slab_common.c 30.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
14 15
#include <linux/cpu.h>
#include <linux/uaccess.h>
16 17
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
18 19 20
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
21
#include <linux/memcontrol.h>
22 23

#define CREATE_TRACE_POINTS
24
#include <trace/events/kmem.h>
25

26 27 28
#include "slab.h"

enum slab_state slab_state;
29 30
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
31
struct kmem_cache *kmem_cache;
32

33 34 35 36 37 38 39
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)

40 41
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
			 SLAB_NOTRACK | SLAB_ACCOUNT)
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 * (Could be removed. This was introduced to pacify the merge skeptics.)
 */
static int slab_nomerge;

static int __init setup_slab_nomerge(char *str)
{
	slab_nomerge = 1;
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

61 62 63 64 65 66 67 68 69
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

70
#ifdef CONFIG_DEBUG_VM
71
static int kmem_cache_sanity_check(const char *name, size_t size)
72 73 74 75 76
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
77 78
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
79
	}
80

81 82 83 84 85 86 87 88 89 90 91
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
92
			pr_err("Slab cache with size %d has lost its name\n",
93 94 95 96 97 98
			       s->object_size);
			continue;
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 100 101
	return 0;
}
#else
102
static inline int kmem_cache_sanity_check(const char *name, size_t size)
103 104 105
{
	return 0;
}
106 107
#endif

108 109 110 111 112 113 114 115
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

	for (i = 0; i < nr; i++)
		kmem_cache_free(s, p[i]);
}

116
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
117 118 119 120 121 122 123 124
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
125
			return 0;
126 127
		}
	}
128
	return i;
129 130
}

131
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
132
void slab_init_memcg_params(struct kmem_cache *s)
133
{
134
	s->memcg_params.is_root_cache = true;
135
	INIT_LIST_HEAD(&s->memcg_params.list);
136 137 138 139 140 141 142
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
}

static int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct memcg_cache_array *arr;
143

144 145 146 147
	if (memcg) {
		s->memcg_params.is_root_cache = false;
		s->memcg_params.memcg = memcg;
		s->memcg_params.root_cache = root_cache;
148
		return 0;
149
	}
150

151
	slab_init_memcg_params(s);
152

153 154
	if (!memcg_nr_cache_ids)
		return 0;
155

156 157 158 159 160
	arr = kzalloc(sizeof(struct memcg_cache_array) +
		      memcg_nr_cache_ids * sizeof(void *),
		      GFP_KERNEL);
	if (!arr)
		return -ENOMEM;
161

162
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
163 164 165
	return 0;
}

166
static void destroy_memcg_params(struct kmem_cache *s)
167
{
168 169
	if (is_root_cache(s))
		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
170 171
}

172
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
173
{
174
	struct memcg_cache_array *old, *new;
175

176 177
	if (!is_root_cache(s))
		return 0;
178

179 180 181
	new = kzalloc(sizeof(struct memcg_cache_array) +
		      new_array_size * sizeof(void *), GFP_KERNEL);
	if (!new)
182 183
		return -ENOMEM;

184 185 186 187 188
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
189

190 191 192
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
		kfree_rcu(old, rcu);
193 194 195
	return 0;
}

196 197 198 199 200
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

201
	mutex_lock(&slab_mutex);
202
	list_for_each_entry(s, &slab_caches, list) {
203
		ret = update_memcg_params(s, num_memcgs);
204 205 206 207 208
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
209
			break;
210 211 212 213
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
214
#else
215 216
static inline int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
217 218 219 220
{
	return 0;
}

221
static inline void destroy_memcg_params(struct kmem_cache *s)
222 223
{
}
224
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
225

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *))
{
	struct kmem_cache *s;

	if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

265
	list_for_each_entry_reverse(s, &slab_caches, list) {
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

284 285 286 287
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

288 289 290 291 292
		return s;
	}
	return NULL;
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

320 321 322 323
static struct kmem_cache *create_cache(const char *name,
		size_t object_size, size_t size, size_t align,
		unsigned long flags, void (*ctor)(void *),
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
{
	struct kmem_cache *s;
	int err;

	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
	s->object_size = object_size;
	s->size = size;
	s->align = align;
	s->ctor = ctor;

339
	err = init_memcg_params(s, memcg, root_cache);
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
355
	destroy_memcg_params(s);
356
	kmem_cache_free(kmem_cache, s);
357 358
	goto out;
}
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
384
struct kmem_cache *
385 386
kmem_cache_create(const char *name, size_t size, size_t align,
		  unsigned long flags, void (*ctor)(void *))
387
{
388
	struct kmem_cache *s = NULL;
389
	const char *cache_name;
390
	int err;
391

392
	get_online_cpus();
393
	get_online_mems();
394
	memcg_get_cache_ids();
395

396
	mutex_lock(&slab_mutex);
397

398
	err = kmem_cache_sanity_check(name, size);
399
	if (err) {
400
		goto out_unlock;
401
	}
402

403 404 405 406 407 408 409
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
410

411 412
	s = __kmem_cache_alias(name, size, align, flags, ctor);
	if (s)
413
		goto out_unlock;
414

415
	cache_name = kstrdup_const(name, GFP_KERNEL);
416 417 418 419
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
420

421 422 423
	s = create_cache(cache_name, size, size,
			 calculate_alignment(flags, align, size),
			 flags, ctor, NULL, NULL);
424 425
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
426
		kfree_const(cache_name);
427
	}
428 429

out_unlock:
430
	mutex_unlock(&slab_mutex);
431

432
	memcg_put_cache_ids();
433
	put_online_mems();
434 435
	put_online_cpus();

436
	if (err) {
437 438 439 440 441 442 443 444 445 446
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
				name, err);
			dump_stack();
		}
		return NULL;
	}
447 448
	return s;
}
449
EXPORT_SYMBOL(kmem_cache_create);
450

451
static int shutdown_cache(struct kmem_cache *s,
452 453
		struct list_head *release, bool *need_rcu_barrier)
{
454
	if (__kmem_cache_shutdown(s) != 0)
455 456 457 458 459 460 461 462 463
		return -EBUSY;

	if (s->flags & SLAB_DESTROY_BY_RCU)
		*need_rcu_barrier = true;

	list_move(&s->list, release);
	return 0;
}

464
static void release_caches(struct list_head *release, bool need_rcu_barrier)
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
{
	struct kmem_cache *s, *s2;

	if (need_rcu_barrier)
		rcu_barrier();

	list_for_each_entry_safe(s, s2, release, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_remove(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
}

480
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
481
/*
482
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
483 484 485 486 487 488 489
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
490 491
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
492
{
493
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
494
	struct cgroup_subsys_state *css = &memcg->css;
495
	struct memcg_cache_array *arr;
496
	struct kmem_cache *s = NULL;
497
	char *cache_name;
498
	int idx;
499 500

	get_online_cpus();
501 502
	get_online_mems();

503 504
	mutex_lock(&slab_mutex);

505
	/*
506
	 * The memory cgroup could have been offlined while the cache
507 508
	 * creation work was pending.
	 */
509
	if (!memcg_kmem_online(memcg))
510 511
		goto out_unlock;

512 513 514 515
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

516 517 518 519 520
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
521
	if (arr->entries[idx])
522 523
		goto out_unlock;

524
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
525
	cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
526
			       css->id, memcg_name_buf);
527 528 529
	if (!cache_name)
		goto out_unlock;

530 531 532 533
	s = create_cache(cache_name, root_cache->object_size,
			 root_cache->size, root_cache->align,
			 root_cache->flags, root_cache->ctor,
			 memcg, root_cache);
534 535 536 537 538
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
539
	if (IS_ERR(s)) {
540
		kfree(cache_name);
541
		goto out_unlock;
542
	}
543

544 545
	list_add(&s->memcg_params.list, &root_cache->memcg_params.list);

546 547 548 549 550 551
	/*
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
552
	arr->entries[idx] = s;
553

554 555
out_unlock:
	mutex_unlock(&slab_mutex);
556 557

	put_online_mems();
558
	put_online_cpus();
559
}
560

561 562 563 564
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
	int idx;
	struct memcg_cache_array *arr;
565
	struct kmem_cache *s, *c;
566 567 568

	idx = memcg_cache_id(memcg);

569 570 571
	get_online_cpus();
	get_online_mems();

572 573 574 575 576 577 578
	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		if (!is_root_cache(s))
			continue;

		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
579 580 581 582 583
		c = arr->entries[idx];
		if (!c)
			continue;

		__kmem_cache_shrink(c, true);
584 585 586
		arr->entries[idx] = NULL;
	}
	mutex_unlock(&slab_mutex);
587 588 589

	put_online_mems();
	put_online_cpus();
590 591
}

592 593 594 595 596 597 598 599 600 601 602 603
static int __shutdown_memcg_cache(struct kmem_cache *s,
		struct list_head *release, bool *need_rcu_barrier)
{
	BUG_ON(is_root_cache(s));

	if (shutdown_cache(s, release, need_rcu_barrier))
		return -EBUSY;

	list_del(&s->memcg_params.list);
	return 0;
}

604
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
605
{
606 607 608
	LIST_HEAD(release);
	bool need_rcu_barrier = false;
	struct kmem_cache *s, *s2;
609

610 611
	get_online_cpus();
	get_online_mems();
612 613

	mutex_lock(&slab_mutex);
614
	list_for_each_entry_safe(s, s2, &slab_caches, list) {
615
		if (is_root_cache(s) || s->memcg_params.memcg != memcg)
616 617 618 619 620
			continue;
		/*
		 * The cgroup is about to be freed and therefore has no charges
		 * left. Hence, all its caches must be empty by now.
		 */
621
		BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier));
622 623
	}
	mutex_unlock(&slab_mutex);
624

625 626 627
	put_online_mems();
	put_online_cpus();

628
	release_caches(&release, need_rcu_barrier);
629
}
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

static int shutdown_memcg_caches(struct kmem_cache *s,
		struct list_head *release, bool *need_rcu_barrier)
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
		if (__shutdown_memcg_cache(c, release, need_rcu_barrier))
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
			list_move(&c->memcg_params.list, &busy);
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
	list_for_each_entry_safe(c, c2, &s->memcg_params.list,
				 memcg_params.list)
		__shutdown_memcg_cache(c, release, need_rcu_barrier);

	list_splice(&busy, &s->memcg_params.list);

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
	if (!list_empty(&s->memcg_params.list))
		return -EBUSY;
	return 0;
}
#else
static inline int shutdown_memcg_caches(struct kmem_cache *s,
		struct list_head *release, bool *need_rcu_barrier)
{
	return 0;
}
692
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
693

694 695
void slab_kmem_cache_release(struct kmem_cache *s)
{
696
	__kmem_cache_release(s);
697
	destroy_memcg_params(s);
698
	kfree_const(s->name);
699 700 701
	kmem_cache_free(kmem_cache, s);
}

702 703
void kmem_cache_destroy(struct kmem_cache *s)
{
704 705
	LIST_HEAD(release);
	bool need_rcu_barrier = false;
706
	int err;
707

708 709 710
	if (unlikely(!s))
		return;

711
	get_online_cpus();
712 713
	get_online_mems();

714
	mutex_lock(&slab_mutex);
715

716
	s->refcount--;
717 718 719
	if (s->refcount)
		goto out_unlock;

720 721
	err = shutdown_memcg_caches(s, &release, &need_rcu_barrier);
	if (!err)
722
		err = shutdown_cache(s, &release, &need_rcu_barrier);
723

724 725 726 727 728
	if (err) {
		pr_err("kmem_cache_destroy %s: "
		       "Slab cache still has objects\n", s->name);
		dump_stack();
	}
729 730
out_unlock:
	mutex_unlock(&slab_mutex);
731

732
	put_online_mems();
733
	put_online_cpus();
734

735
	release_caches(&release, need_rcu_barrier);
736 737 738
}
EXPORT_SYMBOL(kmem_cache_destroy);

739 740 741 742 743 744 745 746 747 748 749 750 751
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
752
	ret = __kmem_cache_shrink(cachep, false);
753 754 755 756 757 758
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

759
bool slab_is_available(void)
760 761 762
{
	return slab_state >= UP;
}
763

764 765 766 767 768 769 770 771 772
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
		unsigned long flags)
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
773
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
774 775 776

	slab_init_memcg_params(s);

777 778 779
	err = __kmem_cache_create(s, flags);

	if (err)
780
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
				unsigned long flags)
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

	create_boot_cache(s, name, size, flags);
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

800 801 802 803 804 805 806 807
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	int index;

854
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
855
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
856
		return NULL;
857
	}
858

859 860 861 862 863 864 865 866 867
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
868
	if (unlikely((flags & GFP_DMA)))
869 870 871 872 873 874
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
static struct {
	const char *name;
	unsigned long size;
} const kmalloc_info[] __initconst = {
	{NULL,                      0},		{"kmalloc-96",             96},
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
	{"kmalloc-67108864", 67108864}
};

900
/*
901 902 903 904 905 906 907 908 909
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
910
 */
911
void __init setup_kmalloc_cache_index_table(void)
912 913 914
{
	int i;

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
945 946
}

947
static void __init new_kmalloc_cache(int idx, unsigned long flags)
948 949 950 951 952
{
	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
					kmalloc_info[idx].size, flags);
}

953 954 955 956 957 958 959 960 961
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
void __init create_kmalloc_caches(unsigned long flags)
{
	int i;

962 963 964
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i])
			new_kmalloc_cache(i, flags);
965

966
		/*
967 968 969
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
970
		 */
971 972 973 974
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			new_kmalloc_cache(1, flags);
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			new_kmalloc_cache(2, flags);
975 976
	}

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
			int size = kmalloc_size(i);
			char *n = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", size);

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
				size, SLAB_CACHE_DMA | flags);
		}
	}
#endif
}
996 997
#endif /* !CONFIG_SLOB */

998 999 1000 1001 1002
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
1003 1004 1005 1006 1007 1008 1009 1010 1011
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
	page = alloc_kmem_pages(flags, order);
	ret = page ? page_address(page) : NULL;
	kmemleak_alloc(ret, size, 1, flags);
1012
	kasan_kmalloc_large(ret, size);
1013 1014 1015 1016
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1017 1018 1019 1020 1021 1022 1023 1024 1025
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1026

1027
#ifdef CONFIG_SLABINFO
1028 1029 1030 1031 1032 1033 1034

#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

1035
static void print_slabinfo_header(struct seq_file *m)
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1058
void *slab_start(struct seq_file *m, loff_t *pos)
1059 1060 1061 1062 1063
{
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
}

1064
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1065 1066 1067 1068
{
	return seq_list_next(p, &slab_caches, pos);
}

1069
void slab_stop(struct seq_file *m, void *p)
1070 1071 1072 1073
{
	mutex_unlock(&slab_mutex);
}

1074 1075 1076 1077 1078 1079 1080 1081 1082
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1083
	for_each_memcg_cache(c, s) {
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1095
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1096
{
1097 1098 1099 1100 1101
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1102 1103
	memcg_accumulate_slabinfo(s, &sinfo);

1104
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1105
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1106 1107 1108 1109 1110 1111 1112 1113
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1114 1115
}

1116
static int slab_show(struct seq_file *m, void *p)
1117 1118 1119
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);

1120 1121
	if (p == slab_caches.next)
		print_slabinfo_header(m);
1122 1123 1124 1125 1126
	if (is_root_cache(s))
		cache_show(s, m);
	return 0;
}

1127
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1128 1129 1130 1131 1132 1133 1134
int memcg_slab_show(struct seq_file *m, void *p)
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	if (p == slab_caches.next)
		print_slabinfo_header(m);
1135
	if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1136 1137
		cache_show(s, m);
	return 0;
1138
}
1139
#endif
1140

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1155
	.start = slab_start,
1156 1157
	.next = slab_next,
	.stop = slab_stop,
1158
	.show = slab_show,
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1176 1177
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1178 1179 1180 1181
	return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1192 1193
	if (ks >= new_size) {
		kasan_krealloc((void *)p, new_size);
1194
		return (void *)p;
1195
	}
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
	if (ret && p != ret)
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
新手
引导
客服 返回
顶部