slab_common.c 28.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
14 15
#include <linux/cpu.h>
#include <linux/uaccess.h>
16 17
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
18 19 20
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
21
#include <linux/memcontrol.h>
22 23

#define CREATE_TRACE_POINTS
24
#include <trace/events/kmem.h>
25

26 27 28
#include "slab.h"

enum slab_state slab_state;
29 30
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
31
struct kmem_cache *kmem_cache;
32

33 34 35 36 37 38 39
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)

40
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | SLAB_NOTRACK)
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 * (Could be removed. This was introduced to pacify the merge skeptics.)
 */
static int slab_nomerge;

static int __init setup_slab_nomerge(char *str)
{
	slab_nomerge = 1;
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

60 61 62 63 64 65 66 67 68
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

69
#ifdef CONFIG_DEBUG_VM
70
static int kmem_cache_sanity_check(const char *name, size_t size)
71 72 73 74 75
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
76 77
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
78
	}
79

80 81 82 83 84 85 86 87 88 89 90
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
91
			pr_err("Slab cache with size %d has lost its name\n",
92 93 94 95 96 97
			       s->object_size);
			continue;
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
98 99 100
	return 0;
}
#else
101
static inline int kmem_cache_sanity_check(const char *name, size_t size)
102 103 104
{
	return 0;
}
105 106
#endif

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

	for (i = 0; i < nr; i++)
		kmem_cache_free(s, p[i]);
}

bool __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
			return false;
		}
	}
	return true;
}

130
#ifdef CONFIG_MEMCG_KMEM
131
void slab_init_memcg_params(struct kmem_cache *s)
132
{
133
	s->memcg_params.is_root_cache = true;
134
	INIT_LIST_HEAD(&s->memcg_params.list);
135 136 137 138 139 140 141
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
}

static int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct memcg_cache_array *arr;
142

143 144 145 146
	if (memcg) {
		s->memcg_params.is_root_cache = false;
		s->memcg_params.memcg = memcg;
		s->memcg_params.root_cache = root_cache;
147
		return 0;
148
	}
149

150
	slab_init_memcg_params(s);
151

152 153
	if (!memcg_nr_cache_ids)
		return 0;
154

155 156 157 158 159
	arr = kzalloc(sizeof(struct memcg_cache_array) +
		      memcg_nr_cache_ids * sizeof(void *),
		      GFP_KERNEL);
	if (!arr)
		return -ENOMEM;
160

161
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
162 163 164
	return 0;
}

165
static void destroy_memcg_params(struct kmem_cache *s)
166
{
167 168
	if (is_root_cache(s))
		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
169 170
}

171
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
172
{
173
	struct memcg_cache_array *old, *new;
174

175 176
	if (!is_root_cache(s))
		return 0;
177

178 179 180
	new = kzalloc(sizeof(struct memcg_cache_array) +
		      new_array_size * sizeof(void *), GFP_KERNEL);
	if (!new)
181 182
		return -ENOMEM;

183 184 185 186 187
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
188

189 190 191
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
		kfree_rcu(old, rcu);
192 193 194
	return 0;
}

195 196 197 198 199
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

200
	mutex_lock(&slab_mutex);
201
	list_for_each_entry(s, &slab_caches, list) {
202
		ret = update_memcg_params(s, num_memcgs);
203 204 205 206 207
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
208
			break;
209 210 211 212
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
213
#else
214 215
static inline int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
216 217 218 219
{
	return 0;
}

220
static inline void destroy_memcg_params(struct kmem_cache *s)
221 222 223
{
}
#endif /* CONFIG_MEMCG_KMEM */
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *))
{
	struct kmem_cache *s;

	if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

264
	list_for_each_entry_reverse(s, &slab_caches, list) {
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

283 284 285 286
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

287 288 289 290 291
		return s;
	}
	return NULL;
}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

319 320 321 322
static struct kmem_cache *create_cache(const char *name,
		size_t object_size, size_t size, size_t align,
		unsigned long flags, void (*ctor)(void *),
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
{
	struct kmem_cache *s;
	int err;

	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
	s->object_size = object_size;
	s->size = size;
	s->align = align;
	s->ctor = ctor;

338
	err = init_memcg_params(s, memcg, root_cache);
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
354
	destroy_memcg_params(s);
355
	kmem_cache_free(kmem_cache, s);
356 357
	goto out;
}
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
383
struct kmem_cache *
384 385
kmem_cache_create(const char *name, size_t size, size_t align,
		  unsigned long flags, void (*ctor)(void *))
386
{
387
	struct kmem_cache *s;
388
	const char *cache_name;
389
	int err;
390

391
	get_online_cpus();
392
	get_online_mems();
393
	memcg_get_cache_ids();
394

395
	mutex_lock(&slab_mutex);
396

397
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
398 399
	if (err) {
		s = NULL;	/* suppress uninit var warning */
400
		goto out_unlock;
A
Andrew Morton 已提交
401
	}
402

403 404 405 406 407 408 409
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
410

411 412
	s = __kmem_cache_alias(name, size, align, flags, ctor);
	if (s)
413
		goto out_unlock;
414

415
	cache_name = kstrdup_const(name, GFP_KERNEL);
416 417 418 419
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
420

421 422 423
	s = create_cache(cache_name, size, size,
			 calculate_alignment(flags, align, size),
			 flags, ctor, NULL, NULL);
424 425
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
426
		kfree_const(cache_name);
427
	}
428 429

out_unlock:
430
	mutex_unlock(&slab_mutex);
431

432
	memcg_put_cache_ids();
433
	put_online_mems();
434 435
	put_online_cpus();

436
	if (err) {
437 438 439 440 441 442 443 444 445 446
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
				name, err);
			dump_stack();
		}
		return NULL;
	}
447 448
	return s;
}
449
EXPORT_SYMBOL(kmem_cache_create);
450

451
static int shutdown_cache(struct kmem_cache *s,
452 453 454 455 456 457 458 459 460 461 462 463 464
		struct list_head *release, bool *need_rcu_barrier)
{
	if (__kmem_cache_shutdown(s) != 0) {
		printk(KERN_ERR "kmem_cache_destroy %s: "
		       "Slab cache still has objects\n", s->name);
		dump_stack();
		return -EBUSY;
	}

	if (s->flags & SLAB_DESTROY_BY_RCU)
		*need_rcu_barrier = true;

#ifdef CONFIG_MEMCG_KMEM
465
	if (!is_root_cache(s))
466
		list_del(&s->memcg_params.list);
467 468 469 470 471
#endif
	list_move(&s->list, release);
	return 0;
}

472
static void release_caches(struct list_head *release, bool need_rcu_barrier)
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
{
	struct kmem_cache *s, *s2;

	if (need_rcu_barrier)
		rcu_barrier();

	list_for_each_entry_safe(s, s2, release, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_remove(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
}

488 489
#ifdef CONFIG_MEMCG_KMEM
/*
490
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
491 492 493 494 495 496 497
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
498 499
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
500
{
501
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
M
Michal Hocko 已提交
502
	struct cgroup_subsys_state *css = &memcg->css;
503
	struct memcg_cache_array *arr;
504
	struct kmem_cache *s = NULL;
505
	char *cache_name;
506
	int idx;
507 508

	get_online_cpus();
509 510
	get_online_mems();

511 512
	mutex_lock(&slab_mutex);

513 514 515 516 517 518 519
	/*
	 * The memory cgroup could have been deactivated while the cache
	 * creation work was pending.
	 */
	if (!memcg_kmem_is_active(memcg))
		goto out_unlock;

520 521 522 523
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

524 525 526 527 528
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
529
	if (arr->entries[idx])
530 531
		goto out_unlock;

532
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
533
	cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
534
			       css->id, memcg_name_buf);
535 536 537
	if (!cache_name)
		goto out_unlock;

538 539 540 541
	s = create_cache(cache_name, root_cache->object_size,
			 root_cache->size, root_cache->align,
			 root_cache->flags, root_cache->ctor,
			 memcg, root_cache);
542 543 544 545 546
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
547
	if (IS_ERR(s)) {
548
		kfree(cache_name);
549
		goto out_unlock;
550
	}
551

552 553
	list_add(&s->memcg_params.list, &root_cache->memcg_params.list);

554 555 556 557 558 559
	/*
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
560
	arr->entries[idx] = s;
561

562 563
out_unlock:
	mutex_unlock(&slab_mutex);
564 565

	put_online_mems();
566
	put_online_cpus();
567
}
568

569 570 571 572
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
	int idx;
	struct memcg_cache_array *arr;
573
	struct kmem_cache *s, *c;
574 575 576

	idx = memcg_cache_id(memcg);

577 578 579
	get_online_cpus();
	get_online_mems();

580 581 582 583 584 585 586
	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		if (!is_root_cache(s))
			continue;

		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
587 588 589 590 591
		c = arr->entries[idx];
		if (!c)
			continue;

		__kmem_cache_shrink(c, true);
592 593 594
		arr->entries[idx] = NULL;
	}
	mutex_unlock(&slab_mutex);
595 596 597

	put_online_mems();
	put_online_cpus();
598 599
}

600
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
601
{
602 603 604
	LIST_HEAD(release);
	bool need_rcu_barrier = false;
	struct kmem_cache *s, *s2;
605

606 607
	get_online_cpus();
	get_online_mems();
608 609

	mutex_lock(&slab_mutex);
610
	list_for_each_entry_safe(s, s2, &slab_caches, list) {
611
		if (is_root_cache(s) || s->memcg_params.memcg != memcg)
612 613 614 615 616
			continue;
		/*
		 * The cgroup is about to be freed and therefore has no charges
		 * left. Hence, all its caches must be empty by now.
		 */
617
		BUG_ON(shutdown_cache(s, &release, &need_rcu_barrier));
618 619
	}
	mutex_unlock(&slab_mutex);
620

621 622 623
	put_online_mems();
	put_online_cpus();

624
	release_caches(&release, need_rcu_barrier);
625
}
626
#endif /* CONFIG_MEMCG_KMEM */
627

628 629
void slab_kmem_cache_release(struct kmem_cache *s)
{
630
	destroy_memcg_params(s);
631
	kfree_const(s->name);
632 633 634
	kmem_cache_free(kmem_cache, s);
}

635 636
void kmem_cache_destroy(struct kmem_cache *s)
{
637
	struct kmem_cache *c, *c2;
638 639 640 641
	LIST_HEAD(release);
	bool need_rcu_barrier = false;
	bool busy = false;

642 643 644
	if (unlikely(!s))
		return;

645 646
	BUG_ON(!is_root_cache(s));

647
	get_online_cpus();
648 649
	get_online_mems();

650
	mutex_lock(&slab_mutex);
651

652
	s->refcount--;
653 654 655
	if (s->refcount)
		goto out_unlock;

656
	for_each_memcg_cache_safe(c, c2, s) {
657
		if (shutdown_cache(c, &release, &need_rcu_barrier))
658
			busy = true;
659
	}
660

661
	if (!busy)
662
		shutdown_cache(s, &release, &need_rcu_barrier);
663 664 665

out_unlock:
	mutex_unlock(&slab_mutex);
666

667
	put_online_mems();
668
	put_online_cpus();
669

670
	release_caches(&release, need_rcu_barrier);
671 672 673
}
EXPORT_SYMBOL(kmem_cache_destroy);

674 675 676 677 678 679 680 681 682 683 684 685 686
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
687
	ret = __kmem_cache_shrink(cachep, false);
688 689 690 691 692 693
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

694
bool slab_is_available(void)
695 696 697
{
	return slab_state >= UP;
}
698

699 700 701 702 703 704 705 706 707
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
		unsigned long flags)
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
708
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
709 710 711

	slab_init_memcg_params(s);

712 713 714
	err = __kmem_cache_create(s, flags);

	if (err)
715
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
				unsigned long flags)
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

	create_boot_cache(s, name, size, flags);
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

735 736 737 738 739 740 741 742
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	int index;

789
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
790
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
791
		return NULL;
792
	}
793

794 795 796 797 798 799 800 801 802
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
803
	if (unlikely((flags & GFP_DMA)))
804 805 806 807 808 809
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
static struct {
	const char *name;
	unsigned long size;
} const kmalloc_info[] __initconst = {
	{NULL,                      0},		{"kmalloc-96",             96},
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
	{"kmalloc-67108864", 67108864}
};

835
/*
836 837 838 839 840 841 842 843 844
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
845
 */
846
void __init setup_kmalloc_cache_index_table(void)
847 848 849
{
	int i;

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
880 881
}

882
static void __init new_kmalloc_cache(int idx, unsigned long flags)
883 884 885 886 887
{
	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
					kmalloc_info[idx].size, flags);
}

888 889 890 891 892 893 894 895 896
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
void __init create_kmalloc_caches(unsigned long flags)
{
	int i;

897 898 899
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i])
			new_kmalloc_cache(i, flags);
900

901
		/*
902 903 904
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
905
		 */
906 907 908 909
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			new_kmalloc_cache(1, flags);
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			new_kmalloc_cache(2, flags);
910 911
	}

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
			int size = kmalloc_size(i);
			char *n = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", size);

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
				size, SLAB_CACHE_DMA | flags);
		}
	}
#endif
}
931 932
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
933 934 935 936 937
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
938 939 940 941 942 943 944 945 946
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
	page = alloc_kmem_pages(flags, order);
	ret = page ? page_address(page) : NULL;
	kmemleak_alloc(ret, size, 1, flags);
947
	kasan_kmalloc_large(ret, size);
V
Vladimir Davydov 已提交
948 949 950 951
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

952 953 954 955 956 957 958 959 960
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
961

962
#ifdef CONFIG_SLABINFO
963 964 965 966 967 968 969

#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

970
static void print_slabinfo_header(struct seq_file *m)
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

993
void *slab_start(struct seq_file *m, loff_t *pos)
994 995 996 997 998
{
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
}

999
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1000 1001 1002 1003
{
	return seq_list_next(p, &slab_caches, pos);
}

1004
void slab_stop(struct seq_file *m, void *p)
1005 1006 1007 1008
{
	mutex_unlock(&slab_mutex);
}

1009 1010 1011 1012 1013 1014 1015 1016 1017
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1018
	for_each_memcg_cache(c, s) {
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1030
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1031
{
1032 1033 1034 1035 1036
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1037 1038
	memcg_accumulate_slabinfo(s, &sinfo);

1039
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1040
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1041 1042 1043 1044 1045 1046 1047 1048
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1049 1050
}

1051
static int slab_show(struct seq_file *m, void *p)
1052 1053 1054
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);

1055 1056
	if (p == slab_caches.next)
		print_slabinfo_header(m);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	if (is_root_cache(s))
		cache_show(s, m);
	return 0;
}

#ifdef CONFIG_MEMCG_KMEM
int memcg_slab_show(struct seq_file *m, void *p)
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	if (p == slab_caches.next)
		print_slabinfo_header(m);
1070
	if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1071 1072
		cache_show(s, m);
	return 0;
1073
}
1074
#endif
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1090
	.start = slab_start,
1091 1092
	.next = slab_next,
	.stop = slab_stop,
1093
	.show = slab_show,
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1111 1112
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1113 1114 1115 1116
	return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1127 1128
	if (ks >= new_size) {
		kasan_krealloc((void *)p, new_size);
1129
		return (void *)p;
1130
	}
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
	if (ret && p != ret)
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);