efx.c 60.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2005-2008 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#include "net_driver.h"
#include "ethtool.h"
#include "tx.h"
#include "rx.h"
#include "efx.h"
#include "mdio_10g.h"
#include "falcon.h"

#define EFX_MAX_MTU (9 * 1024)

/* RX slow fill workqueue. If memory allocation fails in the fast path,
 * a work item is pushed onto this work queue to retry the allocation later,
 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
 * workqueue, there is nothing to be gained in making it per NIC
 */
static struct workqueue_struct *refill_workqueue;

40 41 42 43 44 45
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

46 47 48 49 50 51 52 53 54 55 56 57
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
 *
 * This sets the default for new devices.  It can be controlled later
 * using ethtool.
 */
58
static int lro = true;
59 60 61 62 63 64
module_param(lro, int, 0644);
MODULE_PARM_DESC(lro, "Large receive offload acceleration");

/*
 * Use separate channels for TX and RX events
 *
65 66
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
67
 *
68
 * This is only used in MSI-X interrupt mode
69
 */
70 71 72 73
static unsigned int separate_tx_channels;
module_param(separate_tx_channels, uint, 0644);
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
 * monitor, which checks for known hardware bugs and resets the
 * hardware and driver as necessary.
 */
unsigned int efx_monitor_interval = 1 * HZ;

/* This controls whether or not the driver will initialise devices
 * with invalid MAC addresses stored in the EEPROM or flash.  If true,
 * such devices will be initialised with a random locally-generated
 * MAC address.  This allows for loading the sfc_mtd driver to
 * reprogram the flash, even if the flash contents (including the MAC
 * address) have previously been erased.
 */
static unsigned int allow_bad_hwaddr;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 * The default (0) means to assign an interrupt to each package (level II cache)
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

132 133 134 135
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

136 137 138 139 140 141 142 143 144 145
static unsigned irq_adapt_low_thresh = 10000;
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

static unsigned irq_adapt_high_thresh = 20000;
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

146 147 148 149 150 151 152 153 154 155 156 157
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
static void efx_remove_channel(struct efx_channel *channel);
static void efx_remove_port(struct efx_nic *efx);
static void efx_fini_napi(struct efx_nic *efx);
static void efx_fini_channels(struct efx_nic *efx);

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
158
		if (efx->state == STATE_RUNNING)	\
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
			ASSERT_RTNL();			\
	} while (0)

/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
175
static int efx_process_channel(struct efx_channel *channel, int rx_quota)
176
{
B
Ben Hutchings 已提交
177 178
	struct efx_nic *efx = channel->efx;
	int rx_packets;
179

B
Ben Hutchings 已提交
180
	if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
181
		     !channel->enabled))
B
Ben Hutchings 已提交
182
		return 0;
183

B
Ben Hutchings 已提交
184 185 186
	rx_packets = falcon_process_eventq(channel, rx_quota);
	if (rx_packets == 0)
		return 0;
187 188 189 190 191 192 193 194 195 196

	/* Deliver last RX packet. */
	if (channel->rx_pkt) {
		__efx_rx_packet(channel, channel->rx_pkt,
				channel->rx_pkt_csummed);
		channel->rx_pkt = NULL;
	}

	efx_rx_strategy(channel);

B
Ben Hutchings 已提交
197
	efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
198

B
Ben Hutchings 已提交
199
	return rx_packets;
200 201 202 203 204 205 206 207 208 209
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
210 211 212
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
213
	channel->work_pending = false;
214 215
	smp_wmb();

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	falcon_eventq_read_ack(channel);
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
	int rx_packets;

	EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
		  channel->channel, raw_smp_processor_id());

B
Ben Hutchings 已提交
233
	rx_packets = efx_process_channel(channel, budget);
234 235

	if (rx_packets < budget) {
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
		struct efx_nic *efx = channel->efx;

		if (channel->used_flags & EFX_USED_BY_RX &&
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			unsigned old_irq_moderation = channel->irq_moderation;

			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
				channel->irq_moderation =
					max_t(int,
					      channel->irq_moderation -
					      FALCON_IRQ_MOD_RESOLUTION,
					      FALCON_IRQ_MOD_RESOLUTION);
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
				channel->irq_moderation =
					min(channel->irq_moderation +
					    FALCON_IRQ_MOD_RESOLUTION,
					    efx->irq_rx_moderation);
			}

			if (channel->irq_moderation != old_irq_moderation)
				falcon_set_int_moderation(channel);

			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

265
		/* There is no race here; although napi_disable() will
266
		 * only wait for napi_complete(), this isn't a problem
267 268 269
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
270
		napi_complete(napi);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
		efx_channel_processed(channel);
	}

	return rx_packets;
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
 * Since we are touching interrupts the caller should hold the suspend lock
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	BUG_ON(!channel->used_flags);
	BUG_ON(!channel->enabled);

	/* Disable interrupts and wait for ISRs to complete */
	falcon_disable_interrupts(efx);
	if (efx->legacy_irq)
		synchronize_irq(efx->legacy_irq);
296
	if (channel->irq)
297 298 299 300 301 302
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
B
Ben Hutchings 已提交
303
	efx_process_channel(channel, efx->type->evq_size);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
	falcon_enable_interrupts(efx);
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);

	return falcon_probe_eventq(channel);
}

/* Prepare channel's event queue */
326
static void efx_init_eventq(struct efx_channel *channel)
327 328 329 330 331
{
	EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);

	channel->eventq_read_ptr = 0;

332
	falcon_init_eventq(channel);
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
}

static void efx_fini_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);

	falcon_fini_eventq(channel);
}

static void efx_remove_eventq(struct efx_channel *channel)
{
	EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);

	falcon_remove_eventq(channel);
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

	EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);

	rc = efx_probe_eventq(channel);
	if (rc)
		goto fail1;

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
			goto fail2;
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
			goto fail3;
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

 fail3:
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
 fail2:
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
 fail1:
	return rc;
}


394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;
	const char *type = "";
	int number;

	efx_for_each_channel(channel, efx) {
		number = channel->channel;
		if (efx->n_channels > efx->n_rx_queues) {
			if (channel->channel < efx->n_rx_queues) {
				type = "-rx";
			} else {
				type = "-tx";
				number -= efx->n_rx_queues;
			}
		}
		snprintf(channel->name, sizeof(channel->name),
			 "%s%s-%d", efx->name, type, number);
	}
}

415 416 417 418
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
419
static void efx_init_channels(struct efx_nic *efx)
420 421 422 423 424
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

425 426 427 428 429 430 431 432
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
			      efx->type->rx_buffer_padding);
	efx->rx_buffer_order = get_order(efx->rx_buffer_len);
433 434 435 436 437

	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
		EFX_LOG(channel->efx, "init chan %d\n", channel->channel);

438
		efx_init_eventq(channel);
439

440 441
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
442 443 444 445

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

446 447
		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_init_rx_queue(rx_queue);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}
}

/* This enables event queue processing and packet transmission.
 *
 * Note that this function is not allowed to fail, since that would
 * introduce too much complexity into the suspend/resume path.
 */
static void efx_start_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

	EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);

465 466 467
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set. */
468 469
	channel->work_pending = false;
	channel->enabled = true;
470
	smp_wmb();
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

	napi_enable(&channel->napi_str);

	/* Load up RX descriptors */
	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_fast_push_rx_descriptors(rx_queue);
}

/* This disables event queue processing and packet transmission.
 * This function does not guarantee that all queue processing
 * (e.g. RX refill) is complete.
 */
static void efx_stop_channel(struct efx_channel *channel)
{
	struct efx_rx_queue *rx_queue;

	if (!channel->enabled)
		return;

	EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);

492
	channel->enabled = false;
493 494 495 496 497 498 499 500 501 502 503 504 505 506
	napi_disable(&channel->napi_str);

	/* Ensure that any worker threads have exited or will be no-ops */
	efx_for_each_channel_rx_queue(rx_queue, channel) {
		spin_lock_bh(&rx_queue->add_lock);
		spin_unlock_bh(&rx_queue->add_lock);
	}
}

static void efx_fini_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
507
	int rc;
508 509 510 511

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

512 513 514 515 516 517
	rc = falcon_flush_queues(efx);
	if (rc)
		EFX_ERR(efx, "failed to flush queues\n");
	else
		EFX_LOG(efx, "successfully flushed all queues\n");

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	efx_for_each_channel(channel, efx) {
		EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_fini_tx_queue(tx_queue);
		efx_fini_eventq(channel);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

	EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
	efx_for_each_channel_tx_queue(tx_queue, channel)
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);

	channel->used_flags = 0;
}

void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
{
	queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
}

/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
static void efx_link_status_changed(struct efx_nic *efx)
{
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

B
Ben Hutchings 已提交
569 570 571 572 573
	if (efx->port_inhibited) {
		netif_carrier_off(efx->net_dev);
		return;
	}

574
	if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
575 576 577 578 579 580 581 582 583 584
		efx->n_link_state_changes++;

		if (efx->link_up)
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
	if (efx->link_up) {
B
Ben Hutchings 已提交
585 586
		EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
			 efx->link_speed, efx->link_fd ? "full" : "half",
587 588 589 590 591 592 593 594
			 efx->net_dev->mtu,
			 (efx->promiscuous ? " [PROMISC]" : ""));
	} else {
		EFX_INFO(efx, "link down\n");
	}

}

595 596
static void efx_fini_port(struct efx_nic *efx);

597 598
/* This call reinitialises the MAC to pick up new PHY settings. The
 * caller must hold the mac_lock */
B
Ben Hutchings 已提交
599
void __efx_reconfigure_port(struct efx_nic *efx)
600 601 602 603 604 605
{
	WARN_ON(!mutex_is_locked(&efx->mac_lock));

	EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
		raw_smp_processor_id());

606 607 608 609 610 611
	/* Serialise the promiscuous flag with efx_set_multicast_list. */
	if (efx_dev_registered(efx)) {
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
	}

612 613 614 615 616 617 618 619 620 621 622 623 624
	falcon_deconfigure_mac_wrapper(efx);

	/* Reconfigure the PHY, disabling transmit in mac level loopback. */
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
	efx->phy_op->reconfigure(efx);

	if (falcon_switch_mac(efx))
		goto fail;

	efx->mac_op->reconfigure(efx);
625 626 627

	/* Inform kernel of loss/gain of carrier */
	efx_link_status_changed(efx);
628 629 630 631
	return;

fail:
	EFX_ERR(efx, "failed to reconfigure MAC\n");
632 633
	efx->port_enabled = false;
	efx_fini_port(efx);
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
void efx_reconfigure_port(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
	__efx_reconfigure_port(efx);
	mutex_unlock(&efx->mac_lock);
}

/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
650
static void efx_phy_work(struct work_struct *data)
651
{
652
	struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
653 654 655 656 657 658 659

	mutex_lock(&efx->mac_lock);
	if (efx->port_enabled)
		__efx_reconfigure_port(efx);
	mutex_unlock(&efx->mac_lock);
}

660 661 662 663 664 665 666 667 668 669
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
	if (efx->port_enabled)
		efx->mac_op->irq(efx);
	mutex_unlock(&efx->mac_lock);
}

670 671 672 673 674 675 676 677 678 679 680
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "create port\n");

	/* Connect up MAC/PHY operations table and read MAC address */
	rc = falcon_probe_port(efx);
	if (rc)
		goto err;

681 682 683
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

684 685 686 687
	/* Sanity check MAC address */
	if (is_valid_ether_addr(efx->mac_address)) {
		memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
	} else {
J
Johannes Berg 已提交
688 689
		EFX_ERR(efx, "invalid MAC address %pM\n",
			efx->mac_address);
690 691 692 693 694
		if (!allow_bad_hwaddr) {
			rc = -EINVAL;
			goto err;
		}
		random_ether_addr(efx->net_dev->dev_addr);
J
Johannes Berg 已提交
695 696
		EFX_INFO(efx, "using locally-generated MAC %pM\n",
			 efx->net_dev->dev_addr);
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	}

	return 0;

 err:
	efx_remove_port(efx);
	return rc;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "init port\n");

712
	rc = efx->phy_op->init(efx);
713 714
	if (rc)
		return rc;
715
	mutex_lock(&efx->mac_lock);
716
	efx->phy_op->reconfigure(efx);
717 718 719 720 721
	rc = falcon_switch_mac(efx);
	mutex_unlock(&efx->mac_lock);
	if (rc)
		goto fail;
	efx->mac_op->reconfigure(efx);
722

723
	efx->port_initialized = true;
724
	efx_stats_enable(efx);
725
	return 0;
726 727 728 729

fail:
	efx->phy_op->fini(efx);
	return rc;
730 731 732 733
}

/* Allow efx_reconfigure_port() to be scheduled, and close the window
 * between efx_stop_port and efx_flush_all whereby a previously scheduled
734
 * efx_phy_work()/efx_mac_work() may have been cancelled */
735 736 737 738 739 740
static void efx_start_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "start port\n");
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
741
	efx->port_enabled = true;
742
	__efx_reconfigure_port(efx);
743
	efx->mac_op->irq(efx);
744 745 746
	mutex_unlock(&efx->mac_lock);
}

747 748 749 750
/* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
 * and efx_mac_work may still be scheduled via NAPI processing until
 * efx_flush_all() is called */
751 752 753 754 755
static void efx_stop_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "stop port\n");

	mutex_lock(&efx->mac_lock);
756
	efx->port_enabled = false;
757 758 759
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
760
	if (efx_dev_registered(efx)) {
761 762
		netif_addr_lock_bh(efx->net_dev);
		netif_addr_unlock_bh(efx->net_dev);
763 764 765 766 767 768 769 770 771 772
	}
}

static void efx_fini_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "shut down port\n");

	if (!efx->port_initialized)
		return;

773
	efx_stats_disable(efx);
774
	efx->phy_op->fini(efx);
775
	efx->port_initialized = false;
776

777
	efx->link_up = false;
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
	EFX_LOG(efx, "destroying port\n");

	falcon_remove_port(efx);
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

	EFX_LOG(efx, "initialising I/O\n");

	rc = pci_enable_device(pci_dev);
	if (rc) {
		EFX_ERR(efx, "failed to enable PCI device\n");
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
		if (pci_dma_supported(pci_dev, dma_mask) &&
		    ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
			break;
		dma_mask >>= 1;
	}
	if (rc) {
		EFX_ERR(efx, "could not find a suitable DMA mask\n");
		goto fail2;
	}
	EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
	if (rc) {
		/* pci_set_consistent_dma_mask() is not *allowed* to
		 * fail with a mask that pci_set_dma_mask() accepted,
		 * but just in case...
		 */
		EFX_ERR(efx, "failed to set consistent DMA mask\n");
		goto fail2;
	}

	efx->membase_phys = pci_resource_start(efx->pci_dev,
					       efx->type->mem_bar);
	rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
	if (rc) {
		EFX_ERR(efx, "request for memory BAR failed\n");
		rc = -EIO;
		goto fail3;
	}
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
	if (!efx->membase) {
848 849 850
		EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
			efx->type->mem_bar,
			(unsigned long long)efx->membase_phys,
851 852 853 854
			efx->type->mem_map_size);
		rc = -ENOMEM;
		goto fail4;
	}
855 856 857
	EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
		efx->type->mem_bar, (unsigned long long)efx->membase_phys,
		efx->type->mem_map_size, efx->membase);
858 859 860 861

	return 0;

 fail4:
862
	pci_release_region(efx->pci_dev, efx->type->mem_bar);
863
 fail3:
864
	efx->membase_phys = 0;
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
	EFX_LOG(efx, "shutting down I/O\n");

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
		pci_release_region(efx->pci_dev, efx->type->mem_bar);
882
		efx->membase_phys = 0;
883 884 885 886 887
	}

	pci_disable_device(efx->pci_dev);
}

888 889 890 891 892
/* Get number of RX queues wanted.  Return number of online CPU
 * packages in the expectation that an IRQ balancer will spread
 * interrupts across them. */
static int efx_wanted_rx_queues(void)
{
R
Rusty Russell 已提交
893
	cpumask_var_t core_mask;
894 895 896
	int count;
	int cpu;

R
Rusty Russell 已提交
897 898 899 900 901 902 903
	if (!alloc_cpumask_var(&core_mask, GFP_KERNEL)) {
		printk(KERN_WARNING
		       "efx.c: allocation failure, irq balancing hobbled\n");
		return 1;
	}

	cpumask_clear(core_mask);
904 905
	count = 0;
	for_each_online_cpu(cpu) {
R
Rusty Russell 已提交
906
		if (!cpumask_test_cpu(cpu, core_mask)) {
907
			++count;
R
Rusty Russell 已提交
908
			cpumask_or(core_mask, core_mask,
909
				   topology_core_cpumask(cpu));
910 911 912
		}
	}

R
Rusty Russell 已提交
913
	free_cpumask_var(core_mask);
914 915 916 917 918 919
	return count;
}

/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
920 921
static void efx_probe_interrupts(struct efx_nic *efx)
{
922 923
	int max_channels =
		min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
924 925 926
	int rc, i;

	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
927 928
		struct msix_entry xentries[EFX_MAX_CHANNELS];
		int wanted_ints;
929
		int rx_queues;
930

931 932 933 934
		/* We want one RX queue and interrupt per CPU package
		 * (or as specified by the rss_cpus module parameter).
		 * We will need one channel per interrupt.
		 */
935 936 937
		rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
		wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
		wanted_ints = min(wanted_ints, max_channels);
938

939
		for (i = 0; i < wanted_ints; i++)
940
			xentries[i].entry = i;
941
		rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
942
		if (rc > 0) {
943 944 945 946 947
			EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
				" available (%d < %d).\n", rc, wanted_ints);
			EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
			EFX_BUG_ON_PARANOID(rc >= wanted_ints);
			wanted_ints = rc;
948
			rc = pci_enable_msix(efx->pci_dev, xentries,
949
					     wanted_ints);
950 951 952
		}

		if (rc == 0) {
953 954 955
			efx->n_rx_queues = min(rx_queues, wanted_ints);
			efx->n_channels = wanted_ints;
			for (i = 0; i < wanted_ints; i++)
956 957 958 959 960 961 962 963 964 965
				efx->channel[i].irq = xentries[i].vector;
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
			EFX_ERR(efx, "could not enable MSI-X\n");
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
966
		efx->n_rx_queues = 1;
967
		efx->n_channels = 1;
968 969 970 971 972 973 974 975 976 977 978
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
			efx->channel[0].irq = efx->pci_dev->irq;
		} else {
			EFX_ERR(efx, "could not enable MSI\n");
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
979
		efx->n_rx_queues = 1;
980
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
981 982 983 984 985 986 987 988 989
		efx->legacy_irq = efx->pci_dev->irq;
	}
}

static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
990
	efx_for_each_channel(channel, efx)
991 992 993 994 995 996 997 998
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

999
static void efx_set_channels(struct efx_nic *efx)
1000 1001 1002 1003
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

1004
	efx_for_each_tx_queue(tx_queue, efx) {
1005 1006
		if (separate_tx_channels)
			tx_queue->channel = &efx->channel[efx->n_channels-1];
1007 1008 1009 1010
		else
			tx_queue->channel = &efx->channel[0];
		tx_queue->channel->used_flags |= EFX_USED_BY_TX;
	}
1011

1012 1013 1014
	efx_for_each_rx_queue(rx_queue, efx) {
		rx_queue->channel = &efx->channel[rx_queue->queue];
		rx_queue->channel->used_flags |= EFX_USED_BY_RX;
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	}
}

static int efx_probe_nic(struct efx_nic *efx)
{
	int rc;

	EFX_LOG(efx, "creating NIC\n");

	/* Carry out hardware-type specific initialisation */
	rc = falcon_probe_nic(efx);
	if (rc)
		return rc;

	/* Determine the number of channels and RX queues by trying to hook
	 * in MSI-X interrupts. */
	efx_probe_interrupts(efx);

1033
	efx_set_channels(efx);
1034 1035

	/* Initialise the interrupt moderation settings */
1036
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

	return 0;
}

static void efx_remove_nic(struct efx_nic *efx)
{
	EFX_LOG(efx, "destroying NIC\n");

	efx_remove_interrupts(efx);
	falcon_remove_nic(efx);
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Create NIC */
	rc = efx_probe_nic(efx);
	if (rc) {
		EFX_ERR(efx, "failed to create NIC\n");
		goto fail1;
	}

	/* Create port */
	rc = efx_probe_port(efx);
	if (rc) {
		EFX_ERR(efx, "failed to create port\n");
		goto fail2;
	}

	/* Create channels */
	efx_for_each_channel(channel, efx) {
		rc = efx_probe_channel(channel);
		if (rc) {
			EFX_ERR(efx, "failed to create channel %d\n",
				channel->channel);
			goto fail3;
		}
	}
1083
	efx_set_channel_names(efx);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

	return 0;

 fail3:
	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

/* Called after previous invocation(s) of efx_stop_all, restarts the
 * port, kernel transmit queue, NAPI processing and hardware interrupts,
 * and ensures that the port is scheduled to be reconfigured.
 * This function is safe to call multiple times when the NIC is in any
 * state. */
static void efx_start_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
	if (efx->port_enabled)
		return;
	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
		return;
1114
	if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1115 1116 1117 1118 1119
		return;

	/* Mark the port as enabled so port reconfigurations can start, then
	 * restart the transmit interface early so the watchdog timer stops */
	efx_start_port(efx);
1120 1121
	if (efx_dev_registered(efx))
		efx_wake_queue(efx);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

	efx_for_each_channel(channel, efx)
		efx_start_channel(channel);

	falcon_enable_interrupts(efx);

	/* Start hardware monitor if we're in RUNNING */
	if (efx->state == STATE_RUNNING)
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
	struct efx_rx_queue *rx_queue;

	/* Make sure the hardware monitor is stopped */
	cancel_delayed_work_sync(&efx->monitor_work);

	/* Ensure that all RX slow refills are complete. */
1145
	efx_for_each_rx_queue(rx_queue, efx)
1146 1147 1148
		cancel_delayed_work_sync(&rx_queue->work);

	/* Stop scheduled port reconfigurations */
1149 1150
	cancel_work_sync(&efx->mac_work);
	cancel_work_sync(&efx->phy_work);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

}

/* Quiesce hardware and software without bringing the link down.
 * Safe to call multiple times, when the nic and interface is in any
 * state. The caller is guaranteed to subsequently be in a position
 * to modify any hardware and software state they see fit without
 * taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

	/* Disable interrupts and wait for ISR to complete */
	falcon_disable_interrupts(efx);
	if (efx->legacy_irq)
		synchronize_irq(efx->legacy_irq);
1173
	efx_for_each_channel(channel, efx) {
1174 1175
		if (channel->irq)
			synchronize_irq(channel->irq);
1176
	}
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

	/* Stop all NAPI processing and synchronous rx refills */
	efx_for_each_channel(channel, efx)
		efx_stop_channel(channel);

	/* Stop all asynchronous port reconfigurations. Since all
	 * event processing has already been stopped, there is no
	 * window to loose phy events */
	efx_stop_port(efx);

1187
	/* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
1188 1189 1190 1191 1192 1193 1194 1195
	efx_flush_all(efx);

	/* Isolate the MAC from the TX and RX engines, so that queue
	 * flushes will complete in a timely fashion. */
	falcon_drain_tx_fifo(efx);

	/* Stop the kernel transmit interface late, so the watchdog
	 * timer isn't ticking over the flush */
1196
	if (efx_dev_registered(efx)) {
1197
		efx_stop_queue(efx);
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		netif_tx_lock_bh(efx->net_dev);
		netif_tx_unlock_bh(efx->net_dev);
	}
}

static void efx_remove_all(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/* A convinience function to safely flush all the queues */
1214
void efx_flush_queues(struct efx_nic *efx)
1215 1216 1217 1218 1219 1220
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	efx_stop_all(efx);

	efx_fini_channels(efx);
1221
	efx_init_channels(efx);
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

	efx_start_all(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

/* Set interrupt moderation parameters */
1233 1234
void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
			     bool rx_adaptive)
1235 1236 1237 1238 1239 1240 1241 1242 1243
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

	EFX_ASSERT_RESET_SERIALISED(efx);

	efx_for_each_tx_queue(tx_queue, efx)
		tx_queue->channel->irq_moderation = tx_usecs;

1244 1245
	efx->irq_rx_adaptive = rx_adaptive;
	efx->irq_rx_moderation = rx_usecs;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	efx_for_each_rx_queue(rx_queue, efx)
		rx_queue->channel->irq_moderation = rx_usecs;
}

/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

/* Run periodically off the general workqueue. Serialised against
 * efx_reconfigure_port via the mac_lock */
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);
1262
	int rc;
1263 1264 1265 1266 1267 1268 1269

	EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
		  raw_smp_processor_id());

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
	 * most of the work of check_hw() anyway. */
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	if (!mutex_trylock(&efx->mac_lock))
		goto out_requeue;
	if (!efx->port_enabled)
		goto out_unlock;
	rc = efx->board_info.monitor(efx);
	if (rc) {
		EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
			(rc == -ERANGE) ? "reported fault" : "failed");
		efx->phy_mode |= PHY_MODE_LOW_POWER;
		falcon_sim_phy_event(efx);
1280
	}
1281 1282
	efx->phy_op->poll(efx);
	efx->mac_op->poll(efx);
1283

1284
out_unlock:
1285
	mutex_unlock(&efx->mac_lock);
1286
out_requeue:
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1302
	struct efx_nic *efx = netdev_priv(net_dev);
1303
	struct mii_ioctl_data *data = if_mii(ifr);
1304 1305 1306

	EFX_ASSERT_RESET_SERIALISED(efx);

1307 1308 1309 1310 1311 1312
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

static int efx_init_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
		channel->napi_dev = efx->net_dev;
1327 1328
		netif_napi_add(channel->napi_dev, &channel->napi_str,
			       efx_poll, napi_weight);
1329 1330 1331 1332 1333 1334 1335 1336 1337
	}
	return 0;
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx) {
1338 1339
		if (channel->napi_dev)
			netif_napi_del(&channel->napi_str);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
		channel->napi_dev = NULL;
	}
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1358
	struct efx_nic *efx = netdev_priv(net_dev);
1359 1360
	struct efx_channel *channel;

1361
	efx_for_each_channel(channel, efx)
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1376
	struct efx_nic *efx = netdev_priv(net_dev);
1377 1378 1379 1380 1381
	EFX_ASSERT_RESET_SERIALISED(efx);

	EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
		raw_smp_processor_id());

1382 1383
	if (efx->state == STATE_DISABLED)
		return -EIO;
1384 1385 1386
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	efx_start_all(efx);
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1397
	struct efx_nic *efx = netdev_priv(net_dev);
1398 1399 1400 1401

	EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
		raw_smp_processor_id());

1402 1403 1404 1405 1406 1407
	if (efx->state != STATE_DISABLED) {
		/* Stop the device and flush all the channels */
		efx_stop_all(efx);
		efx_fini_channels(efx);
		efx_init_channels(efx);
	}
1408 1409 1410 1411

	return 0;
}

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
void efx_stats_disable(struct efx_nic *efx)
{
	spin_lock(&efx->stats_lock);
	++efx->stats_disable_count;
	spin_unlock(&efx->stats_lock);
}

void efx_stats_enable(struct efx_nic *efx)
{
	spin_lock(&efx->stats_lock);
	--efx->stats_disable_count;
	spin_unlock(&efx->stats_lock);
}

1426
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1427 1428
static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
{
1429
	struct efx_nic *efx = netdev_priv(net_dev);
1430 1431 1432
	struct efx_mac_stats *mac_stats = &efx->mac_stats;
	struct net_device_stats *stats = &net_dev->stats;

1433
	/* Update stats if possible, but do not wait if another thread
1434 1435
	 * is updating them or if MAC stats fetches are temporarily
	 * disabled; slightly stale stats are acceptable.
1436
	 */
1437 1438
	if (!spin_trylock(&efx->stats_lock))
		return stats;
1439
	if (!efx->stats_disable_count) {
1440
		efx->mac_op->update_stats(efx);
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
		falcon_update_nic_stats(efx);
	}
	spin_unlock(&efx->stats_lock);

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_over_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    stats->rx_fifo_errors +
			    stats->rx_missed_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1476
	struct efx_nic *efx = netdev_priv(net_dev);
1477

1478 1479 1480
	EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
		" resetting channels\n",
		atomic_read(&efx->netif_stop_count), efx->port_enabled);
1481

1482
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1483 1484 1485 1486 1487 1488
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1489
	struct efx_nic *efx = netdev_priv(net_dev);
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	int rc = 0;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

	efx_stop_all(efx);

	EFX_LOG(efx, "changing MTU to %d\n", new_mtu);

	efx_fini_channels(efx);
	net_dev->mtu = new_mtu;
1503
	efx_init_channels(efx);
1504 1505 1506 1507 1508 1509 1510

	efx_start_all(efx);
	return rc;
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1511
	struct efx_nic *efx = netdev_priv(net_dev);
1512 1513 1514 1515 1516 1517
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (!is_valid_ether_addr(new_addr)) {
J
Johannes Berg 已提交
1518 1519
		EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
			new_addr);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
		return -EINVAL;
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);

	/* Reconfigure the MAC */
	efx_reconfigure_port(efx);

	return 0;
}

1531
/* Context: netif_addr_lock held, BHs disabled. */
1532 1533
static void efx_set_multicast_list(struct net_device *net_dev)
{
1534
	struct efx_nic *efx = netdev_priv(net_dev);
1535 1536
	struct dev_mc_list *mc_list = net_dev->mc_list;
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1537 1538
	bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
	bool changed = (efx->promiscuous != promiscuous);
1539 1540 1541 1542
	u32 crc;
	int bit;
	int i;

1543
	efx->promiscuous = promiscuous;
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557

	/* Build multicast hash table */
	if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
		for (i = 0; i < net_dev->mc_count; i++) {
			crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
			set_bit_le(bit, mc_hash->byte);
			mc_list = mc_list->next;
		}
	}

1558 1559 1560 1561 1562
	if (!efx->port_enabled)
		/* Delay pushing settings until efx_start_port() */
		return;

	if (changed)
1563
		queue_work(efx->workqueue, &efx->phy_work);
1564

1565 1566 1567 1568
	/* Create and activate new global multicast hash table */
	falcon_set_multicast_hash(efx);
}

S
Stephen Hemminger 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
	.ndo_get_stats		= efx_net_stats,
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
	.ndo_set_multicast_list = efx_set_multicast_list,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
};

1585 1586 1587 1588 1589 1590 1591
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

1592 1593 1594
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
1595
	struct net_device *net_dev = ptr;
1596

1597 1598 1599
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
1600 1601 1602 1603 1604 1605 1606 1607

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
1608 1609 1610 1611 1612 1613 1614 1615
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

1616 1617 1618 1619 1620 1621 1622
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
1623
	net_dev->netdev_ops = &efx_netdev_ops;
1624 1625 1626 1627 1628 1629 1630
	SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);

	/* Always start with carrier off; PHY events will detect the link */
	netif_carrier_off(efx->net_dev);

	/* Clear MAC statistics */
1631
	efx->mac_op->update_stats(efx);
1632 1633 1634 1635 1636 1637 1638
	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));

	rc = register_netdev(net_dev);
	if (rc) {
		EFX_ERR(efx, "could not register net dev\n");
		return rc;
	}
1639 1640 1641 1642

	rtnl_lock();
	efx_update_name(efx);
	rtnl_unlock();
1643

B
Ben Hutchings 已提交
1644 1645 1646 1647 1648 1649
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
		EFX_ERR(efx, "failed to init net dev attributes\n");
		goto fail_registered;
	}

1650
	return 0;
B
Ben Hutchings 已提交
1651 1652 1653 1654

fail_registered:
	unregister_netdev(net_dev);
	return rc;
1655 1656 1657 1658 1659 1660 1661 1662 1663
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

1664
	BUG_ON(netdev_priv(efx->net_dev) != efx);
1665 1666 1667 1668 1669 1670 1671

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
	efx_for_each_tx_queue(tx_queue, efx)
		efx_release_tx_buffers(tx_queue);

1672
	if (efx_dev_registered(efx)) {
1673
		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
B
Ben Hutchings 已提交
1674
		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		unregister_netdev(efx->net_dev);
	}
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
1685 1686
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
1687 1688
void efx_reset_down(struct efx_nic *efx, enum reset_type method,
		    struct ethtool_cmd *ecmd)
1689 1690 1691
{
	EFX_ASSERT_RESET_SERIALISED(efx);

1692
	efx_stats_disable(efx);
B
Ben Hutchings 已提交
1693 1694
	efx_stop_all(efx);
	mutex_lock(&efx->mac_lock);
1695
	mutex_lock(&efx->spi_lock);
B
Ben Hutchings 已提交
1696

1697
	efx->phy_op->get_settings(efx, ecmd);
1698 1699

	efx_fini_channels(efx);
1700 1701
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
1702 1703
}

B
Ben Hutchings 已提交
1704 1705 1706 1707 1708
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
1709 1710
int efx_reset_up(struct efx_nic *efx, enum reset_type method,
		 struct ethtool_cmd *ecmd, bool ok)
1711 1712 1713
{
	int rc;

B
Ben Hutchings 已提交
1714
	EFX_ASSERT_RESET_SERIALISED(efx);
1715

B
Ben Hutchings 已提交
1716
	rc = falcon_init_nic(efx);
1717
	if (rc) {
B
Ben Hutchings 已提交
1718 1719
		EFX_ERR(efx, "failed to initialise NIC\n");
		ok = false;
1720 1721
	}

1722 1723 1724 1725 1726
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
		if (ok) {
			rc = efx->phy_op->init(efx);
			if (rc)
				ok = false;
1727 1728
		}
		if (!ok)
1729 1730 1731
			efx->port_initialized = false;
	}

B
Ben Hutchings 已提交
1732 1733
	if (ok) {
		efx_init_channels(efx);
1734

1735
		if (efx->phy_op->set_settings(efx, ecmd))
B
Ben Hutchings 已提交
1736 1737 1738
			EFX_ERR(efx, "could not restore PHY settings\n");
	}

1739
	mutex_unlock(&efx->spi_lock);
B
Ben Hutchings 已提交
1740 1741
	mutex_unlock(&efx->mac_lock);

B
Ben Hutchings 已提交
1742
	if (ok) {
B
Ben Hutchings 已提交
1743
		efx_start_all(efx);
1744
		efx_stats_enable(efx);
B
Ben Hutchings 已提交
1745
	}
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	return rc;
}

/* Reset the NIC as transparently as possible. Do not reset the PHY
 * Note that the reset may fail, in which case the card will be left
 * in a most-probably-unusable state.
 *
 * This function will sleep.  You cannot reset from within an atomic
 * state; use efx_schedule_reset() instead.
 *
 * Grabs the rtnl_lock.
 */
static int efx_reset(struct efx_nic *efx)
{
	struct ethtool_cmd ecmd;
	enum reset_type method = efx->reset_pending;
1762
	int rc = 0;
1763 1764 1765 1766 1767 1768 1769 1770

	/* Serialise with kernel interfaces */
	rtnl_lock();

	/* If we're not RUNNING then don't reset. Leave the reset_pending
	 * flag set so that efx_pci_probe_main will be retried */
	if (efx->state != STATE_RUNNING) {
		EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1771
		goto out_unlock;
1772 1773 1774 1775
	}

	EFX_INFO(efx, "resetting (%d)\n", method);

1776
	efx_reset_down(efx, method, &ecmd);
1777 1778 1779 1780

	rc = falcon_reset_hw(efx, method);
	if (rc) {
		EFX_ERR(efx, "failed to reset hardware\n");
1781
		goto out_disable;
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	}

	/* Allow resets to be rescheduled. */
	efx->reset_pending = RESET_TYPE_NONE;

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

	/* Leave device stopped if necessary */
	if (method == RESET_TYPE_DISABLE) {
1795
		efx_reset_up(efx, method, &ecmd, false);
1796
		rc = -EIO;
1797
	} else {
1798
		rc = efx_reset_up(efx, method, &ecmd, true);
1799 1800
	}

1801 1802 1803 1804 1805 1806 1807 1808
out_disable:
	if (rc) {
		EFX_ERR(efx, "has been disabled\n");
		efx->state = STATE_DISABLED;
		dev_close(efx->net_dev);
	} else {
		EFX_LOG(efx, "reset complete\n");
	}
1809

1810
out_unlock:
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
	rtnl_unlock();
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
	struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);

	efx_reset(nic);
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	if (efx->reset_pending != RESET_TYPE_NONE) {
		EFX_INFO(efx, "quenching already scheduled reset\n");
		return;
	}

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
		break;
	case RESET_TYPE_RX_RECOVERY:
	case RESET_TYPE_RX_DESC_FETCH:
	case RESET_TYPE_TX_DESC_FETCH:
	case RESET_TYPE_TX_SKIP:
		method = RESET_TYPE_INVISIBLE;
		break;
	default:
		method = RESET_TYPE_ALL;
		break;
	}

	if (method != type)
		EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
	else
		EFX_LOG(efx, "scheduling reset (%d)\n", method);

	efx->reset_pending = method;

1859
	queue_work(reset_workqueue, &efx->reset_work);
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
static struct pci_device_id efx_pci_table[] __devinitdata = {
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
	 .driver_data = (unsigned long) &falcon_a_nic_type},
	{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
	 .driver_data = (unsigned long) &falcon_b_nic_type},
	{0}			/* end of list */
};

/**************************************************************************
 *
 * Dummy PHY/MAC/Board operations
 *
1881
 * Can be used for some unimplemented operations
1882 1883 1884 1885 1886 1887 1888 1889 1890
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
1891
void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
1892

1893 1894
static struct efx_mac_operations efx_dummy_mac_operations = {
	.reconfigure	= efx_port_dummy_op_void,
1895 1896
	.poll		= efx_port_dummy_op_void,
	.irq		= efx_port_dummy_op_void,
1897 1898
};

1899 1900 1901
static struct efx_phy_operations efx_dummy_phy_operations = {
	.init		 = efx_port_dummy_op_int,
	.reconfigure	 = efx_port_dummy_op_void,
1902
	.poll		 = efx_port_dummy_op_void,
1903 1904 1905 1906 1907
	.fini		 = efx_port_dummy_op_void,
	.clear_interrupt = efx_port_dummy_op_void,
};

static struct efx_board efx_dummy_board_info = {
1908
	.init		= efx_port_dummy_op_int,
B
Ben Hutchings 已提交
1909 1910
	.init_leds	= efx_port_dummy_op_void,
	.set_id_led	= efx_port_dummy_op_blink,
B
Ben Hutchings 已提交
1911
	.monitor	= efx_port_dummy_op_int,
1912 1913
	.blink		= efx_port_dummy_op_blink,
	.fini		= efx_port_dummy_op_void,
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
1931
	int i;
1932 1933 1934 1935 1936

	/* Initialise common structures */
	memset(efx, 0, sizeof(*efx));
	spin_lock_init(&efx->biu_lock);
	spin_lock_init(&efx->phy_lock);
1937
	mutex_init(&efx->spi_lock);
1938 1939 1940 1941 1942 1943 1944 1945 1946
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
	efx->pci_dev = pci_dev;
	efx->state = STATE_INIT;
	efx->reset_pending = RESET_TYPE_NONE;
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
	efx->board_info = efx_dummy_board_info;

	efx->net_dev = net_dev;
1947
	efx->rx_checksum_enabled = true;
1948 1949
	spin_lock_init(&efx->netif_stop_lock);
	spin_lock_init(&efx->stats_lock);
1950
	efx->stats_disable_count = 1;
1951
	mutex_init(&efx->mac_lock);
1952
	efx->mac_op = &efx_dummy_mac_operations;
1953
	efx->phy_op = &efx_dummy_phy_operations;
1954
	efx->mdio.dev = net_dev;
1955 1956
	INIT_WORK(&efx->phy_work, efx_phy_work);
	INIT_WORK(&efx->mac_work, efx_mac_work);
1957 1958 1959 1960 1961 1962
	atomic_set(&efx->netif_stop_count, 1);

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
		channel = &efx->channel[i];
		channel->efx = efx;
		channel->channel = i;
1963
		channel->work_pending = false;
1964
	}
1965
	for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1966 1967 1968 1969 1970
		tx_queue = &efx->tx_queue[i];
		tx_queue->efx = efx;
		tx_queue->queue = i;
		tx_queue->buffer = NULL;
		tx_queue->channel = &efx->channel[0]; /* for safety */
B
Ben Hutchings 已提交
1971
		tx_queue->tso_headers_free = NULL;
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	}
	for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
		rx_queue = &efx->rx_queue[i];
		rx_queue->efx = efx;
		rx_queue->queue = i;
		rx_queue->channel = &efx->channel[0]; /* for safety */
		rx_queue->buffer = NULL;
		spin_lock_init(&rx_queue->add_lock);
		INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
	}

	efx->type = type;

	/* Sanity-check NIC type */
	EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
			    (efx->type->txd_ring_mask + 1));
	EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
			    (efx->type->rxd_ring_mask + 1));
	EFX_BUG_ON_PARANOID(efx->type->evq_size &
			    (efx->type->evq_size - 1));
	/* As close as we can get to guaranteeing that we don't overflow */
	EFX_BUG_ON_PARANOID(efx->type->evq_size <
			    (efx->type->txd_ring_mask + 1 +
			     efx->type->rxd_ring_mask + 1));
	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2002 2003 2004 2005
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2006 2007
	if (!efx->workqueue)
		return -ENOMEM;
2008

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	return 0;
}

static void efx_fini_struct(struct efx_nic *efx)
{
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Skip everything if we never obtained a valid membase */
	if (!efx->membase)
		return;

	efx_fini_channels(efx);
	efx_fini_port(efx);

	/* Shutdown the board, then the NIC and board state */
2041
	efx->board_info.fini(efx);
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
	falcon_fini_interrupt(efx);

	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	efx->state = STATE_FINI;
	dev_close(efx->net_dev);

	/* Allow any queued efx_resets() to complete */
	rtnl_unlock();

	if (efx->membase == NULL)
		goto out;

	efx_unregister_netdev(efx);

2072 2073
	efx_mtd_remove(efx);

2074 2075 2076 2077
	/* Wait for any scheduled resets to complete. No more will be
	 * scheduled from this point because efx_stop_all() has been
	 * called, we are no longer registered with driverlink, and
	 * the net_device's have been removed. */
2078
	cancel_work_sync(&efx->reset_work);
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

	efx_pci_remove_main(efx);

out:
	efx_fini_io(efx);
	EFX_LOG(efx, "shutdown successful\n");

	pci_set_drvdata(pci_dev, NULL);
	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
};

/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

	rc = efx_init_napi(efx);
	if (rc)
		goto fail2;

	/* Initialise the board */
	rc = efx->board_info.init(efx);
	if (rc) {
		EFX_ERR(efx, "failed to initialise board\n");
		goto fail3;
	}

	rc = falcon_init_nic(efx);
	if (rc) {
		EFX_ERR(efx, "failed to initialise NIC\n");
		goto fail4;
	}

	rc = efx_init_port(efx);
	if (rc) {
		EFX_ERR(efx, "failed to initialise port\n");
		goto fail5;
	}

2126
	efx_init_channels(efx);
2127 2128 2129

	rc = falcon_init_interrupt(efx);
	if (rc)
2130
		goto fail6;
2131 2132 2133 2134

	return 0;

 fail6:
2135
	efx_fini_channels(efx);
2136 2137 2138
	efx_fini_port(efx);
 fail5:
 fail4:
B
Ben Hutchings 已提交
2139
	efx->board_info.fini(efx);
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
 fail3:
	efx_fini_napi(efx);
 fail2:
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
 * theoretically).  It sets up PCI mappings, tests and resets the NIC,
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
				   const struct pci_device_id *entry)
{
	struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
	struct net_device *net_dev;
	struct efx_nic *efx;
	int i, rc;

	/* Allocate and initialise a struct net_device and struct efx_nic */
	net_dev = alloc_etherdev(sizeof(*efx));
	if (!net_dev)
		return -ENOMEM;
B
Ben Hutchings 已提交
2169 2170
	net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
			      NETIF_F_HIGHDMA | NETIF_F_TSO);
2171
	if (lro)
H
Herbert Xu 已提交
2172
		net_dev->features |= NETIF_F_GRO;
2173 2174
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2175
				   NETIF_F_HIGHDMA | NETIF_F_TSO);
2176
	efx = netdev_priv(net_dev);
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	pci_set_drvdata(pci_dev, efx);
	rc = efx_init_struct(efx, type, pci_dev, net_dev);
	if (rc)
		goto fail1;

	EFX_INFO(efx, "Solarflare Communications NIC detected\n");

	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

	/* No serialisation is required with the reset path because
	 * we're in STATE_INIT. */
	for (i = 0; i < 5; i++) {
		rc = efx_pci_probe_main(efx);

		/* Serialise against efx_reset(). No more resets will be
		 * scheduled since efx_stop_all() has been called, and we
		 * have not and never have been registered with either
		 * the rtnetlink or driverlink layers. */
2198
		cancel_work_sync(&efx->reset_work);
2199

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
		if (rc == 0) {
			if (efx->reset_pending != RESET_TYPE_NONE) {
				/* If there was a scheduled reset during
				 * probe, the NIC is probably hosed anyway */
				efx_pci_remove_main(efx);
				rc = -EIO;
			} else {
				break;
			}
		}

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
		/* Retry if a recoverably reset event has been scheduled */
		if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
		    (efx->reset_pending != RESET_TYPE_ALL))
			goto fail3;

		efx->reset_pending = RESET_TYPE_NONE;
	}

	if (rc) {
		EFX_ERR(efx, "Could not reset NIC\n");
		goto fail4;
	}

	/* Switch to the running state before we expose the device to
	 * the OS.  This is to ensure that the initial gathering of
	 * MAC stats succeeds. */
	efx->state = STATE_RUNNING;
2228 2229

	efx_mtd_probe(efx); /* allowed to fail */
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282

	rc = efx_register_netdev(efx);
	if (rc)
		goto fail5;

	EFX_LOG(efx, "initialisation successful\n");
	return 0;

 fail5:
	efx_pci_remove_main(efx);
 fail4:
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
	EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
	free_netdev(net_dev);
	return rc;
}

static struct pci_driver efx_pci_driver = {
	.name		= EFX_DRIVER_NAME,
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

	refill_workqueue = create_workqueue("sfc_refill");
	if (!refill_workqueue) {
		rc = -ENOMEM;
		goto err_refill;
	}
2283 2284 2285 2286 2287
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2288 2289 2290 2291 2292 2293 2294 2295

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2296 2297
	destroy_workqueue(reset_workqueue);
 err_reset:
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
	destroy_workqueue(refill_workqueue);
 err_refill:
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2310
	destroy_workqueue(reset_workqueue);
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	destroy_workqueue(refill_workqueue);
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
	      "Solarflare Communications");
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);