i915_gem_request.c 34.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/prefetch.h>
26
#include <linux/dma-fence-array.h>
27

28 29
#include "i915_drv.h"

30
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
31 32 33 34
{
	return "i915";
}

35
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
36
{
37
	return to_request(fence)->timeline->common->name;
38 39
}

40
static bool i915_fence_signaled(struct dma_fence *fence)
41 42 43 44
{
	return i915_gem_request_completed(to_request(fence));
}

45
static bool i915_fence_enable_signaling(struct dma_fence *fence)
46 47 48 49 50 51 52 53
{
	if (i915_fence_signaled(fence))
		return false;

	intel_engine_enable_signaling(to_request(fence));
	return true;
}

54
static signed long i915_fence_wait(struct dma_fence *fence,
55
				   bool interruptible,
56
				   signed long timeout)
57
{
58
	return i915_wait_request(to_request(fence), interruptible, timeout);
59 60
}

61
static void i915_fence_release(struct dma_fence *fence)
62 63 64
{
	struct drm_i915_gem_request *req = to_request(fence);

65 66 67 68 69 70 71 72 73
	/* The request is put onto a RCU freelist (i.e. the address
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
	i915_sw_fence_fini(&req->submit);
	i915_sw_fence_fini(&req->execute);

74 75 76
	kmem_cache_free(req->i915->requests, req);
}

77
const struct dma_fence_ops i915_fence_ops = {
78 79 80 81 82 83 84 85
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->i915;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	return 0;
}

static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
static struct i915_dependency *
i915_dependency_alloc(struct drm_i915_private *i915)
{
	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
}

static void
i915_dependency_free(struct drm_i915_private *i915,
		     struct i915_dependency *dep)
{
	kmem_cache_free(i915->dependencies, dep);
}

static void
__i915_priotree_add_dependency(struct i915_priotree *pt,
			       struct i915_priotree *signal,
			       struct i915_dependency *dep,
			       unsigned long flags)
{
144
	INIT_LIST_HEAD(&dep->dfs_link);
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
	list_add(&dep->wait_link, &signal->waiters_list);
	list_add(&dep->signal_link, &pt->signalers_list);
	dep->signaler = signal;
	dep->flags = flags;
}

static int
i915_priotree_add_dependency(struct drm_i915_private *i915,
			     struct i915_priotree *pt,
			     struct i915_priotree *signal)
{
	struct i915_dependency *dep;

	dep = i915_dependency_alloc(i915);
	if (!dep)
		return -ENOMEM;

	__i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
	return 0;
}

static void
i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
{
	struct i915_dependency *dep, *next;

171 172
	GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	/* Everyone we depended upon (the fences we wait to be signaled)
	 * should retire before us and remove themselves from our list.
	 * However, retirement is run independently on each timeline and
	 * so we may be called out-of-order.
	 */
	list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
		list_del(&dep->wait_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}

	/* Remove ourselves from everyone who depends upon us */
	list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
		list_del(&dep->signal_link);
		if (dep->flags & I915_DEPENDENCY_ALLOC)
			i915_dependency_free(i915, dep);
	}
}

static void
i915_priotree_init(struct i915_priotree *pt)
{
	INIT_LIST_HEAD(&pt->signalers_list);
	INIT_LIST_HEAD(&pt->waiters_list);
197 198
	RB_CLEAR_NODE(&pt->node);
	pt->priority = INT_MIN;
199 200
}

201 202 203 204 205 206
void i915_gem_retire_noop(struct i915_gem_active *active,
			  struct drm_i915_gem_request *request)
{
	/* Space left intentionally blank */
}

207 208
static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
209
	struct intel_engine_cs *engine = request->engine;
210 211
	struct i915_gem_active *active, *next;

212
	lockdep_assert_held(&request->i915->drm.struct_mutex);
213 214
	GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
	GEM_BUG_ON(!i915_sw_fence_signaled(&request->execute));
215
	GEM_BUG_ON(!i915_gem_request_completed(request));
216
	GEM_BUG_ON(!request->i915->gt.active_requests);
217

218
	trace_i915_gem_request_retire(request);
C
Chris Wilson 已提交
219

220
	spin_lock_irq(&engine->timeline->lock);
221
	list_del_init(&request->link);
222
	spin_unlock_irq(&engine->timeline->lock);
223 224 225 226 227 228 229 230 231

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
232
	list_del(&request->ring_link);
233
	request->ring->last_retired_head = request->postfix;
234 235 236 237 238 239
	if (!--request->i915->gt.active_requests) {
		GEM_BUG_ON(!request->i915->gt.awake);
		mod_delayed_work(request->i915->wq,
				 &request->i915->gt.idle_work,
				 msecs_to_jiffies(100));
	}
240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
	/* Walk through the active list, calling retire on each. This allows
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
	list_for_each_entry_safe(active, next, &request->active_list, link) {
		/* In microbenchmarks or focusing upon time inside the kernel,
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
		 * cache misses when jumping around the list of i915_gem_active.
		 * So we try to keep this loop as streamlined as possible and
		 * also prefetch the next i915_gem_active to try and hide
		 * the likely cache miss.
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
263
		RCU_INIT_POINTER(active->request, NULL);
264 265 266 267

		active->retire(active, request);
	}

268 269
	i915_gem_request_remove_from_client(request);

270
	/* Retirement decays the ban score as it is a sign of ctx progress */
271 272
	if (request->ctx->ban_score > 0)
		request->ctx->ban_score--;
273

274 275 276 277 278 279 280 281 282 283
	/* The backing object for the context is done after switching to the
	 * *next* context. Therefore we cannot retire the previous context until
	 * the next context has already started running. However, since we
	 * cannot take the required locks at i915_gem_request_submit() we
	 * defer the unpinning of the active context to now, retirement of
	 * the subsequent request.
	 */
	if (engine->last_retired_context)
		engine->context_unpin(engine, engine->last_retired_context);
	engine->last_retired_context = request->ctx;
284 285

	dma_fence_signal(&request->fence);
286 287

	i915_priotree_fini(request->i915, &request->priotree);
288
	i915_gem_request_put(request);
289 290 291 292 293 294 295 296
}

void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
297 298
	GEM_BUG_ON(!i915_gem_request_completed(req));

299 300
	if (list_empty(&req->link))
		return;
301 302

	do {
303
		tmp = list_first_entry(&engine->timeline->requests,
304
				       typeof(*tmp), link);
305 306 307 308 309

		i915_gem_request_retire(tmp);
	} while (tmp != req);
}

310
static int i915_gem_init_global_seqno(struct drm_i915_private *i915, u32 seqno)
311
{
312
	struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
313
	struct intel_engine_cs *engine;
314
	enum intel_engine_id id;
315 316 317
	int ret;

	/* Carefully retire all requests without writing to the rings */
318
	ret = i915_gem_wait_for_idle(i915,
319 320 321 322 323
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
	if (ret)
		return ret;

324
	i915_gem_retire_requests(i915);
325
	GEM_BUG_ON(i915->gt.active_requests > 1);
326 327

	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
328
	if (!i915_seqno_passed(seqno, atomic_read(&timeline->seqno))) {
329 330
		while (intel_breadcrumbs_busy(i915))
			cond_resched(); /* spin until threads are complete */
331
	}
332
	atomic_set(&timeline->seqno, seqno);
333 334

	/* Finally reset hw state */
335
	for_each_engine(engine, i915, id)
336
		intel_engine_init_global_seqno(engine, seqno);
337

338 339 340 341 342 343 344 345
	list_for_each_entry(timeline, &i915->gt.timelines, link) {
		for_each_engine(engine, i915, id) {
			struct intel_timeline *tl = &timeline->engine[id];

			memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
		}
	}

346 347 348
	return 0;
}

349
int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
350 351 352
{
	struct drm_i915_private *dev_priv = to_i915(dev);

353 354
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

355 356 357 358 359 360
	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
361
	return i915_gem_init_global_seqno(dev_priv, seqno - 1);
362 363
}

364
static int reserve_global_seqno(struct drm_i915_private *i915)
365
{
366
	u32 active_requests = ++i915->gt.active_requests;
367
	u32 seqno = atomic_read(&i915->gt.global_timeline.seqno);
368
	int ret;
369

370
	/* Reservation is fine until we need to wrap around */
371
	if (likely(seqno + active_requests > seqno))
372
		return 0;
373

374 375 376 377
	ret = i915_gem_init_global_seqno(i915, 0);
	if (ret) {
		i915->gt.active_requests--;
		return ret;
378 379 380 381 382
	}

	return 0;
}

C
Chris Wilson 已提交
383 384
static u32 __timeline_get_seqno(struct i915_gem_timeline *tl)
{
385 386
	/* seqno only incremented under a mutex */
	return ++tl->seqno.counter;
C
Chris Wilson 已提交
387 388
}

389 390
static u32 timeline_get_seqno(struct i915_gem_timeline *tl)
{
391
	return atomic_inc_return(&tl->seqno);
392 393
}

394
void __i915_gem_request_submit(struct drm_i915_gem_request *request)
395
{
396
	struct intel_engine_cs *engine = request->engine;
397 398
	struct intel_timeline *timeline;
	u32 seqno;
399

C
Chris Wilson 已提交
400 401 402
	/* Transfer from per-context onto the global per-engine timeline */
	timeline = engine->timeline;
	GEM_BUG_ON(timeline == request->timeline);
403
	assert_spin_locked(&timeline->lock);
404

C
Chris Wilson 已提交
405
	seqno = timeline_get_seqno(timeline->common);
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	GEM_BUG_ON(!seqno);
	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));

	GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno, seqno));
	request->previous_seqno = timeline->last_submitted_seqno;
	timeline->last_submitted_seqno = seqno;

	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
	request->global_seqno = seqno;
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
		intel_engine_enable_signaling(request);
	spin_unlock(&request->lock);

	GEM_BUG_ON(!request->global_seqno);
C
Chris Wilson 已提交
421 422
	engine->emit_breadcrumb(request,
				request->ring->vaddr + request->postfix);
423

424
	spin_lock(&request->timeline->lock);
C
Chris Wilson 已提交
425 426 427
	list_move_tail(&request->link, &timeline->requests);
	spin_unlock(&request->timeline->lock);

428
	i915_sw_fence_commit(&request->execute);
429 430 431 432 433 434
}

void i915_gem_request_submit(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
435

436 437 438 439 440 441 442 443 444 445 446
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);

	__i915_gem_request_submit(request);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
447 448
	struct drm_i915_gem_request *request =
		container_of(fence, typeof(*request), submit);
449

450 451
	switch (state) {
	case FENCE_COMPLETE:
452
		request->engine->submit_request(request);
453 454 455 456 457
		break;

	case FENCE_FREE:
		i915_gem_request_put(request);
		break;
458
	}
C
Chris Wilson 已提交
459

460 461 462
	return NOTIFY_DONE;
}

463 464 465
static int __i915_sw_fence_call
execute_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
466 467 468 469 470 471 472 473 474 475 476 477
	struct drm_i915_gem_request *request =
		container_of(fence, typeof(*request), execute);

	switch (state) {
	case FENCE_COMPLETE:
		break;

	case FENCE_FREE:
		i915_gem_request_put(request);
		break;
	}

478 479 480
	return NOTIFY_DONE;
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
496 497 498 499 500
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct drm_i915_gem_request *req;
	int ret;

501 502
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

503
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
504
	 * EIO if the GPU is already wedged.
505
	 */
506 507
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return ERR_PTR(-EIO);
508

509 510 511 512 513
	/* Pinning the contexts may generate requests in order to acquire
	 * GGTT space, so do this first before we reserve a seqno for
	 * ourselves.
	 */
	ret = engine->context_pin(engine, ctx);
514 515 516
	if (ret)
		return ERR_PTR(ret);

517 518 519 520
	ret = reserve_global_seqno(dev_priv);
	if (ret)
		goto err_unpin;

521
	/* Move the oldest request to the slab-cache (if not in use!) */
522
	req = list_first_entry_or_null(&engine->timeline->requests,
523
				       typeof(*req), link);
C
Chris Wilson 已提交
524
	if (req && __i915_gem_request_completed(req))
525
		i915_gem_request_retire(req);
526

527 528 529 530 531
	/* Beware: Dragons be flying overhead.
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
532
	 * of being read by __i915_gem_active_get_rcu(). As such,
533 534
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
535
	 * read the request->global_seqno and increment the reference count.
536 537 538 539
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
540 541
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
542 543 544 545 546 547 548 549 550 551 552 553 554 555
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
	req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
556 557 558 559
	if (!req) {
		ret = -ENOMEM;
		goto err_unreserve;
	}
560

C
Chris Wilson 已提交
561 562
	req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
	GEM_BUG_ON(req->timeline == engine->timeline);
563

564
	spin_lock_init(&req->lock);
565 566 567
	dma_fence_init(&req->fence,
		       &i915_fence_ops,
		       &req->lock,
568
		       req->timeline->fence_context,
C
Chris Wilson 已提交
569
		       __timeline_get_seqno(req->timeline->common));
570

571 572 573 574
	/* We bump the ref for the fence chain */
	i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
	i915_sw_fence_init(&i915_gem_request_get(req)->execute, execute_notify);

575 576 577 578 579
	/* Ensure that the execute fence completes after the submit fence -
	 * as we complete the execute fence from within the submit fence
	 * callback, its completion would otherwise be visible first.
	 */
	i915_sw_fence_await_sw_fence(&req->execute, &req->submit, &req->execq);
580

581 582
	i915_priotree_init(&req->priotree);

583
	INIT_LIST_HEAD(&req->active_list);
584 585
	req->i915 = dev_priv;
	req->engine = engine;
586
	req->ctx = ctx;
587

588
	/* No zalloc, must clear what we need by hand */
589
	req->global_seqno = 0;
590
	req->file_priv = NULL;
C
Chris Wilson 已提交
591
	req->batch = NULL;
592

593 594 595 596 597 598 599 600
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
601
	GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
602

603
	ret = engine->request_alloc(req);
604 605 606
	if (ret)
		goto err_ctx;

607 608 609 610 611 612 613
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	req->head = req->ring->tail;

614
	return req;
615 616

err_ctx:
617 618 619 620 621
	/* Make sure we didn't add ourselves to external state before freeing */
	GEM_BUG_ON(!list_empty(&req->active_list));
	GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
	GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));

622
	kmem_cache_free(dev_priv->requests, req);
623 624
err_unreserve:
	dev_priv->gt.active_requests--;
625 626
err_unpin:
	engine->context_unpin(engine, ctx);
627
	return ERR_PTR(ret);
628 629
}

630 631 632 633
static int
i915_gem_request_await_request(struct drm_i915_gem_request *to,
			       struct drm_i915_gem_request *from)
{
634
	int ret;
635 636 637

	GEM_BUG_ON(to == from);

638 639 640 641 642 643 644 645
	if (to->engine->schedule) {
		ret = i915_priotree_add_dependency(to->i915,
						   &to->priotree,
						   &from->priotree);
		if (ret < 0)
			return ret;
	}

646
	if (to->timeline == from->timeline)
647 648
		return 0;

649 650 651 652 653 654 655
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
						       GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

656 657 658 659 660 661 662
	if (!from->global_seqno) {
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

663
	if (from->global_seqno <= to->timeline->sync_seqno[from->engine->id])
664 665 666 667
		return 0;

	trace_i915_gem_ring_sync_to(to, from);
	if (!i915.semaphores) {
668 669 670 671 672 673 674
		if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
			ret = i915_sw_fence_await_dma_fence(&to->submit,
							    &from->fence, 0,
							    GFP_KERNEL);
			if (ret < 0)
				return ret;
		}
675 676 677 678 679 680
	} else {
		ret = to->engine->semaphore.sync_to(to, from);
		if (ret)
			return ret;
	}

681
	to->timeline->sync_seqno[from->engine->id] = from->global_seqno;
682 683 684
	return 0;
}

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
int
i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
				 struct dma_fence *fence)
{
	struct dma_fence_array *array;
	int ret;
	int i;

	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return 0;

	if (dma_fence_is_i915(fence))
		return i915_gem_request_await_request(req, to_request(fence));

	if (!dma_fence_is_array(fence)) {
		ret = i915_sw_fence_await_dma_fence(&req->submit,
						    fence, I915_FENCE_TIMEOUT,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

	/* Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */

	array = to_dma_fence_array(fence);
	for (i = 0; i < array->num_fences; i++) {
		struct dma_fence *child = array->fences[i];

		if (dma_fence_is_i915(child))
			ret = i915_gem_request_await_request(req,
							     to_request(child));
		else
			ret = i915_sw_fence_await_dma_fence(&req->submit,
							    child, I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	}

	return 0;
}

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
/**
 * i915_gem_request_await_object - set this request to (async) wait upon a bo
 *
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
i915_gem_request_await_object(struct drm_i915_gem_request *to,
			      struct drm_i915_gem_object *obj,
			      bool write)
{
757 758
	struct dma_fence *excl;
	int ret = 0;
759 760

	if (write) {
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
		struct dma_fence **shared;
		unsigned int count, i;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			ret = i915_gem_request_await_dma_fence(to, shared[i]);
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
780
	} else {
781
		excl = reservation_object_get_excl_rcu(obj->resv);
782 783
	}

784 785 786
	if (excl) {
		if (ret == 0)
			ret = i915_gem_request_await_dma_fence(to, excl);
787

788
		dma_fence_put(excl);
789 790
	}

791
	return ret;
792 793
}

794 795 796 797 798 799 800
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (dev_priv->gt.awake)
		return;

801 802
	GEM_BUG_ON(!dev_priv->gt.active_requests);

803 804 805
	intel_runtime_pm_get_noresume(dev_priv);
	dev_priv->gt.awake = true;

806
	intel_enable_gt_powersave(dev_priv);
807 808 809 810 811 812 813 814 815 816 817 818 819 820
	i915_update_gfx_val(dev_priv);
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_busy(dev_priv);

	queue_delayed_work(dev_priv->wq,
			   &dev_priv->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
821
void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
822
{
823 824
	struct intel_engine_cs *engine = request->engine;
	struct intel_ring *ring = request->ring;
825
	struct intel_timeline *timeline = request->timeline;
826
	struct drm_i915_gem_request *prev;
827
	u32 *cs;
C
Chris Wilson 已提交
828
	int err;
829

830
	lockdep_assert_held(&request->i915->drm.struct_mutex);
831 832
	trace_i915_gem_request_add(request);

833 834 835 836 837 838 839
	/* Make sure that no request gazumped us - if it was allocated after
	 * our i915_gem_request_alloc() and called __i915_add_request() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
	GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
				     request->fence.seqno));

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	request->reserved_space = 0;

	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
	if (flush_caches) {
C
Chris Wilson 已提交
855
		err = engine->emit_flush(request, EMIT_FLUSH);
856

857
		/* Not allowed to fail! */
C
Chris Wilson 已提交
858
		WARN(err, "engine->emit_flush() failed: %d!\n", err);
859 860
	}

861
	/* Record the position of the start of the breadcrumb so that
862 863
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
864
	 * position of the ring's HEAD.
865
	 */
866 867 868
	cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
	GEM_BUG_ON(IS_ERR(cs));
	request->postfix = intel_ring_offset(request, cs);
869

870 871 872 873 874
	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
875

876
	prev = i915_gem_active_raw(&timeline->last_request,
877
				   &request->i915->drm.struct_mutex);
878
	if (prev) {
879 880
		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
					     &request->submitq);
881 882 883 884 885 886
		if (engine->schedule)
			__i915_priotree_add_dependency(&request->priotree,
						       &prev->priotree,
						       &request->dep,
						       0);
	}
887

C
Chris Wilson 已提交
888
	spin_lock_irq(&timeline->lock);
889
	list_add_tail(&request->link, &timeline->requests);
C
Chris Wilson 已提交
890 891 892 893
	spin_unlock_irq(&timeline->lock);

	GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
				     request->fence.seqno));
894

C
Chris Wilson 已提交
895
	timeline->last_submitted_seqno = request->fence.seqno;
896
	i915_gem_active_set(&timeline->last_request, request);
897

898
	list_add_tail(&request->ring_link, &ring->request_list);
899
	request->emitted_jiffies = jiffies;
900

901
	i915_gem_mark_busy(engine);
902

903 904 905 906 907 908 909 910 911 912 913
	/* Let the backend know a new request has arrived that may need
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
	if (engine->schedule)
914
		engine->schedule(request, request->ctx->priority);
915

916 917 918
	local_bh_disable();
	i915_sw_fence_commit(&request->submit);
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
919 920
}

921 922 923 924 925 926 927 928 929 930
static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	if (list_empty(&wait->task_list))
		__add_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, flags);
}

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

bool __i915_spin_request(const struct drm_i915_gem_request *req,
			 int state, unsigned long timeout_us)
{
966 967
	struct intel_engine_cs *engine = req->engine;
	unsigned int irq, cpu;
968 969 970 971 972 973 974 975 976 977 978

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

979
	irq = atomic_read(&engine->irq_count);
980 981
	timeout_us += local_clock_us(&cpu);
	do {
982
		if (__i915_gem_request_completed(req))
983 984
			return true;

985 986 987 988 989 990 991 992
		/* Seqno are meant to be ordered *before* the interrupt. If
		 * we see an interrupt without a corresponding seqno advance,
		 * assume we won't see one in the near future but require
		 * the engine->seqno_barrier() to fixup coherency.
		 */
		if (atomic_read(&engine->irq_count) != irq)
			break;

993 994 995 996 997 998
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

999
		cpu_relax();
1000 1001 1002 1003 1004
	} while (!need_resched());

	return false;
}

1005
static long
1006 1007 1008
__i915_request_wait_for_execute(struct drm_i915_gem_request *request,
				unsigned int flags,
				long timeout)
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
{
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
	wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
	DEFINE_WAIT(reset);
	DEFINE_WAIT(wait);

	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(q, &reset);

	do {
1020
		prepare_to_wait(&request->execute.wait, &wait, state);
1021

1022
		if (i915_sw_fence_done(&request->execute))
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
			break;

		if (flags & I915_WAIT_LOCKED &&
		    i915_reset_in_progress(&request->i915->gpu_error)) {
			__set_current_state(TASK_RUNNING);
			i915_reset(request->i915);
			reset_wait_queue(q, &reset);
			continue;
		}

		if (signal_pending_state(state, current)) {
			timeout = -ERESTARTSYS;
			break;
		}

1038 1039 1040 1041 1042
		if (!timeout) {
			timeout = -ETIME;
			break;
		}

1043
		timeout = io_schedule_timeout(timeout);
1044
	} while (1);
1045
	finish_wait(&request->execute.wait, &wait);
1046 1047 1048 1049 1050 1051 1052

	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(q, &reset);

	return timeout;
}

1053
/**
1054
 * i915_wait_request - wait until execution of request has finished
1055
 * @req: the request to wait upon
1056
 * @flags: how to wait
1057 1058 1059 1060 1061
 * @timeout: how long to wait in jiffies
 *
 * i915_wait_request() waits for the request to be completed, for a
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1062
 *
1063 1064 1065
 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
 * in via the flags, and vice versa if the struct_mutex is not held, the caller
 * must not specify that the wait is locked.
1066
 *
1067 1068 1069 1070
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1071
 */
1072 1073 1074
long i915_wait_request(struct drm_i915_gem_request *req,
		       unsigned int flags,
		       long timeout)
1075
{
1076 1077
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1078 1079 1080 1081
	DEFINE_WAIT(reset);
	struct intel_wait wait;

	might_sleep();
1082
#if IS_ENABLED(CONFIG_LOCKDEP)
1083 1084
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1085 1086
		   !!(flags & I915_WAIT_LOCKED));
#endif
1087
	GEM_BUG_ON(timeout < 0);
1088 1089

	if (i915_gem_request_completed(req))
1090
		return timeout;
1091

1092 1093
	if (!timeout)
		return -ETIME;
1094

1095
	trace_i915_gem_request_wait_begin(req, flags);
1096

1097 1098
	if (!i915_sw_fence_done(&req->execute)) {
		timeout = __i915_request_wait_for_execute(req, flags, timeout);
1099 1100 1101
		if (timeout < 0)
			goto complete;

1102
		GEM_BUG_ON(!i915_sw_fence_done(&req->execute));
1103
	}
1104
	GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
1105
	GEM_BUG_ON(!req->global_seqno);
1106

1107
	/* Optimistic short spin before touching IRQs */
1108 1109 1110 1111
	if (i915_spin_request(req, state, 5))
		goto complete;

	set_current_state(state);
1112 1113
	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1114

1115
	intel_wait_init(&wait, req->global_seqno);
1116 1117 1118 1119 1120 1121 1122 1123 1124
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
		 */
		goto wakeup;

	for (;;) {
		if (signal_pending_state(state, current)) {
1125
			timeout = -ERESTARTSYS;
1126 1127 1128
			break;
		}

1129 1130
		if (!timeout) {
			timeout = -ETIME;
1131 1132 1133
			break;
		}

1134 1135
		timeout = io_schedule_timeout(timeout);

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
		if (intel_wait_complete(&wait))
			break;

		set_current_state(state);

wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		/* If the GPU is hung, and we hold the lock, reset the GPU
		 * and then check for completion. On a full reset, the engine's
		 * HW seqno will be advanced passed us and we are complete.
		 * If we do a partial reset, we have to wait for the GPU to
		 * resume and update the breadcrumb.
		 *
		 * If we don't hold the mutex, we can just wait for the worker
		 * to come along and update the breadcrumb (either directly
		 * itself, or indirectly by recovering the GPU).
		 */
		if (flags & I915_WAIT_LOCKED &&
		    i915_reset_in_progress(&req->i915->gpu_error)) {
			__set_current_state(TASK_RUNNING);
			i915_reset(req->i915);
			reset_wait_queue(&req->i915->gpu_error.wait_queue,
					 &reset);
			continue;
		}

1169 1170 1171 1172 1173 1174
		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
	}

	intel_engine_remove_wait(req->engine, &wait);
1175 1176
	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1177
	__set_current_state(TASK_RUNNING);
1178

1179 1180 1181
complete:
	trace_i915_gem_request_wait_end(req);

1182
	return timeout;
1183
}
1184

1185
static void engine_retire_requests(struct intel_engine_cs *engine)
1186 1187 1188
{
	struct drm_i915_gem_request *request, *next;

1189 1190
	list_for_each_entry_safe(request, next,
				 &engine->timeline->requests, link) {
C
Chris Wilson 已提交
1191
		if (!__i915_gem_request_completed(request))
1192
			return;
1193 1194 1195 1196 1197 1198 1199 1200

		i915_gem_request_retire(request);
	}
}

void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1201
	enum intel_engine_id id;
1202 1203 1204

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

1205
	if (!dev_priv->gt.active_requests)
1206 1207
		return;

1208 1209
	for_each_engine(engine, dev_priv, id)
		engine_retire_requests(engine);
1210
}
1211 1212 1213 1214 1215

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
#include "selftests/i915_gem_request.c"
#endif