arm.c 23.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu.h>
20
#include <linux/cpu_pm.h>
21 22 23 24 25 26 27 28
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30 31 32 33 34 35 36 37
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
#include "trace.h"

#include <asm/uaccess.h>
#include <asm/ptrace.h>
#include <asm/mman.h>
38
#include <asm/tlbflush.h>
39
#include <asm/cacheflush.h>
40 41 42 43
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
44
#include <asm/kvm_emulate.h>
45
#include <asm/kvm_coproc.h>
46
#include <asm/kvm_psci.h>
47 48 49 50 51

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

52
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 55
static unsigned long hyp_default_vectors;

56 57 58
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

59 60 61 62
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
static u8 kvm_next_vmid;
static DEFINE_SPINLOCK(kvm_vmid_lock);
63

64 65
static bool vgic_present;

66 67 68
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
69
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 71 72 73 74 75 76 77 78
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
79
	return __this_cpu_read(kvm_arm_running_vcpu);
80 81 82 83 84 85 86 87 88 89
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
{
	return &kvm_arm_running_vcpu;
}

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
int kvm_arch_hardware_enable(void *garbage)
{
	return 0;
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

void kvm_arch_hardware_disable(void *garbage)
{
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}

void kvm_arch_sync_events(struct kvm *kvm)
{
}

122 123 124 125
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
126 127
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
128 129
	int ret = 0;

130 131 132
	if (type)
		return -EINVAL;

133 134 135 136 137 138 139 140
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

	ret = create_hyp_mappings(kvm, kvm + 1);
	if (ret)
		goto out_free_stage2_pgd;

141 142
	kvm_timer_init(kvm);

143 144 145 146 147 148 149 150
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
	return ret;
151 152 153 154 155 156 157
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}

158
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
159 160 161 162
			   struct kvm_memory_slot *dont)
{
}

163 164
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
165 166 167 168
{
	return 0;
}

169 170 171 172
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
173 174 175 176
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

177 178
	kvm_free_stage2_pgd(kvm);

179 180 181 182 183 184 185 186 187 188 189 190
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
}

int kvm_dev_ioctl_check_extension(long ext)
{
	int r;
	switch (ext) {
191 192 193
	case KVM_CAP_IRQCHIP:
		r = vgic_present;
		break;
194
	case KVM_CAP_DEVICE_CTRL:
195 196 197 198
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
199
	case KVM_CAP_ARM_PSCI:
200 201 202 203 204
		r = 1;
		break;
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
205 206
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
207
		break;
208 209 210 211 212 213 214
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
	default:
215
		r = kvm_arch_dev_ioctl_check_extension(ext);
216 217 218 219 220 221 222 223 224 225 226
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

227 228 229 230
void kvm_arch_memslots_updated(struct kvm *kvm)
{
}

231 232 233
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
				   struct kvm_userspace_memory_region *mem,
234
				   enum kvm_mr_change change)
235 236 237 238 239 240
{
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
				   struct kvm_userspace_memory_region *mem,
241 242
				   const struct kvm_memory_slot *old,
				   enum kvm_mr_change change)
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

270 271 272 273
	err = create_hyp_mappings(vcpu, vcpu + 1);
	if (err)
		goto vcpu_uninit;

274
	return vcpu;
275 276
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
277 278 279 280 281 282 283 284 285 286 287 288 289
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
	return 0;
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
290
	kvm_mmu_free_memory_caches(vcpu);
291
	kvm_timer_vcpu_terminate(vcpu);
292
	kmem_cache_free(kvm_vcpu_cache, vcpu);
293 294 295 296 297 298 299 300 301 302 303 304 305 306
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
	return 0;
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
307 308
	int ret;

309 310
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
311 312 313 314 315 316

	/* Set up VGIC */
	ret = kvm_vgic_vcpu_init(vcpu);
	if (ret)
		return ret;

317 318 319
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

320 321 322 323 324 325 326 327 328
	return 0;
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
329
	vcpu->cpu = cpu;
330
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
331 332 333 334 335 336 337 338 339

	/*
	 * Check whether this vcpu requires the cache to be flushed on
	 * this physical CPU. This is a consequence of doing dcache
	 * operations by set/way on this vcpu. We do it here to be in
	 * a non-preemptible section.
	 */
	if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
		flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
340 341

	kvm_arm_set_running_vcpu(vcpu);
342 343 344 345
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
346 347 348 349 350 351 352
	/*
	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
	 * if the vcpu is no longer assigned to a cpu.  This is used for the
	 * optimized make_all_cpus_request path.
	 */
	vcpu->cpu = -1;

353
	kvm_arm_set_running_vcpu(NULL);
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
{
	return -EINVAL;
}


int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

375 376 377 378 379 380 381
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
382 383
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
384
	return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
385 386
}

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
 * @kvm: The VM's VMID to checkt
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;

	/* update vttbr to be used with the new vmid */
	pgd_phys = virt_to_phys(kvm->arch.pgd);
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
	kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
	kvm->arch.vttbr |= vmid;

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
476 477
	int ret;

478 479 480 481
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
482

483 484 485 486
	/*
	 * Initialize the VGIC before running a vcpu the first time on
	 * this VM.
	 */
487 488
	if (unlikely(!vgic_initialized(vcpu->kvm))) {
		ret = kvm_vgic_init(vcpu->kvm);
489 490 491 492
		if (ret)
			return ret;
	}

493 494 495
	return 0;
}

496 497 498 499 500 501 502
static void vcpu_pause(struct kvm_vcpu *vcpu)
{
	wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);

	wait_event_interruptible(*wq, !vcpu->arch.pause);
}

503 504 505 506 507
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

508 509 510 511 512 513 514 515 516 517 518
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
519 520
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
521 522 523
	int ret;
	sigset_t sigsaved;

524
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
525 526 527 528 529 530
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
531 532 533 534 535 536
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

537 538 539 540 541 542 543 544 545 546 547 548 549
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

550 551 552
		if (vcpu->arch.pause)
			vcpu_pause(vcpu);

553
		kvm_vgic_flush_hwstate(vcpu);
554
		kvm_timer_flush_hwstate(vcpu);
555

556 557 558 559 560 561 562 563 564 565 566 567
		local_irq_disable();

		/*
		 * Re-check atomic conditions
		 */
		if (signal_pending(current)) {
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
			local_irq_enable();
568
			kvm_timer_sync_hwstate(vcpu);
569
			kvm_vgic_sync_hwstate(vcpu);
570 571 572 573 574 575 576 577 578 579 580 581 582
			continue;
		}

		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
		kvm_guest_enter();
		vcpu->mode = IN_GUEST_MODE;

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
583
		vcpu->arch.last_pcpu = smp_processor_id();
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
		kvm_guest_exit();
		trace_kvm_exit(*vcpu_pc(vcpu));
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
		 * Back from guest
		 *************************************************************/

602
		kvm_timer_sync_hwstate(vcpu);
603 604
		kvm_vgic_sync_hwstate(vcpu);

605 606 607 608 609 610
		ret = handle_exit(vcpu, run, ret);
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
611 612
}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
	kvm_vcpu_kick(vcpu);

	return 0;
}

646 647
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
648 649 650 651 652 653 654 655 656 657 658 659 660
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

661 662 663 664
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
665

666 667
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
668

669 670 671
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
690

691 692 693 694 695 696 697 698 699 700 701 702 703
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (irq_num < VGIC_NR_PRIVATE_IRQS ||
		    irq_num > KVM_ARM_IRQ_GIC_MAX)
			return -EINVAL;

		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
	}

	return -EINVAL;
704 705
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

	/*
	 * Handle the "start in power-off" case by marking the VCPU as paused.
	 */
	if (__test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
		vcpu->arch.pause = true;

	return 0;
}

724 725 726 727 728 729 730 731 732 733 734 735 736
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

737
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
738 739 740 741
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
742 743 744 745

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

746 747 748 749 750 751 752 753 754 755 756 757
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

758 759 760
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
	default:
		return -EINVAL;
	}
}

int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	return -EINVAL;
}

781 782 783
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
784 785 786 787 788 789 790 791 792 793 794
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
		if (!vgic_present)
			return -ENXIO;
795
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
796 797 798
	default:
		return -ENODEV;
	}
799 800
}

801 802 803
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
804 805 806 807
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
808 809 810 811 812 813
	case KVM_CREATE_IRQCHIP: {
		if (vgic_present)
			return kvm_vgic_create(kvm);
		else
			return -ENXIO;
	}
814 815 816 817 818 819 820
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
821 822 823 824 825 826 827 828 829 830 831 832 833
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
834 835 836
	default:
		return -EINVAL;
	}
837 838
}

839
static void cpu_init_hyp_mode(void *dummy)
840
{
841 842
	phys_addr_t boot_pgd_ptr;
	phys_addr_t pgd_ptr;
843 844 845 846 847
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
848
	__hyp_set_vectors(kvm_get_idmap_vector());
849

850 851
	boot_pgd_ptr = kvm_mmu_get_boot_httbr();
	pgd_ptr = kvm_mmu_get_httbr();
852
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
853 854 855
	hyp_stack_ptr = stack_page + PAGE_SIZE;
	vector_ptr = (unsigned long)__kvm_hyp_vector;

856
	__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
857 858
}

859 860 861 862 863 864 865 866 867 868 869
static int hyp_init_cpu_notify(struct notifier_block *self,
			       unsigned long action, void *cpu)
{
	switch (action) {
	case CPU_STARTING:
	case CPU_STARTING_FROZEN:
		cpu_init_hyp_mode(NULL);
		break;
	}

	return NOTIFY_OK;
870 871
}

872 873 874 875
static struct notifier_block hyp_init_cpu_nb = {
	.notifier_call = hyp_init_cpu_notify,
};

876 877 878 879 880
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
881 882
	if (cmd == CPU_PM_EXIT &&
	    __hyp_get_vectors() == hyp_default_vectors) {
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
		cpu_init_hyp_mode(NULL);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
#else
static inline void hyp_cpu_pm_init(void)
{
}
#endif

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * It is probably enough to obtain the default on one
	 * CPU. It's unlikely to be different on the others.
	 */
	hyp_default_vectors = __hyp_get_vectors();

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
			goto out_free_stack_pages;
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
	err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
	if (err) {
		kvm_err("Cannot map world-switch code\n");
		goto out_free_mappings;
	}

	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);

		if (err) {
			kvm_err("Cannot map hyp stack\n");
			goto out_free_mappings;
		}
	}

	/*
963
	 * Map the host CPU structures
964
	 */
965 966
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
967
		err = -ENOMEM;
968
		kvm_err("Cannot allocate host CPU state\n");
969 970 971 972
		goto out_free_mappings;
	}

	for_each_possible_cpu(cpu) {
973
		kvm_cpu_context_t *cpu_ctxt;
974

975 976
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
977 978

		if (err) {
979 980
			kvm_err("Cannot map host CPU state: %d\n", err);
			goto out_free_context;
981 982 983
		}
	}

984 985 986 987 988
	/*
	 * Execute the init code on each CPU.
	 */
	on_each_cpu(cpu_init_hyp_mode, NULL, 1);

989 990 991 992 993
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	if (err)
994
		goto out_free_context;
995

996 997 998 999
#ifdef CONFIG_KVM_ARM_VGIC
		vgic_present = true;
#endif

1000 1001 1002 1003 1004 1005 1006
	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
		goto out_free_mappings;

1007 1008 1009 1010
#ifndef CONFIG_HOTPLUG_CPU
	free_boot_hyp_pgd();
#endif

1011 1012
	kvm_perf_init();

1013
	kvm_info("Hyp mode initialized successfully\n");
1014

1015
	return 0;
1016 1017
out_free_context:
	free_percpu(kvm_host_cpu_state);
1018
out_free_mappings:
1019
	free_hyp_pgds();
1020 1021 1022 1023 1024 1025 1026 1027
out_free_stack_pages:
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
out_err:
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1028 1029 1030 1031 1032
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1033 1034 1035
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1036 1037
int kvm_arch_init(void *opaque)
{
1038
	int err;
1039
	int ret, cpu;
1040 1041 1042 1043 1044 1045

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

1046 1047 1048 1049 1050 1051
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1052 1053 1054 1055 1056 1057
	}

	err = init_hyp_mode();
	if (err)
		goto out_err;

1058 1059 1060 1061 1062 1063
	err = register_cpu_notifier(&hyp_init_cpu_nb);
	if (err) {
		kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
		goto out_err;
	}

1064 1065
	hyp_cpu_pm_init();

1066
	kvm_coproc_table_init();
1067
	return 0;
1068 1069
out_err:
	return err;
1070 1071 1072 1073 1074
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1075
	kvm_perf_teardown();
1076 1077 1078 1079 1080 1081 1082 1083 1084
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);