sparse.c 20.8 KB
Newer Older
A
Andy Whitcroft 已提交
1 2 3 4
/*
 * sparse memory mappings.
 */
#include <linux/mm.h>
5
#include <linux/slab.h>
A
Andy Whitcroft 已提交
6 7
#include <linux/mmzone.h>
#include <linux/bootmem.h>
8
#include <linux/highmem.h>
9
#include <linux/export.h>
10
#include <linux/spinlock.h>
11
#include <linux/vmalloc.h>
12
#include "internal.h"
A
Andy Whitcroft 已提交
13
#include <asm/dma.h>
14 15
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
A
Andy Whitcroft 已提交
16 17 18 19 20 21

/*
 * Permanent SPARSEMEM data:
 *
 * 1) mem_section	- memory sections, mem_map's for valid memory
 */
22
#ifdef CONFIG_SPARSEMEM_EXTREME
B
Bob Picco 已提交
23
struct mem_section *mem_section[NR_SECTION_ROOTS]
24
	____cacheline_internodealigned_in_smp;
25 26
#else
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
27
	____cacheline_internodealigned_in_smp;
28 29 30
#endif
EXPORT_SYMBOL(mem_section);

31 32 33 34 35 36 37 38 39 40 41 42
#ifdef NODE_NOT_IN_PAGE_FLAGS
/*
 * If we did not store the node number in the page then we have to
 * do a lookup in the section_to_node_table in order to find which
 * node the page belongs to.
 */
#if MAX_NUMNODES <= 256
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#else
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#endif

I
Ian Campbell 已提交
43
int page_to_nid(const struct page *page)
44 45 46 47
{
	return section_to_node_table[page_to_section(page)];
}
EXPORT_SYMBOL(page_to_nid);
48 49 50 51 52 53 54 55 56

static void set_section_nid(unsigned long section_nr, int nid)
{
	section_to_node_table[section_nr] = nid;
}
#else /* !NODE_NOT_IN_PAGE_FLAGS */
static inline void set_section_nid(unsigned long section_nr, int nid)
{
}
57 58
#endif

59
#ifdef CONFIG_SPARSEMEM_EXTREME
S
Sam Ravnborg 已提交
60
static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
61 62 63 64 65
{
	struct mem_section *section = NULL;
	unsigned long array_size = SECTIONS_PER_ROOT *
				   sizeof(struct mem_section);

66 67
	if (slab_is_available()) {
		if (node_state(nid, N_HIGH_MEMORY))
68
			section = kzalloc_node(array_size, GFP_KERNEL, nid);
69
		else
70 71
			section = kzalloc(array_size, GFP_KERNEL);
	} else {
72
		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
73
	}
74 75

	return section;
76
}
B
Bob Picco 已提交
77

78
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
B
Bob Picco 已提交
79
{
80 81
	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
	struct mem_section *section;
B
Bob Picco 已提交
82 83

	if (mem_section[root])
84
		return -EEXIST;
85

86
	section = sparse_index_alloc(nid);
87 88
	if (!section)
		return -ENOMEM;
89 90

	mem_section[root] = section;
G
Gavin Shan 已提交
91

92
	return 0;
93 94 95 96 97
}
#else /* !SPARSEMEM_EXTREME */
static inline int sparse_index_init(unsigned long section_nr, int nid)
{
	return 0;
B
Bob Picco 已提交
98
}
99 100
#endif

101 102
/*
 * Although written for the SPARSEMEM_EXTREME case, this happens
103
 * to also work for the flat array case because
104 105 106 107 108 109 110
 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
 */
int __section_nr(struct mem_section* ms)
{
	unsigned long root_nr;
	struct mem_section* root;

111 112
	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
113 114 115 116 117 118 119
		if (!root)
			continue;

		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
		     break;
	}

120 121
	VM_BUG_ON(root_nr == NR_SECTION_ROOTS);

122 123 124
	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
/*
 * During early boot, before section_mem_map is used for an actual
 * mem_map, we use section_mem_map to store the section's NUMA
 * node.  This keeps us from having to use another data structure.  The
 * node information is cleared just before we store the real mem_map.
 */
static inline unsigned long sparse_encode_early_nid(int nid)
{
	return (nid << SECTION_NID_SHIFT);
}

static inline int sparse_early_nid(struct mem_section *section)
{
	return (section->section_mem_map >> SECTION_NID_SHIFT);
}

141 142 143
/* Validate the physical addressing limitations of the model */
void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
						unsigned long *end_pfn)
A
Andy Whitcroft 已提交
144
{
145
	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
A
Andy Whitcroft 已提交
146

I
Ingo Molnar 已提交
147 148 149 150
	/*
	 * Sanity checks - do not allow an architecture to pass
	 * in larger pfns than the maximum scope of sparsemem:
	 */
151 152 153 154 155 156 157
	if (*start_pfn > max_sparsemem_pfn) {
		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
			*start_pfn, *end_pfn, max_sparsemem_pfn);
		WARN_ON_ONCE(1);
		*start_pfn = max_sparsemem_pfn;
		*end_pfn = max_sparsemem_pfn;
158
	} else if (*end_pfn > max_sparsemem_pfn) {
159 160 161 162 163 164 165 166 167 168 169 170
		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
			*start_pfn, *end_pfn, max_sparsemem_pfn);
		WARN_ON_ONCE(1);
		*end_pfn = max_sparsemem_pfn;
	}
}

/* Record a memory area against a node. */
void __init memory_present(int nid, unsigned long start, unsigned long end)
{
	unsigned long pfn;
I
Ingo Molnar 已提交
171

A
Andy Whitcroft 已提交
172
	start &= PAGE_SECTION_MASK;
173
	mminit_validate_memmodel_limits(&start, &end);
A
Andy Whitcroft 已提交
174 175
	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
		unsigned long section = pfn_to_section_nr(pfn);
B
Bob Picco 已提交
176 177 178
		struct mem_section *ms;

		sparse_index_init(section, nid);
179
		set_section_nid(section, nid);
B
Bob Picco 已提交
180 181 182

		ms = __nr_to_section(section);
		if (!ms->section_mem_map)
183 184
			ms->section_mem_map = sparse_encode_early_nid(nid) |
							SECTION_MARKED_PRESENT;
A
Andy Whitcroft 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197
	}
}

/*
 * Only used by the i386 NUMA architecures, but relatively
 * generic code.
 */
unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
						     unsigned long end_pfn)
{
	unsigned long pfn;
	unsigned long nr_pages = 0;

198
	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
A
Andy Whitcroft 已提交
199 200 201 202
	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
		if (nid != early_pfn_to_nid(pfn))
			continue;

203
		if (pfn_present(pfn))
A
Andy Whitcroft 已提交
204 205 206 207 208 209
			nr_pages += PAGES_PER_SECTION;
	}

	return nr_pages * sizeof(struct page);
}

A
Andy Whitcroft 已提交
210 211 212 213 214 215 216 217 218 219 220
/*
 * Subtle, we encode the real pfn into the mem_map such that
 * the identity pfn - section_mem_map will return the actual
 * physical page frame number.
 */
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
}

/*
221
 * Decode mem_map from the coded memmap
A
Andy Whitcroft 已提交
222 223 224
 */
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
{
225 226
	/* mask off the extra low bits of information */
	coded_mem_map &= SECTION_MAP_MASK;
A
Andy Whitcroft 已提交
227 228 229
	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}

230
static int __meminit sparse_init_one_section(struct mem_section *ms,
231 232
		unsigned long pnum, struct page *mem_map,
		unsigned long *pageblock_bitmap)
A
Andy Whitcroft 已提交
233
{
234
	if (!present_section(ms))
A
Andy Whitcroft 已提交
235 236
		return -EINVAL;

237
	ms->section_mem_map &= ~SECTION_MAP_MASK;
238 239
	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
							SECTION_HAS_MEM_MAP;
240
 	ms->pageblock_flags = pageblock_bitmap;
A
Andy Whitcroft 已提交
241 242 243 244

	return 1;
}

245
unsigned long usemap_size(void)
246 247 248 249 250 251 252 253 254 255 256 257 258 259
{
	unsigned long size_bytes;
	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
	size_bytes = roundup(size_bytes, sizeof(unsigned long));
	return size_bytes;
}

#ifdef CONFIG_MEMORY_HOTPLUG
static unsigned long *__kmalloc_section_usemap(void)
{
	return kmalloc(usemap_size(), GFP_KERNEL);
}
#endif /* CONFIG_MEMORY_HOTPLUG */

260 261
#ifdef CONFIG_MEMORY_HOTREMOVE
static unsigned long * __init
262
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
263
					 unsigned long size)
264
{
265 266 267
	unsigned long goal, limit;
	unsigned long *p;
	int nid;
268 269 270 271 272 273 274 275 276 277
	/*
	 * A page may contain usemaps for other sections preventing the
	 * page being freed and making a section unremovable while
	 * other sections referencing the usemap retmain active. Similarly,
	 * a pgdat can prevent a section being removed. If section A
	 * contains a pgdat and section B contains the usemap, both
	 * sections become inter-dependent. This allocates usemaps
	 * from the same section as the pgdat where possible to avoid
	 * this problem.
	 */
278
	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
279 280 281 282 283 284 285 286 287 288
	limit = goal + (1UL << PA_SECTION_SHIFT);
	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
again:
	p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size,
					  SMP_CACHE_BYTES, goal, limit);
	if (!p && limit) {
		limit = 0;
		goto again;
	}
	return p;
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
}

static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
{
	unsigned long usemap_snr, pgdat_snr;
	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
	struct pglist_data *pgdat = NODE_DATA(nid);
	int usemap_nid;

	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
	if (usemap_snr == pgdat_snr)
		return;

	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
		/* skip redundant message */
		return;

	old_usemap_snr = usemap_snr;
	old_pgdat_snr = pgdat_snr;

	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
	if (usemap_nid != nid) {
		printk(KERN_INFO
		       "node %d must be removed before remove section %ld\n",
		       nid, usemap_snr);
		return;
	}
	/*
	 * There is a circular dependency.
	 * Some platforms allow un-removable section because they will just
	 * gather other removable sections for dynamic partitioning.
	 * Just notify un-removable section's number here.
	 */
	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
	       pgdat_snr, nid);
	printk(KERN_CONT
	       " have a circular dependency on usemap and pgdat allocations\n");
}
#else
static unsigned long * __init
331
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
332
					 unsigned long size)
333
{
334
	return alloc_bootmem_node_nopanic(pgdat, size);
335 336 337 338 339 340 341
}

static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
{
}
#endif /* CONFIG_MEMORY_HOTREMOVE */

342
static void __init sparse_early_usemaps_alloc_node(void *data,
343 344 345
				 unsigned long pnum_begin,
				 unsigned long pnum_end,
				 unsigned long usemap_count, int nodeid)
346
{
347 348
	void *usemap;
	unsigned long pnum;
349
	unsigned long **usemap_map = (unsigned long **)data;
350
	int size = usemap_size();
351

352
	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
353
							  size * usemap_count);
354
	if (!usemap) {
355 356
		printk(KERN_WARNING "%s: allocation failed\n", __func__);
		return;
357 358
	}

359 360 361 362 363 364
	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
		if (!present_section_nr(pnum))
			continue;
		usemap_map[pnum] = usemap;
		usemap += size;
		check_usemap_section_nr(nodeid, usemap_map[pnum]);
365
	}
366 367
}

368
#ifndef CONFIG_SPARSEMEM_VMEMMAP
369
struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
A
Andy Whitcroft 已提交
370 371
{
	struct page *map;
372
	unsigned long size;
A
Andy Whitcroft 已提交
373 374 375 376 377

	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
	if (map)
		return map;

378 379 380
	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
	map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
381 382
	return map;
}
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
void __init sparse_mem_maps_populate_node(struct page **map_map,
					  unsigned long pnum_begin,
					  unsigned long pnum_end,
					  unsigned long map_count, int nodeid)
{
	void *map;
	unsigned long pnum;
	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;

	map = alloc_remap(nodeid, size * map_count);
	if (map) {
		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
			if (!present_section_nr(pnum))
				continue;
			map_map[pnum] = map;
			map += size;
		}
		return;
	}

	size = PAGE_ALIGN(size);
404 405
	map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
	if (map) {
		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
			if (!present_section_nr(pnum))
				continue;
			map_map[pnum] = map;
			map += size;
		}
		return;
	}

	/* fallback */
	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
		struct mem_section *ms;

		if (!present_section_nr(pnum))
			continue;
		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
		if (map_map[pnum])
			continue;
		ms = __nr_to_section(pnum);
		printk(KERN_ERR "%s: sparsemem memory map backing failed "
			"some memory will not be available.\n", __func__);
		ms->section_mem_map = 0;
	}
}
431 432
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */

433
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
434
static void __init sparse_early_mem_maps_alloc_node(void *data,
435 436 437 438
				 unsigned long pnum_begin,
				 unsigned long pnum_end,
				 unsigned long map_count, int nodeid)
{
439
	struct page **map_map = (struct page **)data;
440 441 442
	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
					 map_count, nodeid);
}
443
#else
444
static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
445 446 447 448 449
{
	struct page *map;
	struct mem_section *ms = __nr_to_section(pnum);
	int nid = sparse_early_nid(ms);

450
	map = sparse_mem_map_populate(pnum, nid);
A
Andy Whitcroft 已提交
451 452 453
	if (map)
		return map;

454
	printk(KERN_ERR "%s: sparsemem memory map backing failed "
455
			"some memory will not be available.\n", __func__);
B
Bob Picco 已提交
456
	ms->section_mem_map = 0;
A
Andy Whitcroft 已提交
457 458
	return NULL;
}
459
#endif
A
Andy Whitcroft 已提交
460

461 462 463
void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
{
}
464

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
/**
 *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
 *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
 */
static void __init alloc_usemap_and_memmap(void (*alloc_func)
					(void *, unsigned long, unsigned long,
					unsigned long, int), void *data)
{
	unsigned long pnum;
	unsigned long map_count;
	int nodeid_begin = 0;
	unsigned long pnum_begin = 0;

	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
		struct mem_section *ms;

		if (!present_section_nr(pnum))
			continue;
		ms = __nr_to_section(pnum);
		nodeid_begin = sparse_early_nid(ms);
		pnum_begin = pnum;
		break;
	}
	map_count = 1;
	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
		struct mem_section *ms;
		int nodeid;

		if (!present_section_nr(pnum))
			continue;
		ms = __nr_to_section(pnum);
		nodeid = sparse_early_nid(ms);
		if (nodeid == nodeid_begin) {
			map_count++;
			continue;
		}
		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
		alloc_func(data, pnum_begin, pnum,
						map_count, nodeid_begin);
		/* new start, update count etc*/
		nodeid_begin = nodeid;
		pnum_begin = pnum;
		map_count = 1;
	}
	/* ok, last chunk */
	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
						map_count, nodeid_begin);
}

514 515 516 517 518 519 520 521
/*
 * Allocate the accumulated non-linear sections, allocate a mem_map
 * for each and record the physical to section mapping.
 */
void __init sparse_init(void)
{
	unsigned long pnum;
	struct page *map;
522
	unsigned long *usemap;
523
	unsigned long **usemap_map;
524 525 526 527 528
	int size;
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
	int size2;
	struct page **map_map;
#endif
529

530 531 532
	/* see include/linux/mmzone.h 'struct mem_section' definition */
	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));

533 534 535
	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
	set_pageblock_order();

536 537 538 539 540 541
	/*
	 * map is using big page (aka 2M in x86 64 bit)
	 * usemap is less one page (aka 24 bytes)
	 * so alloc 2M (with 2M align) and 24 bytes in turn will
	 * make next 2M slip to one more 2M later.
	 * then in big system, the memory will have a lot of holes...
L
Lucas De Marchi 已提交
542
	 * here try to allocate 2M pages continuously.
543 544 545 546 547 548 549 550
	 *
	 * powerpc need to call sparse_init_one_section right after each
	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
	 */
	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
	usemap_map = alloc_bootmem(size);
	if (!usemap_map)
		panic("can not allocate usemap_map\n");
551 552
	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
							(void *)usemap_map);
553

554 555 556 557 558
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
	map_map = alloc_bootmem(size2);
	if (!map_map)
		panic("can not allocate map_map\n");
559 560
	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
							(void *)map_map);
561 562
#endif

563 564
	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
		if (!present_section_nr(pnum))
565
			continue;
566

567
		usemap = usemap_map[pnum];
568 569 570
		if (!usemap)
			continue;

571 572 573
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
		map = map_map[pnum];
#else
574
		map = sparse_early_mem_map_alloc(pnum);
575
#endif
576 577 578
		if (!map)
			continue;

579 580
		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
								usemap);
581
	}
582

583 584
	vmemmap_populate_print_last();

585 586 587
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
	free_bootmem(__pa(map_map), size2);
#endif
588
	free_bootmem(__pa(usemap_map), size);
589 590 591
}

#ifdef CONFIG_MEMORY_HOTPLUG
592
#ifdef CONFIG_SPARSEMEM_VMEMMAP
593
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
594 595 596 597
{
	/* This will make the necessary allocations eventually. */
	return sparse_mem_map_populate(pnum, nid);
}
598
static void __kfree_section_memmap(struct page *memmap)
599
{
600
	unsigned long start = (unsigned long)memmap;
601
	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
602 603

	vmemmap_free(start, end);
604
}
605
#ifdef CONFIG_MEMORY_HOTREMOVE
606
static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
607
{
608 609 610 611
	unsigned long start = (unsigned long)memmap;
	unsigned long end = (unsigned long)(memmap + nr_pages);

	vmemmap_free(start, end);
612
}
613
#endif /* CONFIG_MEMORY_HOTREMOVE */
614
#else
615
static struct page *__kmalloc_section_memmap(void)
616 617
{
	struct page *page, *ret;
618
	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
619

620
	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	if (page)
		goto got_map_page;

	ret = vmalloc(memmap_size);
	if (ret)
		goto got_map_ptr;

	return NULL;
got_map_page:
	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
got_map_ptr:

	return ret;
}

636
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
637
{
638
	return __kmalloc_section_memmap();
639 640
}

641
static void __kfree_section_memmap(struct page *memmap)
642
{
643
	if (is_vmalloc_addr(memmap))
644 645 646
		vfree(memmap);
	else
		free_pages((unsigned long)memmap,
647
			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
648
}
649

650
#ifdef CONFIG_MEMORY_HOTREMOVE
651
static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
652 653
{
	unsigned long maps_section_nr, removing_section_nr, i;
A
Andrea Arcangeli 已提交
654
	unsigned long magic;
655
	struct page *page = virt_to_page(memmap);
656 657

	for (i = 0; i < nr_pages; i++, page++) {
A
Andrea Arcangeli 已提交
658
		magic = (unsigned long) page->lru.next;
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676

		BUG_ON(magic == NODE_INFO);

		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
		removing_section_nr = page->private;

		/*
		 * When this function is called, the removing section is
		 * logical offlined state. This means all pages are isolated
		 * from page allocator. If removing section's memmap is placed
		 * on the same section, it must not be freed.
		 * If it is freed, page allocator may allocate it which will
		 * be removed physically soon.
		 */
		if (maps_section_nr != removing_section_nr)
			put_page_bootmem(page);
	}
}
677
#endif /* CONFIG_MEMORY_HOTREMOVE */
678
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
679

A
Andy Whitcroft 已提交
680 681 682 683 684
/*
 * returns the number of sections whose mem_maps were properly
 * set.  If this is <=0, then that means that the passed-in
 * map was not consumed and must be freed.
 */
685
int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
A
Andy Whitcroft 已提交
686
{
687 688 689 690
	unsigned long section_nr = pfn_to_section_nr(start_pfn);
	struct pglist_data *pgdat = zone->zone_pgdat;
	struct mem_section *ms;
	struct page *memmap;
691
	unsigned long *usemap;
692 693
	unsigned long flags;
	int ret;
A
Andy Whitcroft 已提交
694

695 696 697 698
	/*
	 * no locking for this, because it does its own
	 * plus, it does a kmalloc
	 */
699 700 701
	ret = sparse_index_init(section_nr, pgdat->node_id);
	if (ret < 0 && ret != -EEXIST)
		return ret;
702
	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
703 704
	if (!memmap)
		return -ENOMEM;
705
	usemap = __kmalloc_section_usemap();
706
	if (!usemap) {
707
		__kfree_section_memmap(memmap);
708 709
		return -ENOMEM;
	}
710 711

	pgdat_resize_lock(pgdat, &flags);
A
Andy Whitcroft 已提交
712

713 714 715 716 717
	ms = __pfn_to_section(start_pfn);
	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
		ret = -EEXIST;
		goto out;
	}
718

719
	memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
720

A
Andy Whitcroft 已提交
721 722
	ms->section_mem_map |= SECTION_MARKED_PRESENT;

723
	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
724 725 726

out:
	pgdat_resize_unlock(pgdat, &flags);
727 728
	if (ret <= 0) {
		kfree(usemap);
729
		__kfree_section_memmap(memmap);
730
	}
731
	return ret;
A
Andy Whitcroft 已提交
732
}
733

734
#ifdef CONFIG_MEMORY_HOTREMOVE
735 736 737 738 739 740 741 742 743 744
#ifdef CONFIG_MEMORY_FAILURE
static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
{
	int i;

	if (!memmap)
		return;

	for (i = 0; i < PAGES_PER_SECTION; i++) {
		if (PageHWPoison(&memmap[i])) {
745
			atomic_long_sub(1, &num_poisoned_pages);
746 747 748 749 750 751 752 753 754 755
			ClearPageHWPoison(&memmap[i]);
		}
	}
}
#else
static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
{
}
#endif

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static void free_section_usemap(struct page *memmap, unsigned long *usemap)
{
	struct page *usemap_page;
	unsigned long nr_pages;

	if (!usemap)
		return;

	usemap_page = virt_to_page(usemap);
	/*
	 * Check to see if allocation came from hot-plug-add
	 */
	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
		kfree(usemap);
		if (memmap)
771
			__kfree_section_memmap(memmap);
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
		return;
	}

	/*
	 * The usemap came from bootmem. This is packed with other usemaps
	 * on the section which has pgdat at boot time. Just keep it as is now.
	 */

	if (memmap) {
		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
			>> PAGE_SHIFT;

		free_map_bootmem(memmap, nr_pages);
	}
}

788 789 790
void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
{
	struct page *memmap = NULL;
791 792
	unsigned long *usemap = NULL, flags;
	struct pglist_data *pgdat = zone->zone_pgdat;
793

794
	pgdat_resize_lock(pgdat, &flags);
795 796 797 798 799 800 801
	if (ms->section_mem_map) {
		usemap = ms->pageblock_flags;
		memmap = sparse_decode_mem_map(ms->section_mem_map,
						__section_nr(ms));
		ms->section_mem_map = 0;
		ms->pageblock_flags = NULL;
	}
802
	pgdat_resize_unlock(pgdat, &flags);
803

804
	clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION);
805 806
	free_section_usemap(memmap, usemap);
}
807 808
#endif /* CONFIG_MEMORY_HOTREMOVE */
#endif /* CONFIG_MEMORY_HOTPLUG */