efx.c 55.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2005-2008 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#include "net_driver.h"
#include "gmii.h"
#include "ethtool.h"
#include "tx.h"
#include "rx.h"
#include "efx.h"
#include "mdio_10g.h"
#include "falcon.h"
#include "mac.h"

#define EFX_MAX_MTU (9 * 1024)

/* RX slow fill workqueue. If memory allocation fails in the fast path,
 * a work item is pushed onto this work queue to retry the allocation later,
 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
 * workqueue, there is nothing to be gained in making it per NIC
 */
static struct workqueue_struct *refill_workqueue;

/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
 *
 * This sets the default for new devices.  It can be controlled later
 * using ethtool.
 */
54
static int lro = true;
55 56 57 58 59 60 61 62 63 64 65 66
module_param(lro, int, 0644);
MODULE_PARM_DESC(lro, "Large receive offload acceleration");

/*
 * Use separate channels for TX and RX events
 *
 * Set this to 1 to use separate channels for TX and RX. It allows us to
 * apply a higher level of interrupt moderation to TX events.
 *
 * This is forced to 0 for MSI interrupt mode as the interrupt vector
 * is not written
 */
67
static unsigned int separate_tx_and_rx_channels = true;
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
 * monitor, which checks for known hardware bugs and resets the
 * hardware and driver as necessary.
 */
unsigned int efx_monitor_interval = 1 * HZ;

/* This controls whether or not the hardware monitor will trigger a
 * reset when it detects an error condition.
 */
83
static unsigned int monitor_reset = true;
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

/* This controls whether or not the driver will initialise devices
 * with invalid MAC addresses stored in the EEPROM or flash.  If true,
 * such devices will be initialised with a random locally-generated
 * MAC address.  This allows for loading the sfc_mtd driver to
 * reprogram the flash, even if the flash contents (including the MAC
 * address) have previously been erased.
 */
static unsigned int allow_bad_hwaddr;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 * The default (0) means to assign an interrupt to each package (level II cache)
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
static void efx_remove_channel(struct efx_channel *channel);
static void efx_remove_port(struct efx_nic *efx);
static void efx_fini_napi(struct efx_nic *efx);
static void efx_fini_channels(struct efx_nic *efx);

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
143
		if (efx->state == STATE_RUNNING)	\
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
			ASSERT_RTNL();			\
	} while (0)

/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
160
static int efx_process_channel(struct efx_channel *channel, int rx_quota)
161
{
B
Ben Hutchings 已提交
162 163
	struct efx_nic *efx = channel->efx;
	int rx_packets;
164

B
Ben Hutchings 已提交
165
	if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
166
		     !channel->enabled))
B
Ben Hutchings 已提交
167
		return 0;
168

B
Ben Hutchings 已提交
169 170 171
	rx_packets = falcon_process_eventq(channel, rx_quota);
	if (rx_packets == 0)
		return 0;
172 173 174 175 176 177 178 179 180 181 182

	/* Deliver last RX packet. */
	if (channel->rx_pkt) {
		__efx_rx_packet(channel, channel->rx_pkt,
				channel->rx_pkt_csummed);
		channel->rx_pkt = NULL;
	}

	efx_flush_lro(channel);
	efx_rx_strategy(channel);

B
Ben Hutchings 已提交
183
	efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
184

B
Ben Hutchings 已提交
185
	return rx_packets;
186 187 188 189 190 191 192 193 194 195
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
196 197 198
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
199
	channel->work_pending = false;
200 201
	smp_wmb();

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
	falcon_eventq_read_ack(channel);
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
	struct net_device *napi_dev = channel->napi_dev;
	int rx_packets;

	EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
		  channel->channel, raw_smp_processor_id());

B
Ben Hutchings 已提交
220
	rx_packets = efx_process_channel(channel, budget);
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

	if (rx_packets < budget) {
		/* There is no race here; although napi_disable() will
		 * only wait for netif_rx_complete(), this isn't a problem
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
		netif_rx_complete(napi_dev, napi);
		efx_channel_processed(channel);
	}

	return rx_packets;
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
 * Since we are touching interrupts the caller should hold the suspend lock
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	BUG_ON(!channel->used_flags);
	BUG_ON(!channel->enabled);

	/* Disable interrupts and wait for ISRs to complete */
	falcon_disable_interrupts(efx);
	if (efx->legacy_irq)
		synchronize_irq(efx->legacy_irq);
254
	if (channel->irq)
255 256 257 258 259 260
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
B
Ben Hutchings 已提交
261
	efx_process_channel(channel, efx->type->evq_size);
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
	falcon_enable_interrupts(efx);
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);

	return falcon_probe_eventq(channel);
}

/* Prepare channel's event queue */
284
static void efx_init_eventq(struct efx_channel *channel)
285 286 287 288 289
{
	EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);

	channel->eventq_read_ptr = 0;

290
	falcon_init_eventq(channel);
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
}

static void efx_fini_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);

	falcon_fini_eventq(channel);
}

static void efx_remove_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);

	falcon_remove_eventq(channel);
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

	EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);

	rc = efx_probe_eventq(channel);
	if (rc)
		goto fail1;

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
			goto fail2;
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
			goto fail3;
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

 fail3:
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
 fail2:
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
 fail1:
	return rc;
}


/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
356
static void efx_init_channels(struct efx_nic *efx)
357 358 359 360 361
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

362 363 364 365 366 367 368 369
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			      efx->type->rx_buffer_padding);
	efx->rx_buffer_order = get_order(efx->rx_buffer_len);
370 371 372 373 374

	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
		EFX_LOG(channel->efx, "init chan %d\n", channel->channel);

375
		efx_init_eventq(channel);
376

377 378
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
379 380 381 382

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

383 384
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_init_rx_queue(rx_queue);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}
}

/* This enables event queue processing and packet transmission.
 *
 * Note that this function is not allowed to fail, since that would
 * introduce too much complexity into the suspend/resume path.
 */
static void efx_start_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

	EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);

	if (!(channel->efx->net_dev->flags & IFF_UP))
		netif_napi_add(channel->napi_dev, &channel->napi_str,
			       efx_poll, napi_weight);

406 407 408
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set. */
409 410
	channel->work_pending = false;
	channel->enabled = true;
411
	smp_wmb();
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

	napi_enable(&channel->napi_str);

	/* Load up RX descriptors */
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_fast_push_rx_descriptors(rx_queue);
}

/* This disables event queue processing and packet transmission.
 * This function does not guarantee that all queue processing
 * (e.g. RX refill) is complete.
 */
static void efx_stop_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

	if (!channel->enabled)
		return;

	EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);

433
	channel->enabled = false;
434 435 436 437 438 439 440 441 442 443 444 445 446 447
	napi_disable(&channel->napi_str);

	/* Ensure that any worker threads have exited or will be no-ops */
	efx_for_each_channel_rx_queue(rx_queue, channel) {
		spin_lock_bh(&rx_queue->add_lock);
		spin_unlock_bh(&rx_queue->add_lock);
	}
}

static void efx_fini_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
448
	int rc;
449 450 451 452

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

453 454 455 456 457 458
	rc = falcon_flush_queues(efx);
	if (rc)
		EFX_ERR(efx, "failed to flush queues\n");
	else
		EFX_LOG(efx, "successfully flushed all queues\n");

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
	efx_for_each_channel(channel, efx) {
		EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_fini_tx_queue(tx_queue);
		efx_fini_eventq(channel);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

	EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);

	channel->used_flags = 0;
}

void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
{
	queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
}

/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
static void efx_link_status_changed(struct efx_nic *efx)
{
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

B
Ben Hutchings 已提交
510 511 512 513 514
	if (efx->port_inhibited) {
		netif_carrier_off(efx->net_dev);
		return;
	}

515
	if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
		efx->n_link_state_changes++;

		if (efx->link_up)
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
	if (efx->link_up) {
		struct mii_if_info *gmii = &efx->mii;
		unsigned adv, lpa;
		/* NONE here means direct XAUI from the controller, with no
		 * MDIO-attached device we can query. */
		if (efx->phy_type != PHY_TYPE_NONE) {
			adv = gmii_advertised(gmii);
			lpa = gmii_lpa(gmii);
		} else {
			lpa = GM_LPA_10000 | LPA_DUPLEX;
			adv = lpa;
		}
		EFX_INFO(efx, "link up at %dMbps %s-duplex "
			 "(adv %04x lpa %04x) (MTU %d)%s\n",
			 (efx->link_options & GM_LPA_10000 ? 10000 :
			  (efx->link_options & GM_LPA_1000 ? 1000 :
			   (efx->link_options & GM_LPA_100 ? 100 :
			    10))),
			 (efx->link_options & GM_LPA_DUPLEX ?
			  "full" : "half"),
			 adv, lpa,
			 efx->net_dev->mtu,
			 (efx->promiscuous ? " [PROMISC]" : ""));
	} else {
		EFX_INFO(efx, "link down\n");
	}

}

/* This call reinitialises the MAC to pick up new PHY settings. The
 * caller must hold the mac_lock */
B
Ben Hutchings 已提交
556
void __efx_reconfigure_port(struct efx_nic *efx)
557 558 559 560 561 562
{
	WARN_ON(!mutex_is_locked(&efx->mac_lock));

	EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
		raw_smp_processor_id());

563 564 565 566 567 568
	/* Serialise the promiscuous flag with efx_set_multicast_list. */
	if (efx_dev_registered(efx)) {
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
	}

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	falcon_reconfigure_xmac(efx);

	/* Inform kernel of loss/gain of carrier */
	efx_link_status_changed(efx);
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
void efx_reconfigure_port(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
	__efx_reconfigure_port(efx);
	mutex_unlock(&efx->mac_lock);
}

/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
static void efx_reconfigure_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   reconfigure_work);

	mutex_lock(&efx->mac_lock);
	if (efx->port_enabled)
		__efx_reconfigure_port(efx);
	mutex_unlock(&efx->mac_lock);
}

static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "create port\n");

	/* Connect up MAC/PHY operations table and read MAC address */
	rc = falcon_probe_port(efx);
	if (rc)
		goto err;

	/* Sanity check MAC address */
	if (is_valid_ether_addr(efx->mac_address)) {
		memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
	} else {
J
Johannes Berg 已提交
615 616
		EFX_ERR(efx, "invalid MAC address %pM\n",
			efx->mac_address);
617 618 619 620 621
		if (!allow_bad_hwaddr) {
			rc = -EINVAL;
			goto err;
		}
		random_ether_addr(efx->net_dev->dev_addr);
J
Johannes Berg 已提交
622 623
		EFX_INFO(efx, "using locally-generated MAC %pM\n",
			 efx->net_dev->dev_addr);
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	}

	return 0;

 err:
	efx_remove_port(efx);
	return rc;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "init port\n");

	/* Initialise the MAC and PHY */
	rc = falcon_init_xmac(efx);
	if (rc)
		return rc;

644
	efx->port_initialized = true;
B
Ben Hutchings 已提交
645
	efx->stats_enabled = true;
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661

	/* Reconfigure port to program MAC registers */
	falcon_reconfigure_xmac(efx);

	return 0;
}

/* Allow efx_reconfigure_port() to be scheduled, and close the window
 * between efx_stop_port and efx_flush_all whereby a previously scheduled
 * efx_reconfigure_port() may have been cancelled */
static void efx_start_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "start port\n");
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
662
	efx->port_enabled = true;
663 664 665 666 667 668 669 670 671 672 673 674 675
	__efx_reconfigure_port(efx);
	mutex_unlock(&efx->mac_lock);
}

/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
 * efx_reconfigure_work can still be scheduled via NAPI processing
 * until efx_flush_all() is called */
static void efx_stop_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "stop port\n");

	mutex_lock(&efx->mac_lock);
676
	efx->port_enabled = false;
677 678 679
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
680
	if (efx_dev_registered(efx)) {
681 682
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
683 684 685 686 687 688 689 690 691 692 693
	}
}

static void efx_fini_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "shut down port\n");

	if (!efx->port_initialized)
		return;

	falcon_fini_xmac(efx);
694
	efx->port_initialized = false;
695

696
	efx->link_up = false;
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "destroying port\n");

	falcon_remove_port(efx);
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

	EFX_LOG(efx, "initialising I/O\n");

	rc = pci_enable_device(pci_dev);
	if (rc) {
		EFX_ERR(efx, "failed to enable PCI device\n");
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
		if (pci_dma_supported(pci_dev, dma_mask) &&
		    ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
			break;
		dma_mask >>= 1;
	}
	if (rc) {
		EFX_ERR(efx, "could not find a suitable DMA mask\n");
		goto fail2;
	}
	EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
	if (rc) {
		/* pci_set_consistent_dma_mask() is not *allowed* to
		 * fail with a mask that pci_set_dma_mask() accepted,
		 * but just in case...
		 */
		EFX_ERR(efx, "failed to set consistent DMA mask\n");
		goto fail2;
	}

	efx->membase_phys = pci_resource_start(efx->pci_dev,
					       efx->type->mem_bar);
	rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
	if (rc) {
		EFX_ERR(efx, "request for memory BAR failed\n");
		rc = -EIO;
		goto fail3;
	}
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
	if (!efx->membase) {
767 768 769
		EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
			efx->type->mem_bar,
			(unsigned long long)efx->membase_phys,
770 771 772 773
			efx->type->mem_map_size);
		rc = -ENOMEM;
		goto fail4;
	}
774 775 776
	EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
		efx->type->mem_bar, (unsigned long long)efx->membase_phys,
		efx->type->mem_map_size, efx->membase);
777 778 779 780

	return 0;

 fail4:
781
	pci_release_region(efx->pci_dev, efx->type->mem_bar);
782
 fail3:
783
	efx->membase_phys = 0;
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
	EFX_LOG(efx, "shutting down I/O\n");

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
		pci_release_region(efx->pci_dev, efx->type->mem_bar);
801
		efx->membase_phys = 0;
802 803 804 805 806
	}

	pci_disable_device(efx->pci_dev);
}

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/* Get number of RX queues wanted.  Return number of online CPU
 * packages in the expectation that an IRQ balancer will spread
 * interrupts across them. */
static int efx_wanted_rx_queues(void)
{
	cpumask_t core_mask;
	int count;
	int cpu;

	cpus_clear(core_mask);
	count = 0;
	for_each_online_cpu(cpu) {
		if (!cpu_isset(cpu, core_mask)) {
			++count;
			cpus_or(core_mask, core_mask,
				topology_core_siblings(cpu));
		}
	}

	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
832 833
static void efx_probe_interrupts(struct efx_nic *efx)
{
834 835
	int max_channels =
		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
836 837 838
	int rc, i;

	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
839 840
		struct msix_entry xentries[EFX_MAX_CHANNELS];
		int wanted_ints;
841

842 843 844 845 846
		/* We want one RX queue and interrupt per CPU package
		 * (or as specified by the rss_cpus module parameter).
		 * We will need one channel per interrupt.
		 */
		wanted_ints = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
847
		efx->n_rx_queues = min(wanted_ints, max_channels);
848

849
		for (i = 0; i < efx->n_rx_queues; i++)
850
			xentries[i].entry = i;
851
		rc = pci_enable_msix(efx->pci_dev, xentries, efx->n_rx_queues);
852
		if (rc > 0) {
853 854
			EFX_BUG_ON_PARANOID(rc >= efx->n_rx_queues);
			efx->n_rx_queues = rc;
855
			rc = pci_enable_msix(efx->pci_dev, xentries,
856
					     efx->n_rx_queues);
857 858 859
		}

		if (rc == 0) {
860
			for (i = 0; i < efx->n_rx_queues; i++)
861 862 863 864 865 866 867 868 869 870
				efx->channel[i].irq = xentries[i].vector;
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			EFX_ERR(efx, "could not enable MSI-X\n");
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
871
		efx->n_rx_queues = 1;
872 873 874 875 876 877 878 879 880 881 882
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
			efx->channel[0].irq = efx->pci_dev->irq;
		} else {
			EFX_ERR(efx, "could not enable MSI\n");
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
883
		efx->n_rx_queues = 1;
884 885 886 887 888 889 890 891 892
		efx->legacy_irq = efx->pci_dev->irq;
	}
}

static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
893
	efx_for_each_channel(channel, efx)
894 895 896 897 898 899 900 901
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

902
static void efx_set_channels(struct efx_nic *efx)
903 904 905 906
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

907 908 909 910 911 912 913
	efx_for_each_tx_queue(tx_queue, efx) {
		if (!EFX_INT_MODE_USE_MSI(efx) && separate_tx_and_rx_channels)
			tx_queue->channel = &efx->channel[1];
		else
			tx_queue->channel = &efx->channel[0];
		tx_queue->channel->used_flags |= EFX_USED_BY_TX;
	}
914

915 916 917
	efx_for_each_rx_queue(rx_queue, efx) {
		rx_queue->channel = &efx->channel[rx_queue->queue];
		rx_queue->channel->used_flags |= EFX_USED_BY_RX;
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
	}
}

static int efx_probe_nic(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "creating NIC\n");

	/* Carry out hardware-type specific initialisation */
	rc = falcon_probe_nic(efx);
	if (rc)
		return rc;

	/* Determine the number of channels and RX queues by trying to hook
	 * in MSI-X interrupts. */
	efx_probe_interrupts(efx);

936
	efx_set_channels(efx);
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

	/* Initialise the interrupt moderation settings */
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);

	return 0;
}

static void efx_remove_nic(struct efx_nic *efx)
{
	EFX_LOG(efx, "destroying NIC\n");

	efx_remove_interrupts(efx);
	falcon_remove_nic(efx);
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Create NIC */
	rc = efx_probe_nic(efx);
	if (rc) {
		EFX_ERR(efx, "failed to create NIC\n");
		goto fail1;
	}

	/* Create port */
	rc = efx_probe_port(efx);
	if (rc) {
		EFX_ERR(efx, "failed to create port\n");
		goto fail2;
	}

	/* Create channels */
	efx_for_each_channel(channel, efx) {
		rc = efx_probe_channel(channel);
		if (rc) {
			EFX_ERR(efx, "failed to create channel %d\n",
				channel->channel);
			goto fail3;
		}
	}

	return 0;

 fail3:
	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

/* Called after previous invocation(s) of efx_stop_all, restarts the
 * port, kernel transmit queue, NAPI processing and hardware interrupts,
 * and ensures that the port is scheduled to be reconfigured.
 * This function is safe to call multiple times when the NIC is in any
 * state. */
static void efx_start_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
	if (efx->port_enabled)
		return;
	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
		return;
1016
	if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1017 1018 1019 1020 1021
		return;

	/* Mark the port as enabled so port reconfigurations can start, then
	 * restart the transmit interface early so the watchdog timer stops */
	efx_start_port(efx);
1022 1023
	if (efx_dev_registered(efx))
		efx_wake_queue(efx);
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

	efx_for_each_channel(channel, efx)
		efx_start_channel(channel);

	falcon_enable_interrupts(efx);

	/* Start hardware monitor if we're in RUNNING */
	if (efx->state == STATE_RUNNING)
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
	struct efx_rx_queue *rx_queue;

	/* Make sure the hardware monitor is stopped */
	cancel_delayed_work_sync(&efx->monitor_work);

	/* Ensure that all RX slow refills are complete. */
1047
	efx_for_each_rx_queue(rx_queue, efx)
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		cancel_delayed_work_sync(&rx_queue->work);

	/* Stop scheduled port reconfigurations */
	cancel_work_sync(&efx->reconfigure_work);

}

/* Quiesce hardware and software without bringing the link down.
 * Safe to call multiple times, when the nic and interface is in any
 * state. The caller is guaranteed to subsequently be in a position
 * to modify any hardware and software state they see fit without
 * taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

	/* Disable interrupts and wait for ISR to complete */
	falcon_disable_interrupts(efx);
	if (efx->legacy_irq)
		synchronize_irq(efx->legacy_irq);
1074
	efx_for_each_channel(channel, efx) {
1075 1076
		if (channel->irq)
			synchronize_irq(channel->irq);
1077
	}
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

	/* Stop all NAPI processing and synchronous rx refills */
	efx_for_each_channel(channel, efx)
		efx_stop_channel(channel);

	/* Stop all asynchronous port reconfigurations. Since all
	 * event processing has already been stopped, there is no
	 * window to loose phy events */
	efx_stop_port(efx);

	/* Flush reconfigure_work, refill_workqueue, monitor_work */
	efx_flush_all(efx);

	/* Isolate the MAC from the TX and RX engines, so that queue
	 * flushes will complete in a timely fashion. */
	falcon_drain_tx_fifo(efx);

	/* Stop the kernel transmit interface late, so the watchdog
	 * timer isn't ticking over the flush */
1097
	if (efx_dev_registered(efx)) {
1098
		efx_stop_queue(efx);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
		netif_tx_lock_bh(efx->net_dev);
		netif_tx_unlock_bh(efx->net_dev);
	}
}

static void efx_remove_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/* A convinience function to safely flush all the queues */
1115
void efx_flush_queues(struct efx_nic *efx)
1116 1117 1118 1119 1120 1121
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	efx_stop_all(efx);

	efx_fini_channels(efx);
1122
	efx_init_channels(efx);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

	efx_start_all(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

/* Set interrupt moderation parameters */
void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

	EFX_ASSERT_RESET_SERIALISED(efx);

	efx_for_each_tx_queue(tx_queue, efx)
		tx_queue->channel->irq_moderation = tx_usecs;

	efx_for_each_rx_queue(rx_queue, efx)
		rx_queue->channel->irq_moderation = rx_usecs;
}

/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

/* Run periodically off the general workqueue. Serialised against
 * efx_reconfigure_port via the mac_lock */
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);
	int rc = 0;

	EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
		  raw_smp_processor_id());


	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
	 * most of the work of check_hw() anyway. */
	if (!mutex_trylock(&efx->mac_lock)) {
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
		return;
	}

	if (efx->port_enabled)
		rc = falcon_check_xmac(efx);
	mutex_unlock(&efx->mac_lock);

	if (rc) {
		if (monitor_reset) {
			EFX_ERR(efx, "hardware monitor detected a fault: "
				"triggering reset\n");
			efx_schedule_reset(efx, RESET_TYPE_MONITOR);
		} else {
			EFX_ERR(efx, "hardware monitor detected a fault, "
				"skipping reset\n");
		}
	}

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1205
	struct efx_nic *efx = netdev_priv(net_dev);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

	EFX_ASSERT_RESET_SERIALISED(efx);

	return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

static int efx_init_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	efx_for_each_channel(channel, efx) {
		channel->napi_dev = efx->net_dev;
		rc = efx_lro_init(&channel->lro_mgr, efx);
		if (rc)
			goto err;
	}
	return 0;
 err:
	efx_fini_napi(efx);
	return rc;
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
		efx_lro_fini(&channel->lro_mgr);
		channel->napi_dev = NULL;
	}
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1259
	struct efx_nic *efx = netdev_priv(net_dev);
1260 1261
	struct efx_channel *channel;

1262
	efx_for_each_channel(channel, efx)
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1277
	struct efx_nic *efx = netdev_priv(net_dev);
1278 1279 1280 1281 1282
	EFX_ASSERT_RESET_SERIALISED(efx);

	EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
		raw_smp_processor_id());

1283 1284 1285
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	efx_start_all(efx);
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1296
	struct efx_nic *efx = netdev_priv(net_dev);
1297 1298 1299 1300 1301 1302 1303

	EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
		raw_smp_processor_id());

	/* Stop the device and flush all the channels */
	efx_stop_all(efx);
	efx_fini_channels(efx);
1304
	efx_init_channels(efx);
1305 1306 1307 1308

	return 0;
}

1309
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1310 1311
static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
{
1312
	struct efx_nic *efx = netdev_priv(net_dev);
1313 1314 1315
	struct efx_mac_stats *mac_stats = &efx->mac_stats;
	struct net_device_stats *stats = &net_dev->stats;

1316 1317 1318 1319
	/* Update stats if possible, but do not wait if another thread
	 * is updating them (or resetting the NIC); slightly stale
	 * stats are acceptable.
	 */
1320 1321
	if (!spin_trylock(&efx->stats_lock))
		return stats;
B
Ben Hutchings 已提交
1322
	if (efx->stats_enabled) {
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
		falcon_update_stats_xmac(efx);
		falcon_update_nic_stats(efx);
	}
	spin_unlock(&efx->stats_lock);

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_over_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    stats->rx_fifo_errors +
			    stats->rx_missed_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1359
	struct efx_nic *efx = netdev_priv(net_dev);
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

	EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
		atomic_read(&efx->netif_stop_count), efx->port_enabled,
		monitor_reset ? "resetting channels" : "skipping reset");

	if (monitor_reset)
		efx_schedule_reset(efx, RESET_TYPE_MONITOR);
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1373
	struct efx_nic *efx = netdev_priv(net_dev);
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	int rc = 0;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

	efx_stop_all(efx);

	EFX_LOG(efx, "changing MTU to %d\n", new_mtu);

	efx_fini_channels(efx);
	net_dev->mtu = new_mtu;
1387
	efx_init_channels(efx);
1388 1389 1390 1391 1392 1393 1394

	efx_start_all(efx);
	return rc;
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1395
	struct efx_nic *efx = netdev_priv(net_dev);
1396 1397 1398 1399 1400 1401
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (!is_valid_ether_addr(new_addr)) {
J
Johannes Berg 已提交
1402 1403
		EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
			new_addr);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
		return -EINVAL;
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);

	/* Reconfigure the MAC */
	efx_reconfigure_port(efx);

	return 0;
}

1415
/* Context: netif_addr_lock held, BHs disabled. */
1416 1417
static void efx_set_multicast_list(struct net_device *net_dev)
{
1418
	struct efx_nic *efx = netdev_priv(net_dev);
1419 1420
	struct dev_mc_list *mc_list = net_dev->mc_list;
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1421 1422
	bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
	bool changed = (efx->promiscuous != promiscuous);
1423 1424 1425 1426
	u32 crc;
	int bit;
	int i;

1427
	efx->promiscuous = promiscuous;
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441

	/* Build multicast hash table */
	if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
		for (i = 0; i < net_dev->mc_count; i++) {
			crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
			set_bit_le(bit, mc_hash->byte);
			mc_list = mc_list->next;
		}
	}

1442 1443 1444 1445 1446 1447 1448
	if (!efx->port_enabled)
		/* Delay pushing settings until efx_start_port() */
		return;

	if (changed)
		queue_work(efx->workqueue, &efx->reconfigure_work);

1449 1450 1451 1452 1453 1454 1455
	/* Create and activate new global multicast hash table */
	falcon_set_multicast_hash(efx);
}

static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
1456
	struct net_device *net_dev = ptr;
1457 1458

	if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
1459
		struct efx_nic *efx = netdev_priv(net_dev);
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516

		strcpy(efx->name, net_dev->name);
	}

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
	net_dev->open = efx_net_open;
	net_dev->stop = efx_net_stop;
	net_dev->get_stats = efx_net_stats;
	net_dev->tx_timeout = &efx_watchdog;
	net_dev->hard_start_xmit = efx_hard_start_xmit;
	net_dev->do_ioctl = efx_ioctl;
	net_dev->change_mtu = efx_change_mtu;
	net_dev->set_mac_address = efx_set_mac_address;
	net_dev->set_multicast_list = efx_set_multicast_list;
#ifdef CONFIG_NET_POLL_CONTROLLER
	net_dev->poll_controller = efx_netpoll;
#endif
	SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);

	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(efx->net_dev);

	/* Clear MAC statistics */
	falcon_update_stats_xmac(efx);
	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));

	rc = register_netdev(net_dev);
	if (rc) {
		EFX_ERR(efx, "could not register net dev\n");
		return rc;
	}
	strcpy(efx->name, net_dev->name);

	return 0;
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

1517
	BUG_ON(netdev_priv(efx->net_dev) != efx);
1518 1519 1520 1521 1522 1523 1524

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
	efx_for_each_tx_queue(tx_queue, efx)
		efx_release_tx_buffers(tx_queue);

1525
	if (efx_dev_registered(efx)) {
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
		unregister_netdev(efx->net_dev);
	}
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
1537 1538
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
1539
void efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1540 1541 1542 1543 1544
{
	int rc;

	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
1545 1546 1547
	/* The net_dev->get_stats handler is quite slow, and will fail
	 * if a fetch is pending over reset. Serialise against it. */
	spin_lock(&efx->stats_lock);
B
Ben Hutchings 已提交
1548
	efx->stats_enabled = false;
B
Ben Hutchings 已提交
1549 1550 1551 1552 1553
	spin_unlock(&efx->stats_lock);

	efx_stop_all(efx);
	mutex_lock(&efx->mac_lock);

1554
	rc = falcon_xmac_get_settings(efx, ecmd);
B
Ben Hutchings 已提交
1555
	if (rc)
1556 1557 1558 1559 1560
		EFX_ERR(efx, "could not back up PHY settings\n");

	efx_fini_channels(efx);
}

B
Ben Hutchings 已提交
1561 1562 1563 1564 1565
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
1566
int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd, bool ok)
1567 1568 1569
{
	int rc;

B
Ben Hutchings 已提交
1570
	EFX_ASSERT_RESET_SERIALISED(efx);
1571

B
Ben Hutchings 已提交
1572
	rc = falcon_init_nic(efx);
1573
	if (rc) {
B
Ben Hutchings 已提交
1574 1575
		EFX_ERR(efx, "failed to initialise NIC\n");
		ok = false;
1576 1577
	}

B
Ben Hutchings 已提交
1578 1579
	if (ok) {
		efx_init_channels(efx);
1580

B
Ben Hutchings 已提交
1581 1582 1583 1584 1585 1586
		if (falcon_xmac_set_settings(efx, ecmd))
			EFX_ERR(efx, "could not restore PHY settings\n");
	}

	mutex_unlock(&efx->mac_lock);

B
Ben Hutchings 已提交
1587
	if (ok) {
B
Ben Hutchings 已提交
1588
		efx_start_all(efx);
B
Ben Hutchings 已提交
1589 1590
		efx->stats_enabled = true;
	}
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
	return rc;
}

/* Reset the NIC as transparently as possible. Do not reset the PHY
 * Note that the reset may fail, in which case the card will be left
 * in a most-probably-unusable state.
 *
 * This function will sleep.  You cannot reset from within an atomic
 * state; use efx_schedule_reset() instead.
 *
 * Grabs the rtnl_lock.
 */
static int efx_reset(struct efx_nic *efx)
{
	struct ethtool_cmd ecmd;
	enum reset_type method = efx->reset_pending;
	int rc;

	/* Serialise with kernel interfaces */
	rtnl_lock();

	/* If we're not RUNNING then don't reset. Leave the reset_pending
	 * flag set so that efx_pci_probe_main will be retried */
	if (efx->state != STATE_RUNNING) {
		EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
		goto unlock_rtnl;
	}

	EFX_INFO(efx, "resetting (%d)\n", method);

B
Ben Hutchings 已提交
1621
	efx_reset_down(efx, &ecmd);
1622 1623 1624 1625

	rc = falcon_reset_hw(efx, method);
	if (rc) {
		EFX_ERR(efx, "failed to reset hardware\n");
B
Ben Hutchings 已提交
1626
		goto fail;
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	}

	/* Allow resets to be rescheduled. */
	efx->reset_pending = RESET_TYPE_NONE;

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

	/* Leave device stopped if necessary */
	if (method == RESET_TYPE_DISABLE) {
		rc = -EIO;
B
Ben Hutchings 已提交
1641
		goto fail;
1642 1643
	}

B
Ben Hutchings 已提交
1644
	rc = efx_reset_up(efx, &ecmd, true);
1645
	if (rc)
B
Ben Hutchings 已提交
1646
		goto disable;
1647 1648 1649 1650 1651 1652

	EFX_LOG(efx, "reset complete\n");
 unlock_rtnl:
	rtnl_unlock();
	return 0;

B
Ben Hutchings 已提交
1653 1654 1655
 fail:
	efx_reset_up(efx, &ecmd, false);
 disable:
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	EFX_ERR(efx, "has been disabled\n");
	efx->state = STATE_DISABLED;

	rtnl_unlock();
	efx_unregister_netdev(efx);
	efx_fini_port(efx);
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
	struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);

	efx_reset(nic);
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	if (efx->reset_pending != RESET_TYPE_NONE) {
		EFX_INFO(efx, "quenching already scheduled reset\n");
		return;
	}

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
		break;
	case RESET_TYPE_RX_RECOVERY:
	case RESET_TYPE_RX_DESC_FETCH:
	case RESET_TYPE_TX_DESC_FETCH:
	case RESET_TYPE_TX_SKIP:
		method = RESET_TYPE_INVISIBLE;
		break;
	default:
		method = RESET_TYPE_ALL;
		break;
	}

	if (method != type)
		EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
	else
		EFX_LOG(efx, "scheduling reset (%d)\n", method);

	efx->reset_pending = method;

1709
	queue_work(efx->reset_workqueue, &efx->reset_work);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
static struct pci_device_id efx_pci_table[] __devinitdata = {
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
	 .driver_data = (unsigned long) &falcon_a_nic_type},
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
	 .driver_data = (unsigned long) &falcon_b_nic_type},
	{0}			/* end of list */
};

/**************************************************************************
 *
 * Dummy PHY/MAC/Board operations
 *
1731
 * Can be used for some unimplemented operations
1732 1733 1734 1735 1736 1737 1738 1739 1740
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
1741
void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

static struct efx_phy_operations efx_dummy_phy_operations = {
	.init		 = efx_port_dummy_op_int,
	.reconfigure	 = efx_port_dummy_op_void,
	.check_hw        = efx_port_dummy_op_int,
	.fini		 = efx_port_dummy_op_void,
	.clear_interrupt = efx_port_dummy_op_void,
};

static struct efx_board efx_dummy_board_info = {
1752 1753 1754 1755 1756
	.init		= efx_port_dummy_op_int,
	.init_leds	= efx_port_dummy_op_int,
	.set_fault_led	= efx_port_dummy_op_blink,
	.blink		= efx_port_dummy_op_blink,
	.fini		= efx_port_dummy_op_void,
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int i, rc;

	/* Initialise common structures */
	memset(efx, 0, sizeof(*efx));
	spin_lock_init(&efx->biu_lock);
	spin_lock_init(&efx->phy_lock);
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
	efx->pci_dev = pci_dev;
	efx->state = STATE_INIT;
	efx->reset_pending = RESET_TYPE_NONE;
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
	efx->board_info = efx_dummy_board_info;

	efx->net_dev = net_dev;
1789
	efx->rx_checksum_enabled = true;
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	spin_lock_init(&efx->netif_stop_lock);
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
	efx->mii.dev = net_dev;
	INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
	atomic_set(&efx->netif_stop_count, 1);

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
		channel = &efx->channel[i];
		channel->efx = efx;
		channel->channel = i;
1802
		channel->work_pending = false;
1803
	}
1804
	for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1805 1806 1807 1808 1809
		tx_queue = &efx->tx_queue[i];
		tx_queue->efx = efx;
		tx_queue->queue = i;
		tx_queue->buffer = NULL;
		tx_queue->channel = &efx->channel[0]; /* for safety */
B
Ben Hutchings 已提交
1810
		tx_queue->tso_headers_free = NULL;
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	}
	for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
		rx_queue = &efx->rx_queue[i];
		rx_queue->efx = efx;
		rx_queue->queue = i;
		rx_queue->channel = &efx->channel[0]; /* for safety */
		rx_queue->buffer = NULL;
		spin_lock_init(&rx_queue->add_lock);
		INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
	}

	efx->type = type;

	/* Sanity-check NIC type */
	EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
			    (efx->type->txd_ring_mask + 1));
	EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
			    (efx->type->rxd_ring_mask + 1));
	EFX_BUG_ON_PARANOID(efx->type->evq_size &
			    (efx->type->evq_size - 1));
	/* As close as we can get to guaranteeing that we don't overflow */
	EFX_BUG_ON_PARANOID(efx->type->evq_size <
			    (efx->type->txd_ring_mask + 1 +
			     efx->type->rxd_ring_mask + 1));
	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

	efx->workqueue = create_singlethread_workqueue("sfc_work");
	if (!efx->workqueue) {
		rc = -ENOMEM;
		goto fail1;
	}

1847 1848 1849 1850 1851 1852
	efx->reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!efx->reset_workqueue) {
		rc = -ENOMEM;
		goto fail2;
	}

1853 1854
	return 0;

1855 1856 1857 1858
 fail2:
	destroy_workqueue(efx->workqueue);
	efx->workqueue = NULL;

1859 1860 1861 1862 1863 1864
 fail1:
	return rc;
}

static void efx_fini_struct(struct efx_nic *efx)
{
1865 1866 1867 1868
	if (efx->reset_workqueue) {
		destroy_workqueue(efx->reset_workqueue);
		efx->reset_workqueue = NULL;
	}
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Skip everything if we never obtained a valid membase */
	if (!efx->membase)
		return;

	efx_fini_channels(efx);
	efx_fini_port(efx);

	/* Shutdown the board, then the NIC and board state */
1896
	efx->board_info.fini(efx);
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	falcon_fini_interrupt(efx);

	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	efx->state = STATE_FINI;
	dev_close(efx->net_dev);

	/* Allow any queued efx_resets() to complete */
	rtnl_unlock();

	if (efx->membase == NULL)
		goto out;

	efx_unregister_netdev(efx);

	/* Wait for any scheduled resets to complete. No more will be
	 * scheduled from this point because efx_stop_all() has been
	 * called, we are no longer registered with driverlink, and
	 * the net_device's have been removed. */
1931
	flush_workqueue(efx->reset_workqueue);
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

	efx_pci_remove_main(efx);

out:
	efx_fini_io(efx);
	EFX_LOG(efx, "shutdown successful\n");

	pci_set_drvdata(pci_dev, NULL);
	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
};

/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

	rc = efx_init_napi(efx);
	if (rc)
		goto fail2;

	/* Initialise the board */
	rc = efx->board_info.init(efx);
	if (rc) {
		EFX_ERR(efx, "failed to initialise board\n");
		goto fail3;
	}

	rc = falcon_init_nic(efx);
	if (rc) {
		EFX_ERR(efx, "failed to initialise NIC\n");
		goto fail4;
	}

	rc = efx_init_port(efx);
	if (rc) {
		EFX_ERR(efx, "failed to initialise port\n");
		goto fail5;
	}

1979
	efx_init_channels(efx);
1980 1981 1982

	rc = falcon_init_interrupt(efx);
	if (rc)
1983
		goto fail6;
1984 1985 1986 1987

	return 0;

 fail6:
1988
	efx_fini_channels(efx);
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	efx_fini_port(efx);
 fail5:
 fail4:
 fail3:
	efx_fini_napi(efx);
 fail2:
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
 * theoretically).  It sets up PCI mappings, tests and resets the NIC,
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
				   const struct pci_device_id *entry)
{
	struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
	struct net_device *net_dev;
	struct efx_nic *efx;
	int i, rc;

	/* Allocate and initialise a struct net_device and struct efx_nic */
	net_dev = alloc_etherdev(sizeof(*efx));
	if (!net_dev)
		return -ENOMEM;
B
Ben Hutchings 已提交
2021 2022
	net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
			      NETIF_F_HIGHDMA | NETIF_F_TSO);
2023 2024
	if (lro)
		net_dev->features |= NETIF_F_LRO;
2025 2026
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2027
				   NETIF_F_HIGHDMA | NETIF_F_TSO);
2028
	efx = netdev_priv(net_dev);
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	pci_set_drvdata(pci_dev, efx);
	rc = efx_init_struct(efx, type, pci_dev, net_dev);
	if (rc)
		goto fail1;

	EFX_INFO(efx, "Solarflare Communications NIC detected\n");

	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

	/* No serialisation is required with the reset path because
	 * we're in STATE_INIT. */
	for (i = 0; i < 5; i++) {
		rc = efx_pci_probe_main(efx);
		if (rc == 0)
			break;

		/* Serialise against efx_reset(). No more resets will be
		 * scheduled since efx_stop_all() has been called, and we
		 * have not and never have been registered with either
		 * the rtnetlink or driverlink layers. */
2052
		flush_workqueue(efx->reset_workqueue);
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159

		/* Retry if a recoverably reset event has been scheduled */
		if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
		    (efx->reset_pending != RESET_TYPE_ALL))
			goto fail3;

		efx->reset_pending = RESET_TYPE_NONE;
	}

	if (rc) {
		EFX_ERR(efx, "Could not reset NIC\n");
		goto fail4;
	}

	/* Switch to the running state before we expose the device to
	 * the OS.  This is to ensure that the initial gathering of
	 * MAC stats succeeds. */
	rtnl_lock();
	efx->state = STATE_RUNNING;
	rtnl_unlock();

	rc = efx_register_netdev(efx);
	if (rc)
		goto fail5;

	EFX_LOG(efx, "initialisation successful\n");

	return 0;

 fail5:
	efx_pci_remove_main(efx);
 fail4:
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
	EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
	free_netdev(net_dev);
	return rc;
}

static struct pci_driver efx_pci_driver = {
	.name		= EFX_DRIVER_NAME,
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

	refill_workqueue = create_workqueue("sfc_refill");
	if (!refill_workqueue) {
		rc = -ENOMEM;
		goto err_refill;
	}

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
	destroy_workqueue(refill_workqueue);
 err_refill:
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
	destroy_workqueue(refill_workqueue);
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
	      "Solarflare Communications");
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);