processor.h 23.6 KB
Newer Older
H
H. Peter Anvin 已提交
1 2
#ifndef _ASM_X86_PROCESSOR_H
#define _ASM_X86_PROCESSOR_H
3

4 5
#include <asm/processor-flags.h>

6 7 8
/* Forward declaration, a strange C thing */
struct task_struct;
struct mm_struct;
9
struct vm86;
10

11 12 13
#include <asm/math_emu.h>
#include <asm/segment.h>
#include <asm/types.h>
14
#include <uapi/asm/sigcontext.h>
15
#include <asm/current.h>
16
#include <asm/cpufeatures.h>
17
#include <asm/page.h>
18
#include <asm/pgtable_types.h>
19
#include <asm/percpu.h>
20 21
#include <asm/msr.h>
#include <asm/desc_defs.h>
22
#include <asm/nops.h>
23
#include <asm/special_insns.h>
24
#include <asm/fpu/types.h>
25

26
#include <linux/personality.h>
27
#include <linux/cache.h>
28
#include <linux/threads.h>
29
#include <linux/math64.h>
30
#include <linux/err.h>
31 32 33 34 35 36 37 38 39
#include <linux/irqflags.h>

/*
 * We handle most unaligned accesses in hardware.  On the other hand
 * unaligned DMA can be quite expensive on some Nehalem processors.
 *
 * Based on this we disable the IP header alignment in network drivers.
 */
#define NET_IP_ALIGN	0
40

41
#define HBP_NUM 4
42 43 44 45 46 47 48
/*
 * Default implementation of macro that returns current
 * instruction pointer ("program counter").
 */
static inline void *current_text_addr(void)
{
	void *pc;
49 50 51

	asm volatile("mov $1f, %0; 1:":"=r" (pc));

52 53 54
	return pc;
}

55 56 57 58 59
/*
 * These alignment constraints are for performance in the vSMP case,
 * but in the task_struct case we must also meet hardware imposed
 * alignment requirements of the FPU state:
 */
60
#ifdef CONFIG_X86_VSMP
61 62
# define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
# define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
63
#else
64
# define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
65
# define ARCH_MIN_MMSTRUCT_ALIGN	0
66 67
#endif

68 69 70 71 72 73 74 75 76 77 78
enum tlb_infos {
	ENTRIES,
	NR_INFO
};

extern u16 __read_mostly tlb_lli_4k[NR_INFO];
extern u16 __read_mostly tlb_lli_2m[NR_INFO];
extern u16 __read_mostly tlb_lli_4m[NR_INFO];
extern u16 __read_mostly tlb_lld_4k[NR_INFO];
extern u16 __read_mostly tlb_lld_2m[NR_INFO];
extern u16 __read_mostly tlb_lld_4m[NR_INFO];
79
extern u16 __read_mostly tlb_lld_1g[NR_INFO];
80

81 82
/*
 *  CPU type and hardware bug flags. Kept separately for each CPU.
83
 *  Members of this structure are referenced in head_32.S, so think twice
84 85 86 87
 *  before touching them. [mj]
 */

struct cpuinfo_x86 {
88 89 90 91
	__u8			x86;		/* CPU family */
	__u8			x86_vendor;	/* CPU vendor */
	__u8			x86_model;
	__u8			x86_mask;
92
#ifdef CONFIG_X86_64
93
	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
94
	int			x86_tlbsize;
95
#endif
96 97 98 99
	__u8			x86_virt_bits;
	__u8			x86_phys_bits;
	/* CPUID returned core id bits: */
	__u8			x86_coreid_bits;
100
	__u8			cu_id;
101 102 103 104
	/* Max extended CPUID function supported: */
	__u32			extended_cpuid_level;
	/* Maximum supported CPUID level, -1=no CPUID: */
	int			cpuid_level;
105
	__u32			x86_capability[NCAPINTS + NBUGINTS];
106 107 108 109 110
	char			x86_vendor_id[16];
	char			x86_model_id[64];
	/* in KB - valid for CPUS which support this call: */
	int			x86_cache_size;
	int			x86_cache_alignment;	/* In bytes */
111 112 113
	/* Cache QoS architectural values: */
	int			x86_cache_max_rmid;	/* max index */
	int			x86_cache_occ_scale;	/* scale to bytes */
114 115 116 117 118
	int			x86_power;
	unsigned long		loops_per_jiffy;
	/* cpuid returned max cores value: */
	u16			 x86_max_cores;
	u16			apicid;
Y
Yinghai Lu 已提交
119
	u16			initial_apicid;
120 121 122 123 124
	u16			x86_clflush_size;
	/* number of cores as seen by the OS: */
	u16			booted_cores;
	/* Physical processor id: */
	u16			phys_proc_id;
125 126
	/* Logical processor id: */
	u16			logical_proc_id;
127 128 129 130
	/* Core id: */
	u16			cpu_core_id;
	/* Index into per_cpu list: */
	u16			cpu_index;
131
	u32			microcode;
132
};
133

134 135 136 137 138 139 140 141 142 143 144
struct cpuid_regs {
	u32 eax, ebx, ecx, edx;
};

enum cpuid_regs_idx {
	CPUID_EAX = 0,
	CPUID_EBX,
	CPUID_ECX,
	CPUID_EDX,
};

145 146 147 148 149 150 151 152 153 154
#define X86_VENDOR_INTEL	0
#define X86_VENDOR_CYRIX	1
#define X86_VENDOR_AMD		2
#define X86_VENDOR_UMC		3
#define X86_VENDOR_CENTAUR	5
#define X86_VENDOR_TRANSMETA	7
#define X86_VENDOR_NSC		8
#define X86_VENDOR_NUM		9

#define X86_VENDOR_UNKNOWN	0xff
155

156 157 158
/*
 * capabilities of CPUs
 */
159 160 161 162
extern struct cpuinfo_x86	boot_cpu_data;
extern struct cpuinfo_x86	new_cpu_data;

extern struct tss_struct	doublefault_tss;
163 164
extern __u32			cpu_caps_cleared[NCAPINTS];
extern __u32			cpu_caps_set[NCAPINTS];
165 166

#ifdef CONFIG_SMP
167
DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
168 169
#define cpu_data(cpu)		per_cpu(cpu_info, cpu)
#else
170
#define cpu_info		boot_cpu_data
171 172 173
#define cpu_data(cpu)		boot_cpu_data
#endif

174 175
extern const struct seq_operations cpuinfo_op;

176 177 178
#define cache_line_size()	(boot_cpu_data.x86_cache_alignment)

extern void cpu_detect(struct cpuinfo_x86 *c);
179

180
extern void early_cpu_init(void);
181 182
extern void identify_boot_cpu(void);
extern void identify_secondary_cpu(struct cpuinfo_x86 *);
183
extern void print_cpu_info(struct cpuinfo_x86 *);
184
void print_cpu_msr(struct cpuinfo_x86 *);
185
extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
186 187 188
extern u32 get_scattered_cpuid_leaf(unsigned int level,
				    unsigned int sub_leaf,
				    enum cpuid_regs_idx reg);
189
extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
190
extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
191

192
extern void detect_extended_topology(struct cpuinfo_x86 *c);
193 194
extern void detect_ht(struct cpuinfo_x86 *c);

195 196 197 198 199 200 201 202
#ifdef CONFIG_X86_32
extern int have_cpuid_p(void);
#else
static inline int have_cpuid_p(void)
{
	return 1;
}
#endif
203
static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
204
				unsigned int *ecx, unsigned int *edx)
205 206
{
	/* ecx is often an input as well as an output. */
207
	asm volatile("cpuid"
208 209 210 211
	    : "=a" (*eax),
	      "=b" (*ebx),
	      "=c" (*ecx),
	      "=d" (*edx)
212 213
	    : "0" (*eax), "2" (*ecx)
	    : "memory");
214 215
}

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
#define native_cpuid_reg(reg)					\
static inline unsigned int native_cpuid_##reg(unsigned int op)	\
{								\
	unsigned int eax = op, ebx, ecx = 0, edx;		\
								\
	native_cpuid(&eax, &ebx, &ecx, &edx);			\
								\
	return reg;						\
}

/*
 * Native CPUID functions returning a single datum.
 */
native_cpuid_reg(eax)
native_cpuid_reg(ebx)
native_cpuid_reg(ecx)
native_cpuid_reg(edx)

234 235 236 237 238 239 240 241
/*
 * Friendlier CR3 helpers.
 */
static inline unsigned long read_cr3_pa(void)
{
	return __read_cr3() & CR3_ADDR_MASK;
}

242 243 244 245
static inline void load_cr3(pgd_t *pgdir)
{
	write_cr3(__pa(pgdir));
}
246

247 248 249
#ifdef CONFIG_X86_32
/* This is the TSS defined by the hardware. */
struct x86_hw_tss {
250 251 252
	unsigned short		back_link, __blh;
	unsigned long		sp0;
	unsigned short		ss0, __ss0h;
253
	unsigned long		sp1;
254 255

	/*
256 257 258 259 260 261
	 * We don't use ring 1, so ss1 is a convenient scratch space in
	 * the same cacheline as sp0.  We use ss1 to cache the value in
	 * MSR_IA32_SYSENTER_CS.  When we context switch
	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
	 * written matches ss1, and, if it's not, then we wrmsr the new
	 * value and update ss1.
262
	 *
263 264 265 266
	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
	 * that we set it to zero in vm86 tasks to avoid corrupting the
	 * stack if we were to go through the sysenter path from vm86
	 * mode.
267 268 269 270
	 */
	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */

	unsigned short		__ss1h;
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
	unsigned long		sp2;
	unsigned short		ss2, __ss2h;
	unsigned long		__cr3;
	unsigned long		ip;
	unsigned long		flags;
	unsigned long		ax;
	unsigned long		cx;
	unsigned long		dx;
	unsigned long		bx;
	unsigned long		sp;
	unsigned long		bp;
	unsigned long		si;
	unsigned long		di;
	unsigned short		es, __esh;
	unsigned short		cs, __csh;
	unsigned short		ss, __ssh;
	unsigned short		ds, __dsh;
	unsigned short		fs, __fsh;
	unsigned short		gs, __gsh;
	unsigned short		ldt, __ldth;
	unsigned short		trace;
	unsigned short		io_bitmap_base;

294 295 296
} __attribute__((packed));
#else
struct x86_hw_tss {
297 298 299 300 301 302 303 304 305 306 307
	u32			reserved1;
	u64			sp0;
	u64			sp1;
	u64			sp2;
	u64			reserved2;
	u64			ist[7];
	u32			reserved3;
	u32			reserved4;
	u16			reserved5;
	u16			io_bitmap_base;

308
} __attribute__((packed));
309 310 311
#endif

/*
312
 * IO-bitmap sizes:
313
 */
314 315 316 317 318
#define IO_BITMAP_BITS			65536
#define IO_BITMAP_BYTES			(IO_BITMAP_BITS/8)
#define IO_BITMAP_LONGS			(IO_BITMAP_BYTES/sizeof(long))
#define IO_BITMAP_OFFSET		offsetof(struct tss_struct, io_bitmap)
#define INVALID_IO_BITMAP_OFFSET	0x8000
319 320

struct tss_struct {
321 322 323 324
	/*
	 * The hardware state:
	 */
	struct x86_hw_tss	x86_tss;
325 326 327 328 329 330 331

	/*
	 * The extra 1 is there because the CPU will access an
	 * additional byte beyond the end of the IO permission
	 * bitmap. The extra byte must be all 1 bits, and must
	 * be within the limit.
	 */
332 333
	unsigned long		io_bitmap[IO_BITMAP_LONGS + 1];

334
#ifdef CONFIG_X86_32
335
	/*
336
	 * Space for the temporary SYSENTER stack.
337
	 */
338
	unsigned long		SYSENTER_stack_canary;
339
	unsigned long		SYSENTER_stack[64];
340
#endif
341

342
} ____cacheline_aligned;
343

344
DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
345

346 347 348 349 350 351 352 353 354 355
/*
 * sizeof(unsigned long) coming from an extra "long" at the end
 * of the iobitmap.
 *
 * -1? seg base+limit should be pointing to the address of the
 * last valid byte
 */
#define __KERNEL_TSS_LIMIT	\
	(IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)

356 357 358 359
#ifdef CONFIG_X86_32
DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
#endif

360 361 362
/*
 * Save the original ist values for checking stack pointers during debugging
 */
363
struct orig_ist {
364
	unsigned long		ist[7];
365 366
};

367
#ifdef CONFIG_X86_64
368
DECLARE_PER_CPU(struct orig_ist, orig_ist);
369

370 371 372 373 374 375 376 377 378 379 380 381 382
union irq_stack_union {
	char irq_stack[IRQ_STACK_SIZE];
	/*
	 * GCC hardcodes the stack canary as %gs:40.  Since the
	 * irq_stack is the object at %gs:0, we reserve the bottom
	 * 48 bytes of the irq stack for the canary.
	 */
	struct {
		char gs_base[40];
		unsigned long stack_canary;
	};
};

383
DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
384 385
DECLARE_INIT_PER_CPU(irq_stack_union);

386
DECLARE_PER_CPU(char *, irq_stack_ptr);
387 388
DECLARE_PER_CPU(unsigned int, irq_count);
extern asmlinkage void ignore_sysret(void);
389 390
#else	/* X86_64 */
#ifdef CONFIG_CC_STACKPROTECTOR
391 392 393 394 395 396 397 398 399 400
/*
 * Make sure stack canary segment base is cached-aligned:
 *   "For Intel Atom processors, avoid non zero segment base address
 *    that is not aligned to cache line boundary at all cost."
 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
 */
struct stack_canary {
	char __pad[20];		/* canary at %gs:20 */
	unsigned long canary;
};
401
DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
402
#endif
403 404 405 406 407 408 409 410 411
/*
 * per-CPU IRQ handling stacks
 */
struct irq_stack {
	u32                     stack[THREAD_SIZE/sizeof(u32)];
} __aligned(THREAD_SIZE);

DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
412
#endif	/* X86_64 */
413

414
extern unsigned int fpu_kernel_xstate_size;
415
extern unsigned int fpu_user_xstate_size;
416

417 418
struct perf_event;

419 420 421 422
typedef struct {
	unsigned long		seg;
} mm_segment_t;

423
struct thread_struct {
424 425 426 427
	/* Cached TLS descriptors: */
	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
	unsigned long		sp0;
	unsigned long		sp;
428
#ifdef CONFIG_X86_32
429
	unsigned long		sysenter_cs;
430
#else
431 432 433 434
	unsigned short		es;
	unsigned short		ds;
	unsigned short		fsindex;
	unsigned short		gsindex;
435
#endif
436 437 438

	u32			status;		/* thread synchronous flags */

439
#ifdef CONFIG_X86_64
440 441 442 443 444 445 446 447 448
	unsigned long		fsbase;
	unsigned long		gsbase;
#else
	/*
	 * XXX: this could presumably be unsigned short.  Alternatively,
	 * 32-bit kernels could be taught to use fsindex instead.
	 */
	unsigned long fs;
	unsigned long gs;
449
#endif
450

451 452 453 454
	/* Save middle states of ptrace breakpoints */
	struct perf_event	*ptrace_bps[HBP_NUM];
	/* Debug status used for traps, single steps, etc... */
	unsigned long           debugreg6;
455 456
	/* Keep track of the exact dr7 value set by the user */
	unsigned long           ptrace_dr7;
457 458
	/* Fault info: */
	unsigned long		cr2;
459
	unsigned long		trap_nr;
460
	unsigned long		error_code;
461
#ifdef CONFIG_VM86
462
	/* Virtual 86 mode info */
463
	struct vm86		*vm86;
464
#endif
465 466 467 468 469
	/* IO permissions: */
	unsigned long		*io_bitmap_ptr;
	unsigned long		iopl;
	/* Max allowed port in the bitmap, in bytes: */
	unsigned		io_bitmap_max;
470

471 472
	mm_segment_t		addr_limit;

473
	unsigned int		sig_on_uaccess_err:1;
474 475
	unsigned int		uaccess_err:1;	/* uaccess failed */

476 477 478 479 480 481
	/* Floating point and extended processor state */
	struct fpu		fpu;
	/*
	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
	 * the end.
	 */
482 483
};

484 485 486 487 488 489 490 491 492
/*
 * Thread-synchronous status.
 *
 * This is different from the flags in that nobody else
 * ever touches our thread-synchronous status, so we don't
 * have to worry about atomic accesses.
 */
#define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/

493 494 495 496 497 498 499
/*
 * Set IOPL bits in EFLAGS from given mask
 */
static inline void native_set_iopl_mask(unsigned mask)
{
#ifdef CONFIG_X86_32
	unsigned int reg;
500

501 502 503 504 505 506 507 508
	asm volatile ("pushfl;"
		      "popl %0;"
		      "andl %1, %0;"
		      "orl %2, %0;"
		      "pushl %0;"
		      "popfl"
		      : "=&r" (reg)
		      : "i" (~X86_EFLAGS_IOPL), "r" (mask));
509 510 511
#endif
}

512 513
static inline void
native_load_sp0(struct tss_struct *tss, struct thread_struct *thread)
514 515 516
{
	tss->x86_tss.sp0 = thread->sp0;
#ifdef CONFIG_X86_32
517
	/* Only happens when SEP is enabled, no need to test "SEP"arately: */
518 519 520 521 522 523
	if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
		tss->x86_tss.ss1 = thread->sysenter_cs;
		wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
	}
#endif
}
524

525 526 527 528 529 530 531
static inline void native_swapgs(void)
{
#ifdef CONFIG_X86_64
	asm volatile("swapgs" ::: "memory");
#endif
}

532
static inline unsigned long current_top_of_stack(void)
533
{
534
#ifdef CONFIG_X86_64
535
	return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
536 537 538 539
#else
	/* sp0 on x86_32 is special in and around vm86 mode. */
	return this_cpu_read_stable(cpu_current_top_of_stack);
#endif
540 541
}

542 543 544
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#else
545
#define __cpuid			native_cpuid
546

547 548
static inline void load_sp0(struct tss_struct *tss,
			    struct thread_struct *thread)
549 550 551 552
{
	native_load_sp0(tss, thread);
}

553
#define set_iopl_mask native_set_iopl_mask
554 555
#endif /* CONFIG_PARAVIRT */

556 557 558 559
/* Free all resources held by a thread. */
extern void release_thread(struct task_struct *);

unsigned long get_wchan(struct task_struct *p);
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

/*
 * Generic CPUID function
 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
 * resulting in stale register contents being returned.
 */
static inline void cpuid(unsigned int op,
			 unsigned int *eax, unsigned int *ebx,
			 unsigned int *ecx, unsigned int *edx)
{
	*eax = op;
	*ecx = 0;
	__cpuid(eax, ebx, ecx, edx);
}

/* Some CPUID calls want 'count' to be placed in ecx */
static inline void cpuid_count(unsigned int op, int count,
			       unsigned int *eax, unsigned int *ebx,
			       unsigned int *ecx, unsigned int *edx)
{
	*eax = op;
	*ecx = count;
	__cpuid(eax, ebx, ecx, edx);
}

/*
 * CPUID functions returning a single datum
 */
static inline unsigned int cpuid_eax(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
593

594 595
	return eax;
}
596

597 598 599 600 601
static inline unsigned int cpuid_ebx(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
602

603 604
	return ebx;
}
605

606 607 608 609 610
static inline unsigned int cpuid_ecx(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
611

612 613
	return ecx;
}
614

615 616 617 618 619
static inline unsigned int cpuid_edx(unsigned int op)
{
	unsigned int eax, ebx, ecx, edx;

	cpuid(op, &eax, &ebx, &ecx, &edx);
620

621 622 623
	return edx;
}

624
/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
625
static __always_inline void rep_nop(void)
626
{
627
	asm volatile("rep; nop" ::: "memory");
628 629
}

630
static __always_inline void cpu_relax(void)
631 632 633 634
{
	rep_nop();
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648
/*
 * This function forces the icache and prefetched instruction stream to
 * catch up with reality in two very specific cases:
 *
 *  a) Text was modified using one virtual address and is about to be executed
 *     from the same physical page at a different virtual address.
 *
 *  b) Text was modified on a different CPU, may subsequently be
 *     executed on this CPU, and you want to make sure the new version
 *     gets executed.  This generally means you're calling this in a IPI.
 *
 * If you're calling this for a different reason, you're probably doing
 * it wrong.
 */
649 650
static inline void sync_core(void)
{
651
	/*
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
	 * There are quite a few ways to do this.  IRET-to-self is nice
	 * because it works on every CPU, at any CPL (so it's compatible
	 * with paravirtualization), and it never exits to a hypervisor.
	 * The only down sides are that it's a bit slow (it seems to be
	 * a bit more than 2x slower than the fastest options) and that
	 * it unmasks NMIs.  The "push %cs" is needed because, in
	 * paravirtual environments, __KERNEL_CS may not be a valid CS
	 * value when we do IRET directly.
	 *
	 * In case NMI unmasking or performance ever becomes a problem,
	 * the next best option appears to be MOV-to-CR2 and an
	 * unconditional jump.  That sequence also works on all CPUs,
	 * but it will fault at CPL3 (i.e. Xen PV and lguest).
	 *
	 * CPUID is the conventional way, but it's nasty: it doesn't
	 * exist on some 486-like CPUs, and it usually exits to a
	 * hypervisor.
	 *
	 * Like all of Linux's memory ordering operations, this is a
	 * compiler barrier as well.
672
	 */
673 674 675 676 677 678 679 680 681 682
	register void *__sp asm(_ASM_SP);

#ifdef CONFIG_X86_32
	asm volatile (
		"pushfl\n\t"
		"pushl %%cs\n\t"
		"pushl $1f\n\t"
		"iret\n\t"
		"1:"
		: "+r" (__sp) : : "memory");
683
#else
684 685 686 687 688 689 690 691 692 693 694 695 696 697
	unsigned int tmp;

	asm volatile (
		"mov %%ss, %0\n\t"
		"pushq %q0\n\t"
		"pushq %%rsp\n\t"
		"addq $8, (%%rsp)\n\t"
		"pushfq\n\t"
		"mov %%cs, %0\n\t"
		"pushq %q0\n\t"
		"pushq $1f\n\t"
		"iretq\n\t"
		"1:"
		: "=&r" (tmp), "+r" (__sp) : : "cc", "memory");
698
#endif
699 700 701
}

extern void select_idle_routine(const struct cpuinfo_x86 *c);
702
extern void amd_e400_c1e_apic_setup(void);
703

704
extern unsigned long		boot_option_idle_override;
705

706
enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
707
			 IDLE_POLL};
708

709 710 711
extern void enable_sep_cpu(void);
extern int sysenter_setup(void);

712
extern void early_trap_init(void);
713
void early_trap_pf_init(void);
714

715
/* Defined in head.S */
716
extern struct desc_ptr		early_gdt_descr;
717 718

extern void cpu_set_gdt(int);
719
extern void switch_to_new_gdt(int);
720
extern void load_direct_gdt(int);
721
extern void load_fixmap_gdt(int);
722
extern void load_percpu_segment(int);
723 724
extern void cpu_init(void);

725 726
static inline unsigned long get_debugctlmsr(void)
{
P
Peter Zijlstra 已提交
727
	unsigned long debugctlmsr = 0;
728 729 730 731 732 733 734

#ifndef CONFIG_X86_DEBUGCTLMSR
	if (boot_cpu_data.x86 < 6)
		return 0;
#endif
	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);

P
Peter Zijlstra 已提交
735
	return debugctlmsr;
736 737
}

738 739 740 741 742 743 744 745 746
static inline void update_debugctlmsr(unsigned long debugctlmsr)
{
#ifndef CONFIG_X86_DEBUGCTLMSR
	if (boot_cpu_data.x86 < 6)
		return;
#endif
	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
}

747 748
extern void set_task_blockstep(struct task_struct *task, bool on);

749 750
/* Boot loader type from the setup header: */
extern int			bootloader_type;
751
extern int			bootloader_version;
752

753
extern char			ignore_fpu_irq;
754 755 756 757 758

#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
#define ARCH_HAS_PREFETCHW
#define ARCH_HAS_SPINLOCK_PREFETCH

759
#ifdef CONFIG_X86_32
760
# define BASE_PREFETCH		""
761
# define ARCH_HAS_PREFETCH
762
#else
763
# define BASE_PREFETCH		"prefetcht0 %P1"
764 765
#endif

766 767 768 769 770 771
/*
 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
 *
 * It's not worth to care about 3dnow prefetches for the K6
 * because they are microcoded there and very slow.
 */
772 773
static inline void prefetch(const void *x)
{
774
	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
775
			  X86_FEATURE_XMM,
776
			  "m" (*(const char *)x));
777 778
}

779 780 781 782 783
/*
 * 3dnow prefetch to get an exclusive cache line.
 * Useful for spinlocks to avoid one state transition in the
 * cache coherency protocol:
 */
784 785
static inline void prefetchw(const void *x)
{
786 787 788
	alternative_input(BASE_PREFETCH, "prefetchw %P1",
			  X86_FEATURE_3DNOWPREFETCH,
			  "m" (*(const char *)x));
789 790
}

791 792 793 794 795
static inline void spin_lock_prefetch(const void *x)
{
	prefetchw(x);
}

796 797 798
#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
			   TOP_OF_KERNEL_STACK_PADDING)

799 800 801 802
#ifdef CONFIG_X86_32
/*
 * User space process size: 3GB (default).
 */
803
#define IA32_PAGE_OFFSET	PAGE_OFFSET
804
#define TASK_SIZE		PAGE_OFFSET
805
#define TASK_SIZE_MAX		TASK_SIZE
806 807 808 809
#define STACK_TOP		TASK_SIZE
#define STACK_TOP_MAX		STACK_TOP

#define INIT_THREAD  {							  \
810
	.sp0			= TOP_OF_INIT_STACK,			  \
811 812
	.sysenter_cs		= __KERNEL_CS,				  \
	.io_bitmap_ptr		= NULL,					  \
813
	.addr_limit		= KERNEL_DS,				  \
814 815 816
}

/*
817
 * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack.
818
 * This is necessary to guarantee that the entire "struct pt_regs"
819
 * is accessible even if the CPU haven't stored the SS/ESP registers
820 821 822 823 824 825
 * on the stack (interrupt gate does not save these registers
 * when switching to the same priv ring).
 * Therefore beware: accessing the ss/esp fields of the
 * "struct pt_regs" is possible, but they may contain the
 * completely wrong values.
 */
826 827 828 829 830
#define task_pt_regs(task) \
({									\
	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
	((struct pt_regs *)__ptr) - 1;					\
831 832
})

833
#define KSTK_ESP(task)		(task_pt_regs(task)->sp)
834 835 836

#else
/*
837 838 839 840 841 842 843
 * User space process size. 47bits minus one guard page.  The guard
 * page is necessary on Intel CPUs: if a SYSCALL instruction is at
 * the highest possible canonical userspace address, then that
 * syscall will enter the kernel with a non-canonical return
 * address, and SYSRET will explode dangerously.  We avoid this
 * particular problem by preventing anything from being mapped
 * at the maximum canonical address.
844
 */
845
#define TASK_SIZE_MAX	((1UL << 47) - PAGE_SIZE)
846 847 848 849

/* This decides where the kernel will search for a free chunk of vm
 * space during mmap's.
 */
850 851
#define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \
					0xc0000000 : 0xFFFFe000)
852

853
#define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \
854
					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
855
#define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
856
					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
857

858
#define STACK_TOP		TASK_SIZE
859
#define STACK_TOP_MAX		TASK_SIZE_MAX
860

861 862 863
#define INIT_THREAD  {						\
	.sp0			= TOP_OF_INIT_STACK,		\
	.addr_limit		= KERNEL_DS,			\
864 865
}

866
#define task_pt_regs(tsk)	((struct pt_regs *)(tsk)->thread.sp0 - 1)
867
extern unsigned long KSTK_ESP(struct task_struct *task);
868

869 870
#endif /* CONFIG_X86_64 */

I
Ingo Molnar 已提交
871 872 873
extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
					       unsigned long new_sp);

874 875
/*
 * This decides where the kernel will search for a free chunk of vm
876 877
 * space during mmap's.
 */
878 879
#define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3))
#define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE)
880

881
#define KSTK_EIP(task)		(task_pt_regs(task)->ip)
882

883 884 885 886 887 888 889
/* Get/set a process' ability to use the timestamp counter instruction */
#define GET_TSC_CTL(adr)	get_tsc_mode((adr))
#define SET_TSC_CTL(val)	set_tsc_mode((val))

extern int get_tsc_mode(unsigned long adr);
extern int set_tsc_mode(unsigned int val);

890 891
DECLARE_PER_CPU(u64, msr_misc_features_shadow);

892
/* Register/unregister a process' MPX related resource */
893 894
#define MPX_ENABLE_MANAGEMENT()	mpx_enable_management()
#define MPX_DISABLE_MANAGEMENT()	mpx_disable_management()
895 896

#ifdef CONFIG_X86_INTEL_MPX
897 898
extern int mpx_enable_management(void);
extern int mpx_disable_management(void);
899
#else
900
static inline int mpx_enable_management(void)
901 902 903
{
	return -EINVAL;
}
904
static inline int mpx_disable_management(void)
905 906 907 908 909
{
	return -EINVAL;
}
#endif /* CONFIG_X86_INTEL_MPX */

910
#ifdef CONFIG_CPU_SUP_AMD
911
extern u16 amd_get_nb_id(int cpu);
912
extern u32 amd_get_nodes_per_socket(void);
913 914 915 916
#else
static inline u16 amd_get_nb_id(int cpu)		{ return 0; }
static inline u32 amd_get_nodes_per_socket(void)	{ return 0; }
#endif
917

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
{
	uint32_t base, eax, signature[3];

	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);

		if (!memcmp(sig, signature, 12) &&
		    (leaves == 0 || ((eax - base) >= leaves)))
			return base;
	}

	return 0;
}

933 934 935 936
extern unsigned long arch_align_stack(unsigned long sp);
extern void free_init_pages(char *what, unsigned long begin, unsigned long end);

void default_idle(void);
937 938 939 940 941
#ifdef	CONFIG_XEN
bool xen_set_default_idle(void);
#else
#define xen_set_default_idle 0
#endif
942 943

void stop_this_cpu(void *dummy);
944
void df_debug(struct pt_regs *regs, long error_code);
H
H. Peter Anvin 已提交
945
#endif /* _ASM_X86_PROCESSOR_H */