slab_common.c 17.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
14 15
#include <linux/cpu.h>
#include <linux/uaccess.h>
16 17
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
18 19 20
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
21
#include <linux/memcontrol.h>
22
#include <trace/events/kmem.h>
23

24 25 26
#include "slab.h"

enum slab_state slab_state;
27 28
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
29
struct kmem_cache *kmem_cache;
30

31
#ifdef CONFIG_DEBUG_VM
32
static int kmem_cache_sanity_check(const char *name, size_t size)
33 34 35 36 37
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
38 39
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
40
	}
41

42 43 44 45 46 47 48 49 50 51 52
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
53
			pr_err("Slab cache with size %d has lost its name\n",
54 55 56 57
			       s->object_size);
			continue;
		}

58
#if !defined(CONFIG_SLUB) || !defined(CONFIG_SLUB_DEBUG_ON)
59
		if (!strcmp(s->name, name)) {
60 61
			pr_err("%s (%s): Cache name already exists.\n",
			       __func__, name);
62 63
			dump_stack();
			s = NULL;
64
			return -EINVAL;
65
		}
66
#endif
67 68 69
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
70 71 72
	return 0;
}
#else
73
static inline int kmem_cache_sanity_check(const char *name, size_t size)
74 75 76
{
	return 0;
}
77 78
#endif

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
#ifdef CONFIG_MEMCG_KMEM
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;
	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list) {
		if (!is_root_cache(s))
			continue;

		ret = memcg_update_cache_size(s, num_memcgs);
		/*
		 * See comment in memcontrol.c, memcg_update_cache_size:
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
			goto out;
	}

	memcg_update_array_size(num_memcgs);
out:
	mutex_unlock(&slab_mutex);
	return ret;
}
#endif

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
static struct kmem_cache *
do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
		     unsigned long flags, void (*ctor)(void *),
		     struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct kmem_cache *s;
	int err;

	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
	s->object_size = object_size;
	s->size = size;
	s->align = align;
	s->ctor = ctor;

	err = memcg_alloc_cache_params(memcg, s, root_cache);
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
	memcg_free_cache_params(s);
	kfree(s);
	goto out;
}
173

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
198
struct kmem_cache *
199 200
kmem_cache_create(const char *name, size_t size, size_t align,
		  unsigned long flags, void (*ctor)(void *))
201
{
202 203
	struct kmem_cache *s;
	char *cache_name;
204
	int err;
205

206
	get_online_cpus();
207 208
	get_online_mems();

209
	mutex_lock(&slab_mutex);
210

211
	err = kmem_cache_sanity_check(name, size);
212 213
	if (err)
		goto out_unlock;
214

215 216 217 218 219 220 221
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
222

223 224
	s = __kmem_cache_alias(name, size, align, flags, ctor);
	if (s)
225
		goto out_unlock;
226

227 228 229 230 231
	cache_name = kstrdup(name, GFP_KERNEL);
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
232

233 234 235 236 237 238 239
	s = do_kmem_cache_create(cache_name, size, size,
				 calculate_alignment(flags, align, size),
				 flags, ctor, NULL, NULL);
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
		kfree(cache_name);
	}
240 241

out_unlock:
242
	mutex_unlock(&slab_mutex);
243 244

	put_online_mems();
245 246
	put_online_cpus();

247
	if (err) {
248 249 250 251 252 253 254 255 256 257
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
				name, err);
			dump_stack();
		}
		return NULL;
	}
258 259
	return s;
}
260
EXPORT_SYMBOL(kmem_cache_create);
261

262 263 264 265 266 267 268 269 270 271
#ifdef CONFIG_MEMCG_KMEM
/*
 * kmem_cache_create_memcg - Create a cache for a memory cgroup.
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
272 273
struct kmem_cache *kmem_cache_create_memcg(struct mem_cgroup *memcg,
					   struct kmem_cache *root_cache)
274
{
275
	struct kmem_cache *s = NULL;
276 277 278
	char *cache_name;

	get_online_cpus();
279 280
	get_online_mems();

281 282 283 284 285 286 287 288 289 290
	mutex_lock(&slab_mutex);

	cache_name = memcg_create_cache_name(memcg, root_cache);
	if (!cache_name)
		goto out_unlock;

	s = do_kmem_cache_create(cache_name, root_cache->object_size,
				 root_cache->size, root_cache->align,
				 root_cache->flags, root_cache->ctor,
				 memcg, root_cache);
291
	if (IS_ERR(s)) {
292
		kfree(cache_name);
293 294
		s = NULL;
	}
295 296 297

out_unlock:
	mutex_unlock(&slab_mutex);
298 299

	put_online_mems();
300
	put_online_cpus();
301 302

	return s;
303
}
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

static int kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	int rc;

	if (!s->memcg_params ||
	    !s->memcg_params->is_root_cache)
		return 0;

	mutex_unlock(&slab_mutex);
	rc = __kmem_cache_destroy_memcg_children(s);
	mutex_lock(&slab_mutex);

	return rc;
}
#else
static int kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	return 0;
}
324
#endif /* CONFIG_MEMCG_KMEM */
325

326 327 328 329 330 331
void slab_kmem_cache_release(struct kmem_cache *s)
{
	kfree(s->name);
	kmem_cache_free(kmem_cache, s);
}

332 333 334
void kmem_cache_destroy(struct kmem_cache *s)
{
	get_online_cpus();
335 336
	get_online_mems();

337
	mutex_lock(&slab_mutex);
338

339
	s->refcount--;
340 341 342 343 344 345 346 347 348 349 350 351 352
	if (s->refcount)
		goto out_unlock;

	if (kmem_cache_destroy_memcg_children(s) != 0)
		goto out_unlock;

	list_del(&s->list);
	if (__kmem_cache_shutdown(s) != 0) {
		list_add(&s->list, &slab_caches);
		printk(KERN_ERR "kmem_cache_destroy %s: "
		       "Slab cache still has objects\n", s->name);
		dump_stack();
		goto out_unlock;
353
	}
354 355 356 357 358 359

	mutex_unlock(&slab_mutex);
	if (s->flags & SLAB_DESTROY_BY_RCU)
		rcu_barrier();

	memcg_free_cache_params(s);
360 361 362 363 364
#ifdef SLAB_SUPPORTS_SYSFS
	sysfs_slab_remove(s);
#else
	slab_kmem_cache_release(s);
#endif
365
	goto out;
366 367 368

out_unlock:
	mutex_unlock(&slab_mutex);
369 370
out:
	put_online_mems();
371 372 373 374
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
	ret = __kmem_cache_shrink(cachep);
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

395 396 397 398
int slab_is_available(void)
{
	return slab_state >= UP;
}
399

400 401 402 403 404 405 406 407 408
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
		unsigned long flags)
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
409
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
410 411 412
	err = __kmem_cache_create(s, flags);

	if (err)
413
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
				unsigned long flags)
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

	create_boot_cache(s, name, size, flags);
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

433 434 435 436 437 438 439 440
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	int index;

487
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
488
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
489
		return NULL;
490
	}
491

492 493 494 495 496 497 498 499 500
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
501
	if (unlikely((flags & GFP_DMA)))
502 503 504 505 506 507
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

508 509 510 511 512 513 514 515 516
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
void __init create_kmalloc_caches(unsigned long flags)
{
	int i;

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
	 * MIPS it seems. The standard arches will not generate any code here.
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
558 559
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i]) {
560 561
			kmalloc_caches[i] = create_kmalloc_cache(NULL,
							1 << i, flags);
562
		}
563

564 565 566 567 568 569 570
		/*
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
		 */
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
571

572 573
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
574 575
	}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	/* Kmalloc array is now usable */
	slab_state = UP;

	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];
		char *n;

		if (s) {
			n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));

			BUG_ON(!n);
			s->name = n;
		}
	}

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
			int size = kmalloc_size(i);
			char *n = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", size);

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
				size, SLAB_CACHE_DMA | flags);
		}
	}
#endif
}
607 608
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
609 610 611 612 613
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
	page = alloc_kmem_pages(flags, order);
	ret = page ? page_address(page) : NULL;
	kmemleak_alloc(ret, size, 1, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

627 628 629 630 631 632 633 634 635
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
636

637
#ifdef CONFIG_SLABINFO
638 639 640 641 642 643 644

#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

645
void print_slabinfo_header(struct seq_file *m)
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

668 669 670 671 672 673 674 675 676 677 678
static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	mutex_lock(&slab_mutex);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

679
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
680 681 682 683
{
	return seq_list_next(p, &slab_caches, pos);
}

684
void slab_stop(struct seq_file *m, void *p)
685 686 687 688
{
	mutex_unlock(&slab_mutex);
}

689 690 691 692 693 694 695 696 697 698 699
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;
	int i;

	if (!is_root_cache(s))
		return;

	for_each_memcg_cache_index(i) {
700
		c = cache_from_memcg_idx(s, i);
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
		if (!c)
			continue;

		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

int cache_show(struct kmem_cache *s, struct seq_file *m)
716
{
717 718 719 720 721
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

722 723
	memcg_accumulate_slabinfo(s, &sinfo);

724
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
725
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
726 727 728 729 730 731 732 733 734
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
	return 0;
735 736
}

737 738 739 740 741 742 743 744 745
static int s_show(struct seq_file *m, void *p)
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);

	if (!is_root_cache(s))
		return 0;
	return cache_show(s, m);
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
	.start = s_start,
761 762
	.next = slab_next,
	.stop = slab_stop,
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
	.show = s_show,
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
781 782
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
783 784 785 786
	return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */