arm.c 22.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu.h>
20
#include <linux/cpu_pm.h>
21 22 23 24 25 26 27 28
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30 31 32 33 34 35 36 37
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
#include "trace.h"

#include <asm/uaccess.h>
#include <asm/ptrace.h>
#include <asm/mman.h>
38
#include <asm/tlbflush.h>
39
#include <asm/cacheflush.h>
40 41 42 43
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
44
#include <asm/kvm_emulate.h>
45
#include <asm/kvm_coproc.h>
46
#include <asm/kvm_psci.h>
47 48 49 50 51

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

52
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 55
static unsigned long hyp_default_vectors;

56 57 58
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

59 60 61 62
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
static u8 kvm_next_vmid;
static DEFINE_SPINLOCK(kvm_vmid_lock);
63

64 65
static bool vgic_present;

66 67 68
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
69
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 71 72 73 74 75 76 77 78
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
79
	return __this_cpu_read(kvm_arm_running_vcpu);
80 81 82 83 84 85 86 87 88 89
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
{
	return &kvm_arm_running_vcpu;
}

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
int kvm_arch_hardware_enable(void *garbage)
{
	return 0;
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

void kvm_arch_hardware_disable(void *garbage)
{
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}

void kvm_arch_sync_events(struct kvm *kvm)
{
}

122 123 124 125
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
126 127
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
128 129
	int ret = 0;

130 131 132
	if (type)
		return -EINVAL;

133 134 135 136 137 138 139 140
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

	ret = create_hyp_mappings(kvm, kvm + 1);
	if (ret)
		goto out_free_stage2_pgd;

141 142
	kvm_timer_init(kvm);

143 144 145 146 147 148 149 150
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
	return ret;
151 152 153 154 155 156 157 158
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


159 160 161 162
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
163 164 165 166
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

167 168
	kvm_free_stage2_pgd(kvm);

169 170 171 172 173 174 175 176
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
}

177
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
178 179 180
{
	int r;
	switch (ext) {
181 182 183
	case KVM_CAP_IRQCHIP:
		r = vgic_present;
		break;
184
	case KVM_CAP_DEVICE_CTRL:
185 186 187 188
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
189
	case KVM_CAP_ARM_PSCI:
190
	case KVM_CAP_ARM_PSCI_0_2:
191 192 193 194 195
		r = 1;
		break;
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
196 197
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
198
		break;
199 200 201 202 203 204 205
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
	default:
206
		r = kvm_arch_dev_ioctl_check_extension(ext);
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

234 235 236 237
	err = create_hyp_mappings(vcpu, vcpu + 1);
	if (err)
		goto vcpu_uninit;

238
	return vcpu;
239 240
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
241 242 243 244 245 246 247 248 249 250 251 252 253
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
	return 0;
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
254
	kvm_mmu_free_memory_caches(vcpu);
255
	kvm_timer_vcpu_terminate(vcpu);
256
	kmem_cache_free(kvm_vcpu_cache, vcpu);
257 258 259 260 261 262 263 264 265 266 267 268 269 270
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
	return 0;
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
271 272
	int ret;

273 274
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
275 276 277 278 279 280

	/* Set up VGIC */
	ret = kvm_vgic_vcpu_init(vcpu);
	if (ret)
		return ret;

281 282 283
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

284 285 286 287 288 289 290
	return 0;
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
}

R
Radim Krčmář 已提交
291 292 293 294
void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
{
}

295 296
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
297
	vcpu->cpu = cpu;
298
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
299 300 301 302 303 304 305 306 307

	/*
	 * Check whether this vcpu requires the cache to be flushed on
	 * this physical CPU. This is a consequence of doing dcache
	 * operations by set/way on this vcpu. We do it here to be in
	 * a non-preemptible section.
	 */
	if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
		flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
308 309

	kvm_arm_set_running_vcpu(vcpu);
310 311 312 313
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
314 315 316 317 318 319 320
	/*
	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
	 * if the vcpu is no longer assigned to a cpu.  This is used for the
	 * optimized make_all_cpus_request path.
	 */
	vcpu->cpu = -1;

321
	kvm_arm_set_running_vcpu(NULL);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
}

int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
{
	return -EINVAL;
}


int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

343 344 345 346 347 348 349
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
350 351
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
352
	return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
353 354
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
 * @kvm: The VM's VMID to checkt
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;

	/* update vttbr to be used with the new vmid */
	pgd_phys = virt_to_phys(kvm->arch.pgd);
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
	kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
	kvm->arch.vttbr |= vmid;

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
444 445
	int ret;

446 447 448 449
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
450

451 452 453 454
	/*
	 * Initialize the VGIC before running a vcpu the first time on
	 * this VM.
	 */
455 456
	if (unlikely(!vgic_initialized(vcpu->kvm))) {
		ret = kvm_vgic_init(vcpu->kvm);
457 458 459 460
		if (ret)
			return ret;
	}

461 462 463
	return 0;
}

464 465 466 467 468 469 470
static void vcpu_pause(struct kvm_vcpu *vcpu)
{
	wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);

	wait_event_interruptible(*wq, !vcpu->arch.pause);
}

471 472 473 474 475
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

476 477 478 479 480 481 482 483 484 485 486
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
487 488
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
489 490 491
	int ret;
	sigset_t sigsaved;

492
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
493 494 495 496 497 498
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
499 500 501 502 503 504
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

505 506 507 508 509 510 511 512 513 514 515 516 517
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

518 519 520
		if (vcpu->arch.pause)
			vcpu_pause(vcpu);

521
		kvm_vgic_flush_hwstate(vcpu);
522
		kvm_timer_flush_hwstate(vcpu);
523

524 525 526 527 528 529 530 531 532 533 534 535
		local_irq_disable();

		/*
		 * Re-check atomic conditions
		 */
		if (signal_pending(current)) {
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
			local_irq_enable();
536
			kvm_timer_sync_hwstate(vcpu);
537
			kvm_vgic_sync_hwstate(vcpu);
538 539 540 541 542 543 544 545 546 547 548 549 550
			continue;
		}

		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
		kvm_guest_enter();
		vcpu->mode = IN_GUEST_MODE;

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
551
		vcpu->arch.last_pcpu = smp_processor_id();
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
		kvm_guest_exit();
		trace_kvm_exit(*vcpu_pc(vcpu));
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
		 * Back from guest
		 *************************************************************/

570
		kvm_timer_sync_hwstate(vcpu);
571 572
		kvm_vgic_sync_hwstate(vcpu);

573 574 575 576 577 578
		ret = handle_exit(vcpu, run, ret);
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
579 580
}

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
	kvm_vcpu_kick(vcpu);

	return 0;
}

614 615
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
616 617 618 619 620 621 622 623 624 625 626 627 628
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

629 630 631 632
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
633

634 635
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
636

637 638 639
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
640

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
658

659 660 661 662 663 664 665 666 667 668 669 670 671
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (irq_num < VGIC_NR_PRIVATE_IRQS ||
		    irq_num > KVM_ARM_IRQ_GIC_MAX)
			return -EINVAL;

		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
	}

	return -EINVAL;
672 673
}

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

	/*
	 * Handle the "start in power-off" case by marking the VCPU as paused.
	 */
	if (__test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
		vcpu->arch.pause = true;

	return 0;
}

692 693 694 695 696 697 698 699 700 701 702 703 704
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

705
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
706 707 708 709
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
710 711 712 713

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

714 715 716 717 718 719 720 721 722 723 724 725
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

726 727 728
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
	default:
		return -EINVAL;
	}
}

int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	return -EINVAL;
}

749 750 751
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
752 753 754 755 756 757 758 759 760 761 762
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
		if (!vgic_present)
			return -ENXIO;
763
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
764 765 766
	default:
		return -ENODEV;
	}
767 768
}

769 770 771
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
772 773 774 775
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
776 777 778 779 780 781
	case KVM_CREATE_IRQCHIP: {
		if (vgic_present)
			return kvm_vgic_create(kvm);
		else
			return -ENXIO;
	}
782 783 784 785 786 787 788
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
789 790 791 792 793 794 795 796 797 798 799 800 801
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
802 803 804
	default:
		return -EINVAL;
	}
805 806
}

807
static void cpu_init_hyp_mode(void *dummy)
808
{
809 810
	phys_addr_t boot_pgd_ptr;
	phys_addr_t pgd_ptr;
811 812 813 814 815
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
816
	__hyp_set_vectors(kvm_get_idmap_vector());
817

818 819
	boot_pgd_ptr = kvm_mmu_get_boot_httbr();
	pgd_ptr = kvm_mmu_get_httbr();
820
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
821 822 823
	hyp_stack_ptr = stack_page + PAGE_SIZE;
	vector_ptr = (unsigned long)__kvm_hyp_vector;

824
	__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
825 826
}

827 828 829 830 831 832 833 834 835 836 837
static int hyp_init_cpu_notify(struct notifier_block *self,
			       unsigned long action, void *cpu)
{
	switch (action) {
	case CPU_STARTING:
	case CPU_STARTING_FROZEN:
		cpu_init_hyp_mode(NULL);
		break;
	}

	return NOTIFY_OK;
838 839
}

840 841 842 843
static struct notifier_block hyp_init_cpu_nb = {
	.notifier_call = hyp_init_cpu_notify,
};

844 845 846 847 848
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
849 850
	if (cmd == CPU_PM_EXIT &&
	    __hyp_get_vectors() == hyp_default_vectors) {
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
		cpu_init_hyp_mode(NULL);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
#else
static inline void hyp_cpu_pm_init(void)
{
}
#endif

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * It is probably enough to obtain the default on one
	 * CPU. It's unlikely to be different on the others.
	 */
	hyp_default_vectors = __hyp_get_vectors();

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
			goto out_free_stack_pages;
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
	err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
	if (err) {
		kvm_err("Cannot map world-switch code\n");
		goto out_free_mappings;
	}

	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);

		if (err) {
			kvm_err("Cannot map hyp stack\n");
			goto out_free_mappings;
		}
	}

	/*
931
	 * Map the host CPU structures
932
	 */
933 934
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
935
		err = -ENOMEM;
936
		kvm_err("Cannot allocate host CPU state\n");
937 938 939 940
		goto out_free_mappings;
	}

	for_each_possible_cpu(cpu) {
941
		kvm_cpu_context_t *cpu_ctxt;
942

943 944
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
945 946

		if (err) {
947 948
			kvm_err("Cannot map host CPU state: %d\n", err);
			goto out_free_context;
949 950 951
		}
	}

952 953 954 955 956
	/*
	 * Execute the init code on each CPU.
	 */
	on_each_cpu(cpu_init_hyp_mode, NULL, 1);

957 958 959 960 961
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	if (err)
962
		goto out_free_context;
963

964 965 966 967
#ifdef CONFIG_KVM_ARM_VGIC
		vgic_present = true;
#endif

968 969 970 971 972 973 974
	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
		goto out_free_mappings;

975 976 977 978
#ifndef CONFIG_HOTPLUG_CPU
	free_boot_hyp_pgd();
#endif

979 980
	kvm_perf_init();

981
	kvm_info("Hyp mode initialized successfully\n");
982

983
	return 0;
984 985
out_free_context:
	free_percpu(kvm_host_cpu_state);
986
out_free_mappings:
987
	free_hyp_pgds();
988 989 990 991 992 993 994 995
out_free_stack_pages:
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
out_err:
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

996 997 998 999 1000
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1001 1002 1003
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1004 1005
int kvm_arch_init(void *opaque)
{
1006
	int err;
1007
	int ret, cpu;
1008 1009 1010 1011 1012 1013

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

1014 1015 1016 1017 1018 1019
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1020 1021
	}

1022 1023
	cpu_notifier_register_begin();

1024 1025 1026 1027
	err = init_hyp_mode();
	if (err)
		goto out_err;

1028
	err = __register_cpu_notifier(&hyp_init_cpu_nb);
1029 1030 1031 1032 1033
	if (err) {
		kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
		goto out_err;
	}

1034 1035
	cpu_notifier_register_done();

1036 1037
	hyp_cpu_pm_init();

1038
	kvm_coproc_table_init();
1039
	return 0;
1040
out_err:
1041
	cpu_notifier_register_done();
1042
	return err;
1043 1044 1045 1046 1047
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1048
	kvm_perf_teardown();
1049 1050 1051 1052 1053 1054 1055 1056 1057
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);