efx.c 63.9 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
4
 * Copyright 2005-2009 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23 24 25
#include "net_driver.h"
#include "efx.h"
#include "mdio_10g.h"
B
Ben Hutchings 已提交
26
#include "nic.h"
27

28 29
#include "mcdi.h"

30 31 32 33 34 35 36 37 38 39 40
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
const char *efx_loopback_mode_names[] = {
	[LOOPBACK_NONE]		= "NONE",
41
	[LOOPBACK_DATA]		= "DATAPATH",
42 43 44 45
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
	[LOOPBACK_XAUI]  	= "XAUI",
46 47 48 49 50 51 52 53
	[LOOPBACK_GMII] 	= "GMII",
	[LOOPBACK_SGMII] 	= "SGMII",
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
54 55 56 57
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
	[LOOPBACK_PCS]	 	= "PCS",
	[LOOPBACK_PMAPMD] 	= "PMA/PMD",
58 59 60 61 62 63 64 65 66
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
	[LOOPBACK_XAUI_WS]  	= "XAUI_WS",
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
	[LOOPBACK_GMII_WS] 	= "GMII_WS",
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
	[LOOPBACK_PHYXS_WS]  	= "PHYXS_WS",
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
};

/* Interrupt mode names (see INT_MODE())) */
const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
const char *efx_interrupt_mode_names[] = {
	[EFX_INT_MODE_MSIX]   = "MSI-X",
	[EFX_INT_MODE_MSI]    = "MSI",
	[EFX_INT_MODE_LEGACY] = "legacy",
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
const char *efx_reset_type_names[] = {
	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
	[RESET_TYPE_ALL]           = "ALL",
	[RESET_TYPE_WORLD]         = "WORLD",
	[RESET_TYPE_DISABLE]       = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
89
	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
90 91
};

92 93 94 95 96 97 98 99 100
#define EFX_MAX_MTU (9 * 1024)

/* RX slow fill workqueue. If memory allocation fails in the fast path,
 * a work item is pushed onto this work queue to retry the allocation later,
 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
 * workqueue, there is nothing to be gained in making it per NIC
 */
static struct workqueue_struct *refill_workqueue;

101 102 103 104 105 106
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

107 108 109 110 111 112 113 114 115
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
116 117
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
118
 *
119
 * This is only used in MSI-X interrupt mode
120
 */
121 122 123 124
static unsigned int separate_tx_channels;
module_param(separate_tx_channels, uint, 0644);
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
 * monitor, which checks for known hardware bugs and resets the
 * hardware and driver as necessary.
 */
unsigned int efx_monitor_interval = 1 * HZ;

/* This controls whether or not the driver will initialise devices
 * with invalid MAC addresses stored in the EEPROM or flash.  If true,
 * such devices will be initialised with a random locally-generated
 * MAC address.  This allows for loading the sfc_mtd driver to
 * reprogram the flash, even if the flash contents (including the MAC
 * address) have previously been erased.
 */
static unsigned int allow_bad_hwaddr;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 * The default (0) means to assign an interrupt to each package (level II cache)
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

183 184 185 186
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

187 188 189 190 191 192 193 194 195 196
static unsigned irq_adapt_low_thresh = 10000;
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

static unsigned irq_adapt_high_thresh = 20000;
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

197 198 199 200 201 202 203 204 205 206 207 208
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
static void efx_remove_channel(struct efx_channel *channel);
static void efx_remove_port(struct efx_nic *efx);
static void efx_fini_napi(struct efx_nic *efx);
static void efx_fini_channels(struct efx_nic *efx);

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
209 210
		if ((efx->state == STATE_RUNNING) ||	\
		    (efx->state == STATE_DISABLED))	\
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
			ASSERT_RTNL();			\
	} while (0)

/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
227
static int efx_process_channel(struct efx_channel *channel, int rx_quota)
228
{
B
Ben Hutchings 已提交
229 230
	struct efx_nic *efx = channel->efx;
	int rx_packets;
231

B
Ben Hutchings 已提交
232
	if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
233
		     !channel->enabled))
B
Ben Hutchings 已提交
234
		return 0;
235

236
	rx_packets = efx_nic_process_eventq(channel, rx_quota);
B
Ben Hutchings 已提交
237 238
	if (rx_packets == 0)
		return 0;
239 240 241 242 243 244 245 246 247 248

	/* Deliver last RX packet. */
	if (channel->rx_pkt) {
		__efx_rx_packet(channel, channel->rx_pkt,
				channel->rx_pkt_csummed);
		channel->rx_pkt = NULL;
	}

	efx_rx_strategy(channel);

B
Ben Hutchings 已提交
249
	efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
250

B
Ben Hutchings 已提交
251
	return rx_packets;
252 253 254 255 256 257 258 259 260 261
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
262 263 264
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
265
	channel->work_pending = false;
266 267
	smp_wmb();

268
	efx_nic_eventq_read_ack(channel);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
	int rx_packets;

	EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
		  channel->channel, raw_smp_processor_id());

B
Ben Hutchings 已提交
285
	rx_packets = efx_process_channel(channel, budget);
286 287

	if (rx_packets < budget) {
288 289 290 291 292 293 294
		struct efx_nic *efx = channel->efx;

		if (channel->used_flags & EFX_USED_BY_RX &&
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
295 296
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
297
					efx->type->push_irq_moderation(channel);
298
				}
299 300
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
301 302 303
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
304
					efx->type->push_irq_moderation(channel);
305
				}
306 307 308 309 310
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

311
		/* There is no race here; although napi_disable() will
312
		 * only wait for napi_complete(), this isn't a problem
313 314 315
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
316
		napi_complete(napi);
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
		efx_channel_processed(channel);
	}

	return rx_packets;
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
 * Since we are touching interrupts the caller should hold the suspend lock
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	BUG_ON(!channel->used_flags);
	BUG_ON(!channel->enabled);

	/* Disable interrupts and wait for ISRs to complete */
339
	efx_nic_disable_interrupts(efx);
340 341
	if (efx->legacy_irq)
		synchronize_irq(efx->legacy_irq);
342
	if (channel->irq)
343 344 345 346 347 348
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
349
	efx_process_channel(channel, EFX_EVQ_SIZE);
350 351 352 353 354 355

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
356
	efx_nic_enable_interrupts(efx);
357 358 359 360 361 362 363 364 365 366 367
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);

368
	return efx_nic_probe_eventq(channel);
369 370 371
}

/* Prepare channel's event queue */
372
static void efx_init_eventq(struct efx_channel *channel)
373 374 375 376 377
{
	EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);

	channel->eventq_read_ptr = 0;

378
	efx_nic_init_eventq(channel);
379 380 381 382 383 384
}

static void efx_fini_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);

385
	efx_nic_fini_eventq(channel);
386 387 388 389 390 391
}

static void efx_remove_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);

392
	efx_nic_remove_eventq(channel);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

	EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);

	rc = efx_probe_eventq(channel);
	if (rc)
		goto fail1;

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
			goto fail2;
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
			goto fail3;
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

 fail3:
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
 fail2:
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
 fail1:
	return rc;
}


440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;
	const char *type = "";
	int number;

	efx_for_each_channel(channel, efx) {
		number = channel->channel;
		if (efx->n_channels > efx->n_rx_queues) {
			if (channel->channel < efx->n_rx_queues) {
				type = "-rx";
			} else {
				type = "-tx";
				number -= efx->n_rx_queues;
			}
		}
		snprintf(channel->name, sizeof(channel->name),
			 "%s%s-%d", efx->name, type, number);
	}
}

461 462 463 464
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
465
static void efx_init_channels(struct efx_nic *efx)
466 467 468 469 470
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

471 472 473 474 475 476 477 478
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			      efx->type->rx_buffer_padding);
	efx->rx_buffer_order = get_order(efx->rx_buffer_len);
479 480 481 482 483

	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
		EFX_LOG(channel->efx, "init chan %d\n", channel->channel);

484
		efx_init_eventq(channel);
485

486 487
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
488 489 490 491

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

492 493
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_init_rx_queue(rx_queue);
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}
}

/* This enables event queue processing and packet transmission.
 *
 * Note that this function is not allowed to fail, since that would
 * introduce too much complexity into the suspend/resume path.
 */
static void efx_start_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

	EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);

511 512 513
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set. */
514 515
	channel->work_pending = false;
	channel->enabled = true;
516
	smp_wmb();
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

	napi_enable(&channel->napi_str);

	/* Load up RX descriptors */
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_fast_push_rx_descriptors(rx_queue);
}

/* This disables event queue processing and packet transmission.
 * This function does not guarantee that all queue processing
 * (e.g. RX refill) is complete.
 */
static void efx_stop_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

	if (!channel->enabled)
		return;

	EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);

538
	channel->enabled = false;
539 540 541 542 543 544 545 546 547 548 549 550 551 552
	napi_disable(&channel->napi_str);

	/* Ensure that any worker threads have exited or will be no-ops */
	efx_for_each_channel_rx_queue(rx_queue, channel) {
		spin_lock_bh(&rx_queue->add_lock);
		spin_unlock_bh(&rx_queue->add_lock);
	}
}

static void efx_fini_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
553
	int rc;
554 555 556 557

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

558
	rc = efx_nic_flush_queues(efx);
559 560 561 562 563
	if (rc)
		EFX_ERR(efx, "failed to flush queues\n");
	else
		EFX_LOG(efx, "successfully flushed all queues\n");

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	efx_for_each_channel(channel, efx) {
		EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_fini_tx_queue(tx_queue);
		efx_fini_eventq(channel);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

	EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);

	channel->used_flags = 0;
}

void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
{
	queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
}

/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
606
void efx_link_status_changed(struct efx_nic *efx)
607
{
608 609
	struct efx_link_state *link_state = &efx->link_state;

610 611 612 613 614 615 616
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

B
Ben Hutchings 已提交
617 618 619 620 621
	if (efx->port_inhibited) {
		netif_carrier_off(efx->net_dev);
		return;
	}

622
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
623 624
		efx->n_link_state_changes++;

625
		if (link_state->up)
626 627 628 629 630 631
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
632
	if (link_state->up) {
B
Ben Hutchings 已提交
633
		EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
634
			 link_state->speed, link_state->fd ? "full" : "half",
635 636 637 638 639 640 641 642
			 efx->net_dev->mtu,
			 (efx->promiscuous ? " [PROMISC]" : ""));
	} else {
		EFX_INFO(efx, "link down\n");
	}

}

B
Ben Hutchings 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

671 672
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
673 674 675 676 677 678 679 680
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
681
{
B
Ben Hutchings 已提交
682 683
	enum efx_phy_mode phy_mode;
	int rc;
684

B
Ben Hutchings 已提交
685
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
686

687 688 689 690 691 692
	/* Serialise the promiscuous flag with efx_set_multicast_list. */
	if (efx_dev_registered(efx)) {
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
	}

B
Ben Hutchings 已提交
693 694
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
695 696 697 698 699
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
700
	rc = efx->type->reconfigure_port(efx);
701

B
Ben Hutchings 已提交
702 703
	if (rc)
		efx->phy_mode = phy_mode;
704

B
Ben Hutchings 已提交
705
	return rc;
706 707 708 709
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
710
int efx_reconfigure_port(struct efx_nic *efx)
711
{
B
Ben Hutchings 已提交
712 713
	int rc;

714 715 716
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
717
	rc = __efx_reconfigure_port(efx);
718
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
719 720

	return rc;
721 722
}

723 724 725
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
726 727 728 729 730
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
731
	if (efx->port_enabled) {
732
		efx->type->push_multicast_hash(efx);
733 734
		efx->mac_op->reconfigure(efx);
	}
735 736 737
	mutex_unlock(&efx->mac_lock);
}

738 739 740 741 742 743
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "create port\n");

744 745
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
746 747 748
	if (rc)
		goto err;

749 750 751
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

752 753 754 755
	/* Sanity check MAC address */
	if (is_valid_ether_addr(efx->mac_address)) {
		memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
	} else {
J
Johannes Berg 已提交
756 757
		EFX_ERR(efx, "invalid MAC address %pM\n",
			efx->mac_address);
758 759 760 761 762
		if (!allow_bad_hwaddr) {
			rc = -EINVAL;
			goto err;
		}
		random_ether_addr(efx->net_dev->dev_addr);
J
Johannes Berg 已提交
763 764
		EFX_INFO(efx, "using locally-generated MAC %pM\n",
			 efx->net_dev->dev_addr);
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	}

	return 0;

 err:
	efx_remove_port(efx);
	return rc;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "init port\n");

780 781
	mutex_lock(&efx->mac_lock);

782
	rc = efx->phy_op->init(efx);
783
	if (rc)
784
		goto fail1;
785

786
	efx->port_initialized = true;
787

B
Ben Hutchings 已提交
788 789 790 791 792 793 794 795 796
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
	efx->mac_op->reconfigure(efx);

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

797
	mutex_unlock(&efx->mac_lock);
798
	return 0;
799

800
fail2:
801
	efx->phy_op->fini(efx);
802 803
fail1:
	mutex_unlock(&efx->mac_lock);
804
	return rc;
805 806 807 808 809 810 811 812
}

static void efx_start_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "start port\n");
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
813
	efx->port_enabled = true;
814 815 816

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
817
	efx->type->push_multicast_hash(efx);
818 819
	efx->mac_op->reconfigure(efx);

820 821 822
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
823
/* Prevent efx_mac_work() and efx_monitor() from working */
824 825 826 827 828
static void efx_stop_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "stop port\n");

	mutex_lock(&efx->mac_lock);
829
	efx->port_enabled = false;
830 831 832
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
833
	if (efx_dev_registered(efx)) {
834 835
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
836 837 838 839 840 841 842 843 844 845
	}
}

static void efx_fini_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "shut down port\n");

	if (!efx->port_initialized)
		return;

846
	efx->phy_op->fini(efx);
847
	efx->port_initialized = false;
848

849
	efx->link_state.up = false;
850 851 852 853 854 855 856
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "destroying port\n");

857
	efx->type->remove_port(efx);
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

	EFX_LOG(efx, "initialising I/O\n");

	rc = pci_enable_device(pci_dev);
	if (rc) {
		EFX_ERR(efx, "failed to enable PCI device\n");
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
		if (pci_dma_supported(pci_dev, dma_mask) &&
		    ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
			break;
		dma_mask >>= 1;
	}
	if (rc) {
		EFX_ERR(efx, "could not find a suitable DMA mask\n");
		goto fail2;
	}
	EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
	if (rc) {
		/* pci_set_consistent_dma_mask() is not *allowed* to
		 * fail with a mask that pci_set_dma_mask() accepted,
		 * but just in case...
		 */
		EFX_ERR(efx, "failed to set consistent DMA mask\n");
		goto fail2;
	}

909 910
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
911 912 913 914 915 916 917 918
	if (rc) {
		EFX_ERR(efx, "request for memory BAR failed\n");
		rc = -EIO;
		goto fail3;
	}
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
	if (!efx->membase) {
919
		EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
920
			(unsigned long long)efx->membase_phys,
921 922 923 924
			efx->type->mem_map_size);
		rc = -ENOMEM;
		goto fail4;
	}
925 926
	EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
		(unsigned long long)efx->membase_phys,
927
		efx->type->mem_map_size, efx->membase);
928 929 930 931

	return 0;

 fail4:
932
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
933
 fail3:
934
	efx->membase_phys = 0;
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
	EFX_LOG(efx, "shutting down I/O\n");

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
951
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
952
		efx->membase_phys = 0;
953 954 955 956 957
	}

	pci_disable_device(efx->pci_dev);
}

958 959 960 961 962
/* Get number of RX queues wanted.  Return number of online CPU
 * packages in the expectation that an IRQ balancer will spread
 * interrupts across them. */
static int efx_wanted_rx_queues(void)
{
R
Rusty Russell 已提交
963
	cpumask_var_t core_mask;
964 965 966
	int count;
	int cpu;

967
	if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
R
Rusty Russell 已提交
968
		printk(KERN_WARNING
969
		       "sfc: RSS disabled due to allocation failure\n");
R
Rusty Russell 已提交
970 971 972
		return 1;
	}

973 974
	count = 0;
	for_each_online_cpu(cpu) {
R
Rusty Russell 已提交
975
		if (!cpumask_test_cpu(cpu, core_mask)) {
976
			++count;
R
Rusty Russell 已提交
977
			cpumask_or(core_mask, core_mask,
978
				   topology_core_cpumask(cpu));
979 980 981
		}
	}

R
Rusty Russell 已提交
982
	free_cpumask_var(core_mask);
983 984 985 986 987 988
	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
989 990
static void efx_probe_interrupts(struct efx_nic *efx)
{
991 992
	int max_channels =
		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
993 994 995
	int rc, i;

	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
996 997
		struct msix_entry xentries[EFX_MAX_CHANNELS];
		int wanted_ints;
998
		int rx_queues;
999

1000 1001 1002 1003
		/* We want one RX queue and interrupt per CPU package
		 * (or as specified by the rss_cpus module parameter).
		 * We will need one channel per interrupt.
		 */
1004 1005 1006
		rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
		wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
		wanted_ints = min(wanted_ints, max_channels);
1007

1008
		for (i = 0; i < wanted_ints; i++)
1009
			xentries[i].entry = i;
1010
		rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
1011
		if (rc > 0) {
1012 1013 1014 1015 1016
			EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
				" available (%d < %d).\n", rc, wanted_ints);
			EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
			EFX_BUG_ON_PARANOID(rc >= wanted_ints);
			wanted_ints = rc;
1017
			rc = pci_enable_msix(efx->pci_dev, xentries,
1018
					     wanted_ints);
1019 1020 1021
		}

		if (rc == 0) {
1022 1023 1024
			efx->n_rx_queues = min(rx_queues, wanted_ints);
			efx->n_channels = wanted_ints;
			for (i = 0; i < wanted_ints; i++)
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
				efx->channel[i].irq = xentries[i].vector;
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			EFX_ERR(efx, "could not enable MSI-X\n");
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1035
		efx->n_rx_queues = 1;
1036
		efx->n_channels = 1;
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
			efx->channel[0].irq = efx->pci_dev->irq;
		} else {
			EFX_ERR(efx, "could not enable MSI\n");
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1048
		efx->n_rx_queues = 1;
1049
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1050 1051 1052 1053 1054 1055 1056 1057 1058
		efx->legacy_irq = efx->pci_dev->irq;
	}
}

static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1059
	efx_for_each_channel(channel, efx)
1060 1061 1062 1063 1064 1065 1066 1067
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1068
static void efx_set_channels(struct efx_nic *efx)
1069 1070 1071 1072
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

1073
	efx_for_each_tx_queue(tx_queue, efx) {
1074 1075
		if (separate_tx_channels)
			tx_queue->channel = &efx->channel[efx->n_channels-1];
1076 1077 1078 1079
		else
			tx_queue->channel = &efx->channel[0];
		tx_queue->channel->used_flags |= EFX_USED_BY_TX;
	}
1080

1081 1082 1083
	efx_for_each_rx_queue(rx_queue, efx) {
		rx_queue->channel = &efx->channel[rx_queue->queue];
		rx_queue->channel->used_flags |= EFX_USED_BY_RX;
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	}
}

static int efx_probe_nic(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "creating NIC\n");

	/* Carry out hardware-type specific initialisation */
1094
	rc = efx->type->probe(efx);
1095 1096 1097 1098 1099 1100 1101
	if (rc)
		return rc;

	/* Determine the number of channels and RX queues by trying to hook
	 * in MSI-X interrupts. */
	efx_probe_interrupts(efx);

1102
	efx_set_channels(efx);
1103 1104

	/* Initialise the interrupt moderation settings */
1105
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1106 1107 1108 1109 1110 1111 1112 1113 1114

	return 0;
}

static void efx_remove_nic(struct efx_nic *efx)
{
	EFX_LOG(efx, "destroying NIC\n");

	efx_remove_interrupts(efx);
1115
	efx->type->remove(efx);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Create NIC */
	rc = efx_probe_nic(efx);
	if (rc) {
		EFX_ERR(efx, "failed to create NIC\n");
		goto fail1;
	}

	/* Create port */
	rc = efx_probe_port(efx);
	if (rc) {
		EFX_ERR(efx, "failed to create port\n");
		goto fail2;
	}

	/* Create channels */
	efx_for_each_channel(channel, efx) {
		rc = efx_probe_channel(channel);
		if (rc) {
			EFX_ERR(efx, "failed to create channel %d\n",
				channel->channel);
			goto fail3;
		}
	}
1152
	efx_set_channel_names(efx);
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	return 0;

 fail3:
	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

/* Called after previous invocation(s) of efx_stop_all, restarts the
 * port, kernel transmit queue, NAPI processing and hardware interrupts,
 * and ensures that the port is scheduled to be reconfigured.
 * This function is safe to call multiple times when the NIC is in any
 * state. */
static void efx_start_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
	if (efx->port_enabled)
		return;
	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
		return;
1183
	if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1184 1185 1186 1187 1188
		return;

	/* Mark the port as enabled so port reconfigurations can start, then
	 * restart the transmit interface early so the watchdog timer stops */
	efx_start_port(efx);
1189 1190
	if (efx_dev_registered(efx))
		efx_wake_queue(efx);
1191 1192 1193 1194

	efx_for_each_channel(channel, efx)
		efx_start_channel(channel);

1195
	efx_nic_enable_interrupts(efx);
1196

1197 1198 1199 1200 1201 1202 1203 1204 1205
	/* Switch to event based MCDI completions after enabling interrupts.
	 * If a reset has been scheduled, then we need to stay in polled mode.
	 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
	 * reset_pending [modified from an atomic context], we instead guarantee
	 * that efx_mcdi_mode_poll() isn't reverted erroneously */
	efx_mcdi_mode_event(efx);
	if (efx->reset_pending != RESET_TYPE_NONE)
		efx_mcdi_mode_poll(efx);

1206 1207 1208 1209
	/* Start the hardware monitor if there is one. Otherwise (we're link
	 * event driven), we have to poll the PHY because after an event queue
	 * flush, we could have a missed a link state change */
	if (efx->type->monitor != NULL) {
1210 1211
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1212 1213 1214 1215 1216 1217
	} else {
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1218

1219
	efx->type->start_stats(efx);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
	struct efx_rx_queue *rx_queue;

	/* Make sure the hardware monitor is stopped */
	cancel_delayed_work_sync(&efx->monitor_work);

	/* Ensure that all RX slow refills are complete. */
1233
	efx_for_each_rx_queue(rx_queue, efx)
1234 1235 1236
		cancel_delayed_work_sync(&rx_queue->work);

	/* Stop scheduled port reconfigurations */
1237
	cancel_work_sync(&efx->mac_work);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
}

/* Quiesce hardware and software without bringing the link down.
 * Safe to call multiple times, when the nic and interface is in any
 * state. The caller is guaranteed to subsequently be in a position
 * to modify any hardware and software state they see fit without
 * taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1255
	efx->type->stop_stats(efx);
1256

1257 1258 1259
	/* Switch to MCDI polling on Siena before disabling interrupts */
	efx_mcdi_mode_poll(efx);

1260
	/* Disable interrupts and wait for ISR to complete */
1261
	efx_nic_disable_interrupts(efx);
1262 1263
	if (efx->legacy_irq)
		synchronize_irq(efx->legacy_irq);
1264
	efx_for_each_channel(channel, efx) {
1265 1266
		if (channel->irq)
			synchronize_irq(channel->irq);
1267
	}
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277

	/* Stop all NAPI processing and synchronous rx refills */
	efx_for_each_channel(channel, efx)
		efx_stop_channel(channel);

	/* Stop all asynchronous port reconfigurations. Since all
	 * event processing has already been stopped, there is no
	 * window to loose phy events */
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1278
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1279 1280 1281 1282
	efx_flush_all(efx);

	/* Stop the kernel transmit interface late, so the watchdog
	 * timer isn't ticking over the flush */
1283
	if (efx_dev_registered(efx)) {
1284
		efx_stop_queue(efx);
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
		netif_tx_lock_bh(efx->net_dev);
		netif_tx_unlock_bh(efx->net_dev);
	}
}

static void efx_remove_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1306 1307 1308 1309 1310 1311 1312 1313 1314
static unsigned irq_mod_ticks(int usecs, int resolution)
{
	if (usecs <= 0)
		return 0; /* cannot receive interrupts ahead of time :-) */
	if (usecs < resolution)
		return 1; /* never round down to 0 */
	return usecs / resolution;
}

1315
/* Set interrupt moderation parameters */
1316 1317
void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
			     bool rx_adaptive)
1318 1319 1320
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1321 1322
	unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
	unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
1323 1324 1325 1326

	EFX_ASSERT_RESET_SERIALISED(efx);

	efx_for_each_tx_queue(tx_queue, efx)
1327
		tx_queue->channel->irq_moderation = tx_ticks;
1328

1329
	efx->irq_rx_adaptive = rx_adaptive;
1330
	efx->irq_rx_moderation = rx_ticks;
1331
	efx_for_each_rx_queue(rx_queue, efx)
1332
		rx_queue->channel->irq_moderation = rx_ticks;
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
}

/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

/* Run periodically off the general workqueue. Serialised against
 * efx_reconfigure_port via the mac_lock */
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

	EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
		  raw_smp_processor_id());
1350
	BUG_ON(efx->type->monitor == NULL);
1351 1352 1353 1354

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
	 * most of the work of check_hw() anyway. */
1355 1356 1357 1358
	if (!mutex_trylock(&efx->mac_lock))
		goto out_requeue;
	if (!efx->port_enabled)
		goto out_unlock;
1359
	efx->type->monitor(efx);
1360

1361
out_unlock:
1362
	mutex_unlock(&efx->mac_lock);
1363
out_requeue:
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1379
	struct efx_nic *efx = netdev_priv(net_dev);
1380
	struct mii_ioctl_data *data = if_mii(ifr);
1381 1382 1383

	EFX_ASSERT_RESET_SERIALISED(efx);

1384 1385 1386 1387 1388 1389
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

static int efx_init_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
		channel->napi_dev = efx->net_dev;
1404 1405
		netif_napi_add(channel->napi_dev, &channel->napi_str,
			       efx_poll, napi_weight);
1406 1407 1408 1409 1410 1411 1412 1413 1414
	}
	return 0;
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
1415 1416
		if (channel->napi_dev)
			netif_napi_del(&channel->napi_str);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
		channel->napi_dev = NULL;
	}
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1435
	struct efx_nic *efx = netdev_priv(net_dev);
1436 1437
	struct efx_channel *channel;

1438
	efx_for_each_channel(channel, efx)
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1453
	struct efx_nic *efx = netdev_priv(net_dev);
1454 1455 1456 1457 1458
	EFX_ASSERT_RESET_SERIALISED(efx);

	EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
		raw_smp_processor_id());

1459 1460
	if (efx->state == STATE_DISABLED)
		return -EIO;
1461 1462
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1463 1464
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1465

1466 1467 1468 1469
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	efx_start_all(efx);
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1480
	struct efx_nic *efx = netdev_priv(net_dev);
1481 1482 1483 1484

	EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
		raw_smp_processor_id());

1485 1486 1487 1488 1489 1490
	if (efx->state != STATE_DISABLED) {
		/* Stop the device and flush all the channels */
		efx_stop_all(efx);
		efx_fini_channels(efx);
		efx_init_channels(efx);
	}
1491 1492 1493 1494

	return 0;
}

1495
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1496 1497
static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
{
1498
	struct efx_nic *efx = netdev_priv(net_dev);
1499 1500 1501
	struct efx_mac_stats *mac_stats = &efx->mac_stats;
	struct net_device_stats *stats = &net_dev->stats;

1502
	spin_lock_bh(&efx->stats_lock);
1503
	efx->type->update_stats(efx);
1504
	spin_unlock_bh(&efx->stats_lock);
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_over_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    stats->rx_fifo_errors +
			    stats->rx_missed_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1537
	struct efx_nic *efx = netdev_priv(net_dev);
1538

1539 1540 1541
	EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
		" resetting channels\n",
		atomic_read(&efx->netif_stop_count), efx->port_enabled);
1542

1543
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1544 1545 1546 1547 1548 1549
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1550
	struct efx_nic *efx = netdev_priv(net_dev);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	int rc = 0;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

	efx_stop_all(efx);

	EFX_LOG(efx, "changing MTU to %d\n", new_mtu);

	efx_fini_channels(efx);
B
Ben Hutchings 已提交
1563 1564 1565 1566

	mutex_lock(&efx->mac_lock);
	/* Reconfigure the MAC before enabling the dma queues so that
	 * the RX buffers don't overflow */
1567
	net_dev->mtu = new_mtu;
B
Ben Hutchings 已提交
1568 1569 1570
	efx->mac_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

1571
	efx_init_channels(efx);
1572 1573 1574 1575 1576 1577 1578

	efx_start_all(efx);
	return rc;
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1579
	struct efx_nic *efx = netdev_priv(net_dev);
1580 1581 1582 1583 1584 1585
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (!is_valid_ether_addr(new_addr)) {
J
Johannes Berg 已提交
1586 1587
		EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
			new_addr);
1588 1589 1590 1591 1592 1593
		return -EINVAL;
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
1594 1595 1596
	mutex_lock(&efx->mac_lock);
	efx->mac_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);
1597 1598 1599 1600

	return 0;
}

1601
/* Context: netif_addr_lock held, BHs disabled. */
1602 1603
static void efx_set_multicast_list(struct net_device *net_dev)
{
1604
	struct efx_nic *efx = netdev_priv(net_dev);
1605 1606 1607 1608 1609 1610
	struct dev_mc_list *mc_list = net_dev->mc_list;
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;
	int i;

1611
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1612 1613

	/* Build multicast hash table */
1614
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
		for (i = 0; i < net_dev->mc_count; i++) {
			crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
			set_bit_le(bit, mc_hash->byte);
			mc_list = mc_list->next;
		}

1625 1626 1627 1628 1629 1630
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
		set_bit_le(0xff, mc_hash->byte);
	}
1631

1632 1633 1634
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
1635 1636
}

S
Stephen Hemminger 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
	.ndo_get_stats		= efx_net_stats,
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
	.ndo_set_multicast_list = efx_set_multicast_list,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
};

1653 1654 1655 1656 1657 1658 1659
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

1660 1661 1662
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
1663
	struct net_device *net_dev = ptr;
1664

1665 1666 1667
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
1668 1669 1670 1671 1672 1673 1674 1675

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
1676 1677 1678 1679 1680 1681 1682 1683
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

1684 1685 1686 1687 1688 1689 1690
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
1691
	net_dev->netdev_ops = &efx_netdev_ops;
1692 1693 1694 1695
	SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);

	/* Clear MAC statistics */
1696
	efx->mac_op->update_stats(efx);
1697 1698
	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));

1699
	rtnl_lock();
1700 1701 1702 1703

	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
1704
	efx_update_name(efx);
1705 1706 1707 1708 1709 1710 1711 1712

	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(efx->net_dev);

1713
	rtnl_unlock();
1714

B
Ben Hutchings 已提交
1715 1716 1717 1718 1719 1720
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
		EFX_ERR(efx, "failed to init net dev attributes\n");
		goto fail_registered;
	}

1721
	return 0;
B
Ben Hutchings 已提交
1722

1723 1724 1725 1726 1727
fail_locked:
	rtnl_unlock();
	EFX_ERR(efx, "could not register net dev\n");
	return rc;

B
Ben Hutchings 已提交
1728 1729 1730
fail_registered:
	unregister_netdev(net_dev);
	return rc;
1731 1732 1733 1734 1735 1736 1737 1738 1739
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

1740
	BUG_ON(netdev_priv(efx->net_dev) != efx);
1741 1742 1743 1744 1745 1746 1747

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
	efx_for_each_tx_queue(tx_queue, efx)
		efx_release_tx_buffers(tx_queue);

1748
	if (efx_dev_registered(efx)) {
1749
		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
B
Ben Hutchings 已提交
1750
		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
		unregister_netdev(efx->net_dev);
	}
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
1761 1762
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
1763
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
1764 1765 1766
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
1767 1768
	efx_stop_all(efx);
	mutex_lock(&efx->mac_lock);
1769
	mutex_lock(&efx->spi_lock);
B
Ben Hutchings 已提交
1770

1771
	efx_fini_channels(efx);
1772 1773
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
1774
	efx->type->fini(efx);
1775 1776
}

B
Ben Hutchings 已提交
1777 1778 1779 1780 1781
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
1782
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
1783 1784 1785
{
	int rc;

B
Ben Hutchings 已提交
1786
	EFX_ASSERT_RESET_SERIALISED(efx);
1787

1788
	rc = efx->type->init(efx);
1789
	if (rc) {
B
Ben Hutchings 已提交
1790
		EFX_ERR(efx, "failed to initialise NIC\n");
1791
		goto fail;
1792 1793
	}

1794 1795 1796
	if (!ok)
		goto fail;

1797
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1798 1799 1800 1801 1802
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
			EFX_ERR(efx, "could not restore PHY settings\n");
1803 1804
	}

1805
	efx->mac_op->reconfigure(efx);
1806

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	efx_init_channels(efx);

	mutex_unlock(&efx->spi_lock);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
1818

1819
	mutex_unlock(&efx->spi_lock);
B
Ben Hutchings 已提交
1820 1821
	mutex_unlock(&efx->mac_lock);

1822 1823 1824
	return rc;
}

1825 1826
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
1827
 *
1828
 * Caller must hold the rtnl_lock.
1829
 */
1830
int efx_reset(struct efx_nic *efx, enum reset_type method)
1831
{
1832 1833
	int rc, rc2;
	bool disabled;
1834

1835
	EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
1836

B
Ben Hutchings 已提交
1837
	efx_reset_down(efx, method);
1838

1839
	rc = efx->type->reset(efx, method);
1840 1841
	if (rc) {
		EFX_ERR(efx, "failed to reset hardware\n");
1842
		goto out;
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	}

	/* Allow resets to be rescheduled. */
	efx->reset_pending = RESET_TYPE_NONE;

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

1854
out:
1855
	/* Leave device stopped if necessary */
1856 1857 1858 1859 1860 1861
	disabled = rc || method == RESET_TYPE_DISABLE;
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
1862 1863
	}

1864
	if (disabled) {
1865 1866 1867 1868 1869
		EFX_ERR(efx, "has been disabled\n");
		efx->state = STATE_DISABLED;
	} else {
		EFX_LOG(efx, "reset complete\n");
	}
1870 1871 1872 1873 1874 1875 1876 1877
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
1878
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
1879

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	/* If we're not RUNNING then don't reset. Leave the reset_pending
	 * flag set so that efx_pci_probe_main will be retried */
	if (efx->state != STATE_RUNNING) {
		EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
		return;
	}

	rtnl_lock();
	if (efx_reset(efx, efx->reset_pending))
		dev_close(efx->net_dev);
	rtnl_unlock();
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	if (efx->reset_pending != RESET_TYPE_NONE) {
		EFX_INFO(efx, "quenching already scheduled reset\n");
		return;
	}

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
		break;
	case RESET_TYPE_RX_RECOVERY:
	case RESET_TYPE_RX_DESC_FETCH:
	case RESET_TYPE_TX_DESC_FETCH:
	case RESET_TYPE_TX_SKIP:
		method = RESET_TYPE_INVISIBLE;
		break;
1915
	case RESET_TYPE_MC_FAILURE:
1916 1917 1918 1919 1920 1921
	default:
		method = RESET_TYPE_ALL;
		break;
	}

	if (method != type)
1922 1923
		EFX_LOG(efx, "scheduling %s reset for %s\n",
			RESET_TYPE(method), RESET_TYPE(type));
1924
	else
1925
		EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
1926 1927 1928

	efx->reset_pending = method;

1929 1930 1931 1932
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

1933
	queue_work(reset_workqueue, &efx->reset_work);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
static struct pci_device_id efx_pci_table[] __devinitdata = {
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1945
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
1946
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1947
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
1948 1949 1950 1951
	{PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
	 .driver_data = (unsigned long) &siena_a0_nic_type},
	{PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
	 .driver_data = (unsigned long) &siena_a0_nic_type},
1952 1953 1954 1955 1956
	{0}			/* end of list */
};

/**************************************************************************
 *
1957
 * Dummy PHY/MAC operations
1958
 *
1959
 * Can be used for some unimplemented operations
1960 1961 1962 1963 1964 1965 1966 1967 1968
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
1969 1970 1971
void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
{
}
S
Steve Hodgson 已提交
1972 1973 1974 1975
bool efx_port_dummy_op_poll(struct efx_nic *efx)
{
	return false;
}
1976 1977 1978

static struct efx_phy_operations efx_dummy_phy_operations = {
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
1979
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
1980
	.poll		 = efx_port_dummy_op_poll,
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1999
	int i;
2000 2001 2002 2003

	/* Initialise common structures */
	memset(efx, 0, sizeof(*efx));
	spin_lock_init(&efx->biu_lock);
2004
	mutex_init(&efx->mdio_lock);
2005
	mutex_init(&efx->spi_lock);
2006 2007 2008
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2009 2010 2011 2012 2013 2014 2015 2016
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
	efx->pci_dev = pci_dev;
	efx->state = STATE_INIT;
	efx->reset_pending = RESET_TYPE_NONE;
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
2017
	efx->rx_checksum_enabled = true;
2018 2019 2020
	spin_lock_init(&efx->netif_stop_lock);
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
2021
	efx->mac_op = type->default_mac_ops;
2022
	efx->phy_op = &efx_dummy_phy_operations;
2023
	efx->mdio.dev = net_dev;
2024
	INIT_WORK(&efx->mac_work, efx_mac_work);
2025 2026 2027 2028 2029 2030
	atomic_set(&efx->netif_stop_count, 1);

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
		channel = &efx->channel[i];
		channel->efx = efx;
		channel->channel = i;
2031
		channel->work_pending = false;
2032
	}
2033
	for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
2034 2035 2036 2037 2038
		tx_queue = &efx->tx_queue[i];
		tx_queue->efx = efx;
		tx_queue->queue = i;
		tx_queue->buffer = NULL;
		tx_queue->channel = &efx->channel[0]; /* for safety */
B
Ben Hutchings 已提交
2039
		tx_queue->tso_headers_free = NULL;
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	}
	for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
		rx_queue = &efx->rx_queue[i];
		rx_queue->efx = efx;
		rx_queue->queue = i;
		rx_queue->channel = &efx->channel[0]; /* for safety */
		rx_queue->buffer = NULL;
		spin_lock_init(&rx_queue->add_lock);
		INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
	}

	efx->type = type;

	/* As close as we can get to guaranteeing that we don't overflow */
2054 2055
	BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);

2056 2057 2058 2059 2060 2061
	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2062 2063 2064 2065
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2066 2067
	if (!efx->workqueue)
		return -ENOMEM;
2068

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	return 0;
}

static void efx_fini_struct(struct efx_nic *efx)
{
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2091
	efx_nic_fini_interrupt(efx);
2092 2093
	efx_fini_channels(efx);
	efx_fini_port(efx);
2094
	efx->type->fini(efx);
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	efx->state = STATE_FINI;
	dev_close(efx->net_dev);

	/* Allow any queued efx_resets() to complete */
	rtnl_unlock();

	efx_unregister_netdev(efx);

2120 2121
	efx_mtd_remove(efx);

2122 2123 2124 2125
	/* Wait for any scheduled resets to complete. No more will be
	 * scheduled from this point because efx_stop_all() has been
	 * called, we are no longer registered with driverlink, and
	 * the net_device's have been removed. */
2126
	cancel_work_sync(&efx->reset_work);
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153

	efx_pci_remove_main(efx);

	efx_fini_io(efx);
	EFX_LOG(efx, "shutdown successful\n");

	pci_set_drvdata(pci_dev, NULL);
	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
};

/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

	rc = efx_init_napi(efx);
	if (rc)
		goto fail2;

2154
	rc = efx->type->init(efx);
2155 2156
	if (rc) {
		EFX_ERR(efx, "failed to initialise NIC\n");
2157
		goto fail3;
2158 2159 2160 2161 2162
	}

	rc = efx_init_port(efx);
	if (rc) {
		EFX_ERR(efx, "failed to initialise port\n");
2163
		goto fail4;
2164 2165
	}

2166
	efx_init_channels(efx);
2167

2168
	rc = efx_nic_init_interrupt(efx);
2169
	if (rc)
2170
		goto fail5;
2171 2172 2173

	return 0;

2174
 fail5:
2175
	efx_fini_channels(efx);
2176 2177
	efx_fini_port(efx);
 fail4:
2178
	efx->type->fini(efx);
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
 fail3:
	efx_fini_napi(efx);
 fail2:
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
 * theoretically).  It sets up PCI mappings, tests and resets the NIC,
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
				   const struct pci_device_id *entry)
{
	struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
	struct net_device *net_dev;
	struct efx_nic *efx;
	int i, rc;

	/* Allocate and initialise a struct net_device and struct efx_nic */
	net_dev = alloc_etherdev(sizeof(*efx));
	if (!net_dev)
		return -ENOMEM;
2208
	net_dev->features |= (type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2209 2210
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
			      NETIF_F_GRO);
B
Ben Hutchings 已提交
2211 2212
	if (type->offload_features & NETIF_F_V6_CSUM)
		net_dev->features |= NETIF_F_TSO6;
2213 2214
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2215
				   NETIF_F_HIGHDMA | NETIF_F_TSO);
2216
	efx = netdev_priv(net_dev);
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
	pci_set_drvdata(pci_dev, efx);
	rc = efx_init_struct(efx, type, pci_dev, net_dev);
	if (rc)
		goto fail1;

	EFX_INFO(efx, "Solarflare Communications NIC detected\n");

	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

	/* No serialisation is required with the reset path because
	 * we're in STATE_INIT. */
	for (i = 0; i < 5; i++) {
		rc = efx_pci_probe_main(efx);

		/* Serialise against efx_reset(). No more resets will be
		 * scheduled since efx_stop_all() has been called, and we
		 * have not and never have been registered with either
		 * the rtnetlink or driverlink layers. */
2238
		cancel_work_sync(&efx->reset_work);
2239

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
		if (rc == 0) {
			if (efx->reset_pending != RESET_TYPE_NONE) {
				/* If there was a scheduled reset during
				 * probe, the NIC is probably hosed anyway */
				efx_pci_remove_main(efx);
				rc = -EIO;
			} else {
				break;
			}
		}

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
		/* Retry if a recoverably reset event has been scheduled */
		if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
		    (efx->reset_pending != RESET_TYPE_ALL))
			goto fail3;

		efx->reset_pending = RESET_TYPE_NONE;
	}

	if (rc) {
		EFX_ERR(efx, "Could not reset NIC\n");
		goto fail4;
	}

2264 2265
	/* Switch to the running state before we expose the device to the OS,
	 * so that dev_open()|efx_start_all() will actually start the device */
2266
	efx->state = STATE_RUNNING;
2267

2268 2269 2270 2271 2272
	rc = efx_register_netdev(efx);
	if (rc)
		goto fail5;

	EFX_LOG(efx, "initialisation successful\n");
2273 2274 2275 2276

	rtnl_lock();
	efx_mtd_probe(efx); /* allowed to fail */
	rtnl_unlock();
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
	return 0;

 fail5:
	efx_pci_remove_main(efx);
 fail4:
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
	EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
	free_netdev(net_dev);
	return rc;
}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_FINI;

	netif_device_detach(efx->net_dev);

	efx_stop_all(efx);
	efx_fini_channels(efx);

	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_INIT;

	efx_init_channels(efx);

	mutex_lock(&efx->mac_lock);
	efx->phy_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	netif_device_attach(efx->net_dev);

	efx->state = STATE_RUNNING;

	efx->type->resume_wol(efx);

	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

	efx->reset_pending = RESET_TYPE_NONE;

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

static struct dev_pm_ops efx_pm_ops = {
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2387 2388 2389 2390 2391
static struct pci_driver efx_pci_driver = {
	.name		= EFX_DRIVER_NAME,
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2392
	.driver.pm	= &efx_pm_ops,
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

	refill_workqueue = create_workqueue("sfc_refill");
	if (!refill_workqueue) {
		rc = -ENOMEM;
		goto err_refill;
	}
2420 2421 2422 2423 2424
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2425 2426 2427 2428 2429 2430 2431 2432

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2433 2434
	destroy_workqueue(reset_workqueue);
 err_reset:
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
	destroy_workqueue(refill_workqueue);
 err_refill:
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2447
	destroy_workqueue(reset_workqueue);
2448 2449 2450 2451 2452 2453 2454 2455
	destroy_workqueue(refill_workqueue);
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

2456 2457
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
2458 2459 2460
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);