arm.c 25.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu.h>
20
#include <linux/cpu_pm.h>
21 22 23 24 25 26 27 28
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30 31 32 33 34 35 36 37
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
#include "trace.h"

#include <asm/uaccess.h>
#include <asm/ptrace.h>
#include <asm/mman.h>
38
#include <asm/tlbflush.h>
39
#include <asm/cacheflush.h>
40 41 42 43
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
44
#include <asm/kvm_emulate.h>
45
#include <asm/kvm_coproc.h>
46
#include <asm/kvm_psci.h>
47 48 49 50 51

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

52
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 55
static unsigned long hyp_default_vectors;

56 57 58
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

59 60 61 62
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
static u8 kvm_next_vmid;
static DEFINE_SPINLOCK(kvm_vmid_lock);
63

64 65
static bool vgic_present;

66 67 68
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
69
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 71 72 73 74 75 76 77 78
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
79
	return __this_cpu_read(kvm_arm_running_vcpu);
80 81 82 83 84
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
85
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
86 87 88 89
{
	return &kvm_arm_running_vcpu;
}

90
int kvm_arch_hardware_enable(void)
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
{
	return 0;
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


111 112 113 114
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
115 116
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
117 118
	int ret = 0;

119 120 121
	if (type)
		return -EINVAL;

122 123 124 125 126 127 128 129
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

	ret = create_hyp_mappings(kvm, kvm + 1);
	if (ret)
		goto out_free_stage2_pgd;

130 131
	kvm_timer_init(kvm);

132 133 134
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

135 136 137
	/* The maximum number of VCPUs is limited by the host's GIC model */
	kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();

138 139 140 141 142
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
	return ret;
143 144 145 146 147 148 149 150
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


151 152 153 154
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
155 156 157 158
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

159 160
	kvm_free_stage2_pgd(kvm);

161 162 163 164 165 166
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
167 168

	kvm_vgic_destroy(kvm);
169 170
}

171
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
172 173 174
{
	int r;
	switch (ext) {
175 176 177
	case KVM_CAP_IRQCHIP:
		r = vgic_present;
		break;
178
	case KVM_CAP_DEVICE_CTRL:
179 180 181 182
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
183
	case KVM_CAP_ARM_PSCI:
184
	case KVM_CAP_ARM_PSCI_0_2:
185
	case KVM_CAP_READONLY_MEM:
186 187 188 189 190
		r = 1;
		break;
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
191 192
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
193
		break;
194 195 196 197 198 199 200
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
	default:
201
		r = kvm_arch_dev_ioctl_check_extension(ext);
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

219 220 221 222 223
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

224 225 226 227 228
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

229 230 231 232 233 234 235 236 237 238
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

239 240 241 242
	err = create_hyp_mappings(vcpu, vcpu + 1);
	if (err)
		goto vcpu_uninit;

243
	return vcpu;
244 245
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
246 247 248 249 250 251
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

252
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
253 254 255 256 257
{
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
258
	kvm_mmu_free_memory_caches(vcpu);
259
	kvm_timer_vcpu_terminate(vcpu);
260
	kvm_vgic_vcpu_destroy(vcpu);
261
	kmem_cache_free(kvm_vcpu_cache, vcpu);
262 263 264 265 266 267 268 269 270 271 272 273 274 275
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
	return 0;
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
276 277
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
278
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
279

280 281 282
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

283 284 285 286 287
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
288
	vcpu->cpu = cpu;
289
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
290

291
	kvm_arm_set_running_vcpu(vcpu);
292 293 294 295
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
296 297 298 299 300 301 302
	/*
	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
	 * if the vcpu is no longer assigned to a cpu.  This is used for the
	 * optimized make_all_cpus_request path.
	 */
	vcpu->cpu = -1;

303
	kvm_arm_set_running_vcpu(NULL);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
}

int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
{
	return -EINVAL;
}


int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

325 326 327 328 329 330 331
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
332 333
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
334
	return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
335 336
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
 * @kvm: The VM's VMID to checkt
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;

	/* update vttbr to be used with the new vmid */
416
	pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
417
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
418
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
419
	kvm->arch.vttbr = pgd_phys | vmid;
420 421 422 423 424 425

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
426
	struct kvm *kvm = vcpu->kvm;
427 428
	int ret;

429 430 431 432
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
433

434
	/*
435 436
	 * Map the VGIC hardware resources before running a vcpu the first
	 * time on this VM.
437
	 */
438 439
	if (unlikely(!vgic_ready(kvm))) {
		ret = kvm_vgic_map_resources(kvm);
440 441 442 443
		if (ret)
			return ret;
	}

444 445 446 447 448 449 450 451
	/*
	 * Enable the arch timers only if we have an in-kernel VGIC
	 * and it has been properly initialized, since we cannot handle
	 * interrupts from the virtual timer with a userspace gic.
	 */
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		kvm_timer_enable(kvm);

452 453 454
	return 0;
}

455 456 457 458 459 460 461
static void vcpu_pause(struct kvm_vcpu *vcpu)
{
	wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);

	wait_event_interruptible(*wq, !vcpu->arch.pause);
}

462 463 464 465 466
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

467 468 469 470 471 472 473 474 475 476 477
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
478 479
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
480 481 482
	int ret;
	sigset_t sigsaved;

483
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
484 485 486 487 488 489
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
490 491 492 493 494 495
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

496 497 498 499 500 501 502 503 504 505 506 507 508
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

509 510 511
		if (vcpu->arch.pause)
			vcpu_pause(vcpu);

512
		kvm_vgic_flush_hwstate(vcpu);
513
		kvm_timer_flush_hwstate(vcpu);
514

515 516 517 518 519 520 521 522 523 524 525 526
		local_irq_disable();

		/*
		 * Re-check atomic conditions
		 */
		if (signal_pending(current)) {
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
			local_irq_enable();
527
			kvm_timer_sync_hwstate(vcpu);
528
			kvm_vgic_sync_hwstate(vcpu);
529 530 531 532 533 534 535 536 537 538 539 540 541 542
			continue;
		}

		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
		kvm_guest_enter();
		vcpu->mode = IN_GUEST_MODE;

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
		kvm_guest_exit();
543
		trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
		 * Back from guest
		 *************************************************************/

560
		kvm_timer_sync_hwstate(vcpu);
561 562
		kvm_vgic_sync_hwstate(vcpu);

563 564 565 566 567 568
		ret = handle_exit(vcpu, run, ret);
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
569 570
}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
	kvm_vcpu_kick(vcpu);

	return 0;
}

604 605
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
606 607 608 609 610 611 612 613 614 615 616 617 618
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

619 620 621 622
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
623

624 625
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
626

627 628 629
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
630

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
648

649 650 651 652 653 654 655 656 657 658 659 660 661
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (irq_num < VGIC_NR_PRIVATE_IRQS ||
		    irq_num > KVM_ARM_IRQ_GIC_MAX)
			return -EINVAL;

		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
	}

	return -EINVAL;
662 663
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


706 707 708 709 710 711 712 713 714
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

715 716 717 718 719 720 721
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

722 723
	vcpu_reset_hcr(vcpu);

724 725 726
	/*
	 * Handle the "start in power-off" case by marking the VCPU as paused.
	 */
727
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
728
		vcpu->arch.pause = true;
729 730
	else
		vcpu->arch.pause = false;
731 732 733 734

	return 0;
}

735 736 737 738 739 740 741 742 743 744 745 746 747
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

748
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
749 750 751 752
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
753 754 755 756

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

757 758 759 760 761 762 763 764 765 766 767 768
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

769 770 771
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
	default:
		return -EINVAL;
	}
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
806 807
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
808 809 810 811 812 813 814 815 816 817 818 819
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
820 821
}

822 823 824
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
825 826 827 828 829 830 831 832 833 834 835
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
		if (!vgic_present)
			return -ENXIO;
836
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
837 838 839
	default:
		return -ENODEV;
	}
840 841
}

842 843 844
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
845 846 847 848
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
849 850
	case KVM_CREATE_IRQCHIP: {
		if (vgic_present)
851
			return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
852 853 854
		else
			return -ENXIO;
	}
855 856 857 858 859 860 861
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
862 863 864 865 866 867 868 869 870 871 872 873 874
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
875 876 877
	default:
		return -EINVAL;
	}
878 879
}

880
static void cpu_init_hyp_mode(void *dummy)
881
{
882 883
	phys_addr_t boot_pgd_ptr;
	phys_addr_t pgd_ptr;
884 885 886 887 888
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
889
	__hyp_set_vectors(kvm_get_idmap_vector());
890

891 892
	boot_pgd_ptr = kvm_mmu_get_boot_httbr();
	pgd_ptr = kvm_mmu_get_httbr();
893
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
894 895 896
	hyp_stack_ptr = stack_page + PAGE_SIZE;
	vector_ptr = (unsigned long)__kvm_hyp_vector;

897
	__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
898 899
}

900 901 902 903 904 905
static int hyp_init_cpu_notify(struct notifier_block *self,
			       unsigned long action, void *cpu)
{
	switch (action) {
	case CPU_STARTING:
	case CPU_STARTING_FROZEN:
V
Vladimir Murzin 已提交
906 907
		if (__hyp_get_vectors() == hyp_default_vectors)
			cpu_init_hyp_mode(NULL);
908 909 910 911
		break;
	}

	return NOTIFY_OK;
912 913
}

914 915 916 917
static struct notifier_block hyp_init_cpu_nb = {
	.notifier_call = hyp_init_cpu_notify,
};

918 919 920 921 922
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
923 924
	if (cmd == CPU_PM_EXIT &&
	    __hyp_get_vectors() == hyp_default_vectors) {
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
		cpu_init_hyp_mode(NULL);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
#else
static inline void hyp_cpu_pm_init(void)
{
}
#endif

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * It is probably enough to obtain the default on one
	 * CPU. It's unlikely to be different on the others.
	 */
	hyp_default_vectors = __hyp_get_vectors();

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
			goto out_free_stack_pages;
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
	err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
	if (err) {
		kvm_err("Cannot map world-switch code\n");
		goto out_free_mappings;
	}

	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);

		if (err) {
			kvm_err("Cannot map hyp stack\n");
			goto out_free_mappings;
		}
	}

	/*
1005
	 * Map the host CPU structures
1006
	 */
1007 1008
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
1009
		err = -ENOMEM;
1010
		kvm_err("Cannot allocate host CPU state\n");
1011 1012 1013 1014
		goto out_free_mappings;
	}

	for_each_possible_cpu(cpu) {
1015
		kvm_cpu_context_t *cpu_ctxt;
1016

1017 1018
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1019 1020

		if (err) {
1021 1022
			kvm_err("Cannot map host CPU state: %d\n", err);
			goto out_free_context;
1023 1024 1025
		}
	}

1026 1027 1028 1029 1030
	/*
	 * Execute the init code on each CPU.
	 */
	on_each_cpu(cpu_init_hyp_mode, NULL, 1);

1031 1032 1033 1034 1035
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	if (err)
1036
		goto out_free_context;
1037

1038 1039 1040 1041
#ifdef CONFIG_KVM_ARM_VGIC
		vgic_present = true;
#endif

1042 1043 1044 1045 1046 1047 1048
	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
		goto out_free_mappings;

1049 1050 1051 1052
#ifndef CONFIG_HOTPLUG_CPU
	free_boot_hyp_pgd();
#endif

1053 1054
	kvm_perf_init();

1055
	kvm_info("Hyp mode initialized successfully\n");
1056

1057
	return 0;
1058 1059
out_free_context:
	free_percpu(kvm_host_cpu_state);
1060
out_free_mappings:
1061
	free_hyp_pgds();
1062 1063 1064 1065 1066 1067 1068 1069
out_free_stack_pages:
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
out_err:
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1070 1071 1072 1073 1074
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1088 1089 1090
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1091 1092
int kvm_arch_init(void *opaque)
{
1093
	int err;
1094
	int ret, cpu;
1095 1096 1097 1098 1099 1100

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

1101 1102 1103 1104 1105 1106
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1107 1108
	}

1109 1110
	cpu_notifier_register_begin();

1111 1112 1113 1114
	err = init_hyp_mode();
	if (err)
		goto out_err;

1115
	err = __register_cpu_notifier(&hyp_init_cpu_nb);
1116 1117 1118 1119 1120
	if (err) {
		kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
		goto out_err;
	}

1121 1122
	cpu_notifier_register_done();

1123 1124
	hyp_cpu_pm_init();

1125
	kvm_coproc_table_init();
1126
	return 0;
1127
out_err:
1128
	cpu_notifier_register_done();
1129
	return err;
1130 1131 1132 1133 1134
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1135
	kvm_perf_teardown();
1136 1137 1138 1139 1140 1141 1142 1143 1144
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);