env->prog->aux->used_map_cnt = env->used_map_cnt;
3144 3145 3146 3147 3148 3149

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
3150 3151 3152 3153

free_log_buf:
	if (log_level)
		vfree(log_buf);
3154
	if (!env->prog->aux->used_maps)
3155 3156 3157 3158
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
3159
	*prog = env->prog;
3160
err_unlock:
3161
	mutex_unlock(&bpf_verifier_lock);
3162 3163 3164
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
3165 3166
	return ret;
}
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217

int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
		 void *priv)
{
	struct bpf_verifier_env *env;
	int ret;

	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
	if (!env)
		return -ENOMEM;

	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     prog->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
	env->prog = prog;
	env->analyzer_ops = ops;
	env->analyzer_priv = priv;

	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	log_level = 0;

	env->explored_states = kcalloc(env->prog->len,
				       sizeof(struct bpf_verifier_state_list *),
				       GFP_KERNEL);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

	ret = do_check(env);

skip_full_check:
	while (pop_stack(env, NULL) >= 0);
	free_states(env);

	mutex_unlock(&bpf_verifier_lock);
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
	return ret;
}
EXPORT_SYMBOL_GPL(bpf_analyzer);