intel_ringbuffer.h 19.0 KB
Newer Older
1 2 3
#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_

4
#include <linux/hashtable.h>
5
#include "i915_gem_batch_pool.h"
6 7 8

#define I915_CMD_HASH_ORDER 9

9 10 11 12 13 14
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
 * to give some inclination as to some of the magic values used in the various
 * workarounds!
 */
#define CACHELINE_BYTES 64
15
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
16

17 18 19 20 21 22 23 24 25 26 27
/*
 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
 * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
 * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
 *
 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
 * cacheline, the Head Pointer must not be greater than the Tail
 * Pointer."
 */
#define I915_RING_FREE_SPACE 64

28
struct  intel_hw_status_page {
29
	u32		*page_addr;
30
	unsigned int	gfx_addr;
31
	struct		drm_i915_gem_object *obj;
32 33
};

B
Ben Widawsky 已提交
34 35
#define I915_READ_TAIL(ring) I915_READ(RING_TAIL((ring)->mmio_base))
#define I915_WRITE_TAIL(ring, val) I915_WRITE(RING_TAIL((ring)->mmio_base), val)
36

B
Ben Widawsky 已提交
37 38
#define I915_READ_START(ring) I915_READ(RING_START((ring)->mmio_base))
#define I915_WRITE_START(ring, val) I915_WRITE(RING_START((ring)->mmio_base), val)
39

B
Ben Widawsky 已提交
40 41
#define I915_READ_HEAD(ring)  I915_READ(RING_HEAD((ring)->mmio_base))
#define I915_WRITE_HEAD(ring, val) I915_WRITE(RING_HEAD((ring)->mmio_base), val)
42

B
Ben Widawsky 已提交
43 44
#define I915_READ_CTL(ring) I915_READ(RING_CTL((ring)->mmio_base))
#define I915_WRITE_CTL(ring, val) I915_WRITE(RING_CTL((ring)->mmio_base), val)
45

B
Ben Widawsky 已提交
46 47
#define I915_READ_IMR(ring) I915_READ(RING_IMR((ring)->mmio_base))
#define I915_WRITE_IMR(ring, val) I915_WRITE(RING_IMR((ring)->mmio_base), val)
48

49
#define I915_READ_MODE(ring) I915_READ(RING_MI_MODE((ring)->mmio_base))
50
#define I915_WRITE_MODE(ring, val) I915_WRITE(RING_MI_MODE((ring)->mmio_base), val)
51

52 53 54
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
 */
55 56 57
#define gen8_semaphore_seqno_size sizeof(uint64_t)
#define GEN8_SEMAPHORE_OFFSET(__from, __to)			     \
	(((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
58 59
#define GEN8_SIGNAL_OFFSET(__ring, to)			     \
	(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
60
	 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
61 62
#define GEN8_WAIT_OFFSET(__ring, from)			     \
	(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
63
	 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
64

65
enum intel_ring_hangcheck_action {
66
	HANGCHECK_IDLE = 0,
67 68 69 70 71
	HANGCHECK_WAIT,
	HANGCHECK_ACTIVE,
	HANGCHECK_KICK,
	HANGCHECK_HUNG,
};
72

73 74
#define HANGCHECK_SCORE_RING_HUNG 31

75
struct intel_ring_hangcheck {
76
	u64 acthd;
77
	u32 seqno;
78
	unsigned user_interrupts;
79
	int score;
80
	enum intel_ring_hangcheck_action action;
81
	int deadlock;
82
	u32 instdone[I915_NUM_INSTDONE_REG];
83 84
};

85 86 87
struct intel_ringbuffer {
	struct drm_i915_gem_object *obj;
	void __iomem *virtual_start;
88
	struct i915_vma *vma;
89

90
	struct intel_engine_cs *engine;
91
	struct list_head link;
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	u32 head;
	u32 tail;
	int space;
	int size;
	int effective_size;

	/** We track the position of the requests in the ring buffer, and
	 * when each is retired we increment last_retired_head as the GPU
	 * must have finished processing the request and so we know we
	 * can advance the ringbuffer up to that position.
	 *
	 * last_retired_head is set to -1 after the value is consumed so
	 * we can detect new retirements.
	 */
	u32 last_retired_head;
};

110
struct i915_gem_context;
111
struct drm_i915_reg_table;
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/*
 * we use a single page to load ctx workarounds so all of these
 * values are referred in terms of dwords
 *
 * struct i915_wa_ctx_bb:
 *  offset: specifies batch starting position, also helpful in case
 *    if we want to have multiple batches at different offsets based on
 *    some criteria. It is not a requirement at the moment but provides
 *    an option for future use.
 *  size: size of the batch in DWORDS
 */
struct  i915_ctx_workarounds {
	struct i915_wa_ctx_bb {
		u32 offset;
		u32 size;
	} indirect_ctx, per_ctx;
	struct drm_i915_gem_object *obj;
};

132 133
struct intel_engine_cs {
	struct drm_i915_private *i915;
134
	const char	*name;
135
	enum intel_engine_id {
136
		RCS = 0,
137
		BCS,
138 139 140
		VCS,
		VCS2,	/* Keep instances of the same type engine together. */
		VECS
141
	} id;
142
#define I915_NUM_ENGINES 5
143
#define _VCS(n) (VCS + (n))
144
	unsigned int exec_id;
145 146
	unsigned int hw_id;
	unsigned int guc_id; /* XXX same as hw_id? */
147
	u32		mmio_base;
148
	struct intel_ringbuffer *buffer;
149
	struct list_head buffers;
150

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	/* Rather than have every client wait upon all user interrupts,
	 * with the herd waking after every interrupt and each doing the
	 * heavyweight seqno dance, we delegate the task (of being the
	 * bottom-half of the user interrupt) to the first client. After
	 * every interrupt, we wake up one client, who does the heavyweight
	 * coherent seqno read and either goes back to sleep (if incomplete),
	 * or wakes up all the completed clients in parallel, before then
	 * transferring the bottom-half status to the next client in the queue.
	 *
	 * Compared to walking the entire list of waiters in a single dedicated
	 * bottom-half, we reduce the latency of the first waiter by avoiding
	 * a context switch, but incur additional coherent seqno reads when
	 * following the chain of request breadcrumbs. Since it is most likely
	 * that we have a single client waiting on each seqno, then reducing
	 * the overhead of waking that client is much preferred.
	 */
	struct intel_breadcrumbs {
		spinlock_t lock; /* protects the lists of requests */
		struct rb_root waiters; /* sorted by retirement, priority */
		struct intel_wait *first_wait; /* oldest waiter by retirement */
		struct task_struct *tasklet; /* bh for user interrupts */
		struct timer_list fake_irq; /* used after a missed interrupt */
		bool irq_enabled;
		bool rpm_wakelock;
	} breadcrumbs;

177 178 179 180 181 182 183
	/*
	 * A pool of objects to use as shadow copies of client batch buffers
	 * when the command parser is enabled. Prevents the client from
	 * modifying the batch contents after software parsing.
	 */
	struct i915_gem_batch_pool batch_pool;

184
	struct intel_hw_status_page status_page;
185
	struct i915_ctx_workarounds wa_ctx;
186

187
	unsigned irq_refcount; /* protected by dev_priv->irq_lock */
D
Daniel Vetter 已提交
188
	u32		irq_enable_mask;	/* bitmask to enable ring interrupt */
189
	struct drm_i915_gem_request *trace_irq_req;
190 191
	bool __must_check (*irq_get)(struct intel_engine_cs *ring);
	void		(*irq_put)(struct intel_engine_cs *ring);
192

193
	int		(*init_hw)(struct intel_engine_cs *ring);
194

195
	int		(*init_context)(struct drm_i915_gem_request *req);
196

197
	void		(*write_tail)(struct intel_engine_cs *ring,
198
				      u32 value);
199
	int __must_check (*flush)(struct drm_i915_gem_request *req,
200 201
				  u32	invalidate_domains,
				  u32	flush_domains);
202
	int		(*add_request)(struct drm_i915_gem_request *req);
203 204 205 206 207 208
	/* Some chipsets are not quite as coherent as advertised and need
	 * an expensive kick to force a true read of the up-to-date seqno.
	 * However, the up-to-date seqno is not always required and the last
	 * seen value is good enough. Note that the seqno will always be
	 * monotonic, even if not coherent.
	 */
209
	void		(*irq_seqno_barrier)(struct intel_engine_cs *ring);
210
	int		(*dispatch_execbuffer)(struct drm_i915_gem_request *req,
B
Ben Widawsky 已提交
211
					       u64 offset, u32 length,
212
					       unsigned dispatch_flags);
213
#define I915_DISPATCH_SECURE 0x1
214
#define I915_DISPATCH_PINNED 0x2
215
#define I915_DISPATCH_RS     0x4
216
	void		(*cleanup)(struct intel_engine_cs *ring);
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
	/* GEN8 signal/wait table - never trust comments!
	 *	  signal to	signal to    signal to   signal to      signal to
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
	 *  ie. transpose of g(x, y)
	 *
	 *	 sync from	sync from    sync from    sync from	sync from
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
	 *  ie. transpose of f(x, y)
	 */
255
	struct {
256
		u32	sync_seqno[I915_NUM_ENGINES-1];
257

258 259 260
		union {
			struct {
				/* our mbox written by others */
261
				u32		wait[I915_NUM_ENGINES];
262
				/* mboxes this ring signals to */
263
				i915_reg_t	signal[I915_NUM_ENGINES];
264
			} mbox;
265
			u64		signal_ggtt[I915_NUM_ENGINES];
266
		};
267 268

		/* AKA wait() */
269 270
		int	(*sync_to)(struct drm_i915_gem_request *to_req,
				   struct intel_engine_cs *from,
271
				   u32 seqno);
272
		int	(*signal)(struct drm_i915_gem_request *signaller_req,
273 274
				  /* num_dwords needed by caller */
				  unsigned int num_dwords);
275
	} semaphore;
276

277
	/* Execlists */
278 279
	struct tasklet_struct irq_tasklet;
	spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
280
	struct list_head execlist_queue;
281
	unsigned int fw_domains;
282 283
	unsigned int next_context_status_buffer;
	unsigned int idle_lite_restore_wa;
284 285
	bool disable_lite_restore_wa;
	u32 ctx_desc_template;
286
	u32             irq_keep_mask; /* bitmask for interrupts that should not be masked */
287
	int		(*emit_request)(struct drm_i915_gem_request *request);
288
	int		(*emit_flush)(struct drm_i915_gem_request *request,
289 290
				      u32 invalidate_domains,
				      u32 flush_domains);
291
	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
292
					 u64 offset, unsigned dispatch_flags);
293

294 295 296 297 298
	/**
	 * List of objects currently involved in rendering from the
	 * ringbuffer.
	 *
	 * Includes buffers having the contents of their GPU caches
299
	 * flushed, not necessarily primitives.  last_read_req
300 301 302 303 304 305 306 307 308 309 310 311
	 * represents when the rendering involved will be completed.
	 *
	 * A reference is held on the buffer while on this list.
	 */
	struct list_head active_list;

	/**
	 * List of breadcrumbs associated with GPU requests currently
	 * outstanding.
	 */
	struct list_head request_list;

312 313 314 315 316 317
	/**
	 * Seqno of request most recently submitted to request_list.
	 * Used exclusively by hang checker to avoid grabbing lock while
	 * inspecting request list.
	 */
	u32 last_submitted_seqno;
318
	unsigned user_interrupts;
319

320
	bool gpu_caches_dirty;
321

322
	struct i915_gem_context *last_context;
323

324 325
	struct intel_ring_hangcheck hangcheck;

326 327 328 329
	struct {
		struct drm_i915_gem_object *obj;
		u32 gtt_offset;
	} scratch;
330

331 332
	bool needs_cmd_parser;

333
	/*
334
	 * Table of commands the command parser needs to know about
335 336
	 * for this ring.
	 */
337
	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
338 339 340 341

	/*
	 * Table of registers allowed in commands that read/write registers.
	 */
342 343
	const struct drm_i915_reg_table *reg_tables;
	int reg_table_count;
344 345 346 347 348 349 350 351 352 353 354 355

	/*
	 * Returns the bitmask for the length field of the specified command.
	 * Return 0 for an unrecognized/invalid command.
	 *
	 * If the command parser finds an entry for a command in the ring's
	 * cmd_tables, it gets the command's length based on the table entry.
	 * If not, it calls this function to determine the per-ring length field
	 * encoding for the command (i.e. certain opcode ranges use certain bits
	 * to encode the command length in the header).
	 */
	u32 (*get_cmd_length_mask)(u32 cmd_header);
356 357
};

358
static inline bool
359
intel_engine_initialized(struct intel_engine_cs *engine)
360
{
361
	return engine->i915 != NULL;
362
}
363

364
static inline unsigned
365
intel_engine_flag(struct intel_engine_cs *engine)
366
{
367
	return 1 << engine->id;
368 369
}

370
static inline u32
371
intel_ring_sync_index(struct intel_engine_cs *engine,
372
		      struct intel_engine_cs *other)
373 374 375 376
{
	int idx;

	/*
R
Rodrigo Vivi 已提交
377 378 379 380 381
	 * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
	 * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
	 * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
	 * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
	 * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
382 383
	 */

384
	idx = (other - engine) - 1;
385
	if (idx < 0)
386
		idx += I915_NUM_ENGINES;
387 388 389 390

	return idx;
}

391
static inline void
392
intel_flush_status_page(struct intel_engine_cs *engine, int reg)
393
{
394 395 396
	mb();
	clflush(&engine->status_page.page_addr[reg]);
	mb();
397 398
}

399
static inline u32
400
intel_read_status_page(struct intel_engine_cs *engine, int reg)
401
{
402
	/* Ensure that the compiler doesn't optimize away the load. */
403
	return READ_ONCE(engine->status_page.page_addr[reg]);
404 405
}

M
Mika Kuoppala 已提交
406
static inline void
407
intel_write_status_page(struct intel_engine_cs *engine,
M
Mika Kuoppala 已提交
408 409
			int reg, u32 value)
{
410
	engine->status_page.page_addr[reg] = value;
M
Mika Kuoppala 已提交
411 412
}

413
/*
C
Chris Wilson 已提交
414 415 416 417 418 419 420 421 422 423 424
 * Reads a dword out of the status page, which is written to from the command
 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 * MI_STORE_DATA_IMM.
 *
 * The following dwords have a reserved meaning:
 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 * 0x04: ring 0 head pointer
 * 0x05: ring 1 head pointer (915-class)
 * 0x06: ring 2 head pointer (915-class)
 * 0x10-0x1b: Context status DWords (GM45)
 * 0x1f: Last written status offset. (GM45)
425
 * 0x20-0x2f: Reserved (Gen6+)
C
Chris Wilson 已提交
426
 *
427
 * The area from dword 0x30 to 0x3ff is available for driver usage.
C
Chris Wilson 已提交
428
 */
429
#define I915_GEM_HWS_INDEX		0x30
430
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
431
#define I915_GEM_HWS_SCRATCH_INDEX	0x40
432
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
C
Chris Wilson 已提交
433

434 435
struct intel_ringbuffer *
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size);
436
int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
437
				     struct intel_ringbuffer *ringbuf);
438 439
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf);
void intel_ringbuffer_free(struct intel_ringbuffer *ring);
440

441 442
void intel_stop_engine(struct intel_engine_cs *engine);
void intel_cleanup_engine(struct intel_engine_cs *engine);
443

444 445
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);

446
int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
447
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
448
static inline void intel_ring_emit(struct intel_engine_cs *engine,
449
				   u32 data)
450
{
451
	struct intel_ringbuffer *ringbuf = engine->buffer;
452 453
	iowrite32(data, ringbuf->virtual_start + ringbuf->tail);
	ringbuf->tail += 4;
454
}
455
static inline void intel_ring_emit_reg(struct intel_engine_cs *engine,
456
				       i915_reg_t reg)
457
{
458
	intel_ring_emit(engine, i915_mmio_reg_offset(reg));
459
}
460
static inline void intel_ring_advance(struct intel_engine_cs *engine)
461
{
462
	struct intel_ringbuffer *ringbuf = engine->buffer;
463
	ringbuf->tail &= ringbuf->size - 1;
464
}
465
int __intel_ring_space(int head, int tail, int size);
466
void intel_ring_update_space(struct intel_ringbuffer *ringbuf);
467
bool intel_engine_stopped(struct intel_engine_cs *engine);
468

469
int __must_check intel_engine_idle(struct intel_engine_cs *engine);
470
void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno);
471
int intel_ring_flush_all_caches(struct drm_i915_gem_request *req);
472
int intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req);
473

474
int intel_init_pipe_control(struct intel_engine_cs *engine, int size);
475
void intel_fini_pipe_control(struct intel_engine_cs *engine);
476

477 478
int intel_init_render_ring_buffer(struct drm_device *dev);
int intel_init_bsd_ring_buffer(struct drm_device *dev);
479
int intel_init_bsd2_ring_buffer(struct drm_device *dev);
480
int intel_init_blt_ring_buffer(struct drm_device *dev);
B
Ben Widawsky 已提交
481
int intel_init_vebox_ring_buffer(struct drm_device *dev);
482

483
u64 intel_ring_get_active_head(struct intel_engine_cs *engine);
484 485 486 487
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}
488

489
int init_workarounds_ring(struct intel_engine_cs *engine);
490

491
static inline u32 intel_ring_get_tail(struct intel_ringbuffer *ringbuf)
492
{
493
	return ringbuf->tail;
494 495
}

496 497 498
/*
 * Arbitrary size for largest possible 'add request' sequence. The code paths
 * are complex and variable. Empirical measurement shows that the worst case
499 500 501
 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 * we need to allocate double the largest single packet within that emission
 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
502
 */
503
#define MIN_SPACE_FOR_ADD_REQUEST 336
504

505 506 507 508 509
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
struct intel_wait {
	struct rb_node node;
	struct task_struct *tsk;
	u32 seqno;
};

int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);

static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
{
	wait->tsk = current;
	wait->seqno = seqno;
}

static inline bool intel_wait_complete(const struct intel_wait *wait)
{
	return RB_EMPTY_NODE(&wait->node);
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait);

static inline bool intel_engine_has_waiter(struct intel_engine_cs *engine)
{
	return READ_ONCE(engine->breadcrumbs.tasklet);
}

static inline bool intel_engine_wakeup(struct intel_engine_cs *engine)
{
	bool wakeup = false;
	struct task_struct *tsk = READ_ONCE(engine->breadcrumbs.tasklet);
	/* Note that for this not to dangerously chase a dangling pointer,
	 * the caller is responsible for ensure that the task remain valid for
	 * wake_up_process() i.e. that the RCU grace period cannot expire.
	 *
	 * Also note that tsk is likely to be in !TASK_RUNNING state so an
	 * early test for tsk->state != TASK_RUNNING before wake_up_process()
	 * is unlikely to be beneficial.
	 */
	if (tsk)
		wakeup = wake_up_process(tsk);
	return wakeup;
}

void intel_engine_enable_fake_irq(struct intel_engine_cs *engine);
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
unsigned int intel_kick_waiters(struct drm_i915_private *i915);

561
#endif /* _INTEL_RINGBUFFER_H_ */