cpufreq_ondemand.c 21.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 *  drivers/cpufreq/cpufreq_ondemand.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
A
Andrew Morton 已提交
17
#include <linux/cpu.h>
L
Linus Torvalds 已提交
18 19
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
20
#include <linux/mutex.h>
21 22 23
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/ktime.h>
24
#include <linux/sched.h>
L
Linus Torvalds 已提交
25 26 27 28 29 30

/*
 * dbs is used in this file as a shortform for demandbased switching
 * It helps to keep variable names smaller, simpler
 */

31
#define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
L
Linus Torvalds 已提交
32
#define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 34
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(100000)
35 36
#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
#define MICRO_FREQUENCY_UP_THRESHOLD		(95)
37
#define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
38
#define MIN_FREQUENCY_UP_THRESHOLD		(11)
L
Linus Torvalds 已提交
39 40
#define MAX_FREQUENCY_UP_THRESHOLD		(100)

41 42
/*
 * The polling frequency of this governor depends on the capability of
L
Linus Torvalds 已提交
43
 * the processor. Default polling frequency is 1000 times the transition
44 45
 * latency of the processor. The governor will work on any processor with
 * transition latency <= 10mS, using appropriate sampling
L
Linus Torvalds 已提交
46 47 48 49 50
 * rate.
 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
 * this governor will not work.
 * All times here are in uS.
 */
51
#define MIN_SAMPLING_RATE_RATIO			(2)
52

53 54
static unsigned int min_sampling_rate;

55
#define LATENCY_MULTIPLIER			(1000)
56
#define MIN_LATENCY_MULTIPLIER			(100)
57
#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
L
Linus Torvalds 已提交
58

D
David Howells 已提交
59
static void do_dbs_timer(struct work_struct *work);
60 61 62 63 64 65 66 67 68 69 70 71
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
				unsigned int event);

#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
static
#endif
struct cpufreq_governor cpufreq_gov_ondemand = {
       .name                   = "ondemand",
       .governor               = cpufreq_governor_dbs,
       .max_transition_latency = TRANSITION_LATENCY_LIMIT,
       .owner                  = THIS_MODULE,
};
D
David Howells 已提交
72 73

/* Sampling types */
74
enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
L
Linus Torvalds 已提交
75 76

struct cpu_dbs_info_s {
77
	cputime64_t prev_cpu_idle;
78
	cputime64_t prev_cpu_iowait;
79
	cputime64_t prev_cpu_wall;
80
	cputime64_t prev_cpu_nice;
81
	struct cpufreq_policy *cur_policy;
82
	struct delayed_work work;
83 84 85 86
	struct cpufreq_frequency_table *freq_table;
	unsigned int freq_lo;
	unsigned int freq_lo_jiffies;
	unsigned int freq_hi_jiffies;
87
	unsigned int rate_mult;
88
	int cpu;
89 90 91 92 93 94 95
	unsigned int sample_type:1;
	/*
	 * percpu mutex that serializes governor limit change with
	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
	 * when user is changing the governor or limits.
	 */
	struct mutex timer_mutex;
L
Linus Torvalds 已提交
96
};
97
static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
L
Linus Torvalds 已提交
98 99 100

static unsigned int dbs_enable;	/* number of CPUs using this policy */

101
/*
102
 * dbs_mutex protects dbs_enable in governor start/stop.
103
 */
104
static DEFINE_MUTEX(dbs_mutex);
L
Linus Torvalds 已提交
105

106
static struct dbs_tuners {
107 108
	unsigned int sampling_rate;
	unsigned int up_threshold;
109
	unsigned int down_differential;
110
	unsigned int ignore_nice;
111
	unsigned int sampling_down_factor;
112
	unsigned int powersave_bias;
113
	unsigned int io_is_busy;
114
} dbs_tuners_ins = {
115
	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
116
	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
117
	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
118
	.ignore_nice = 0,
119
	.powersave_bias = 0,
L
Linus Torvalds 已提交
120 121
};

122 123
static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
							cputime64_t *wall)
124
{
125
	cputime64_t idle_time;
126
	cputime64_t cur_wall_time;
127
	cputime64_t busy_time;
128

129
	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
130 131
	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
			kstat_cpu(cpu).cpustat.system);
132

133 134 135
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
136
	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
137

138 139
	idle_time = cputime64_sub(cur_wall_time, busy_time);
	if (wall)
140
		*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
141

142
	return (cputime64_t)jiffies_to_usecs(idle_time);
143 144
}

145 146
static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
{
147
	u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
148 149 150

	if (idle_time == -1ULL)
		return get_cpu_idle_time_jiffy(cpu, wall);
151 152
	else
		idle_time += get_cpu_iowait_time_us(cpu, wall);
153 154 155 156

	return idle_time;
}

157 158 159 160 161 162 163 164 165 166
static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
{
	u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);

	if (iowait_time == -1ULL)
		return 0;

	return iowait_time;
}

167 168 169 170 171
/*
 * Find right freq to be set now with powersave_bias on.
 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
 */
172 173 174
static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
					  unsigned int freq_next,
					  unsigned int relation)
175 176 177 178 179
{
	unsigned int freq_req, freq_reduc, freq_avg;
	unsigned int freq_hi, freq_lo;
	unsigned int index = 0;
	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
180 181
	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
						   policy->cpu);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

	if (!dbs_info->freq_table) {
		dbs_info->freq_lo = 0;
		dbs_info->freq_lo_jiffies = 0;
		return freq_next;
	}

	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
			relation, &index);
	freq_req = dbs_info->freq_table[index].frequency;
	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
	freq_avg = freq_req - freq_reduc;

	/* Find freq bounds for freq_avg in freq_table */
	index = 0;
	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
			CPUFREQ_RELATION_H, &index);
	freq_lo = dbs_info->freq_table[index].frequency;
	index = 0;
	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
			CPUFREQ_RELATION_L, &index);
	freq_hi = dbs_info->freq_table[index].frequency;

	/* Find out how long we have to be in hi and lo freqs */
	if (freq_hi == freq_lo) {
		dbs_info->freq_lo = 0;
		dbs_info->freq_lo_jiffies = 0;
		return freq_lo;
	}
	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
	jiffies_hi += ((freq_hi - freq_lo) / 2);
	jiffies_hi /= (freq_hi - freq_lo);
	jiffies_lo = jiffies_total - jiffies_hi;
	dbs_info->freq_lo = freq_lo;
	dbs_info->freq_lo_jiffies = jiffies_lo;
	dbs_info->freq_hi_jiffies = jiffies_hi;
	return freq_hi;
}

222 223
static void ondemand_powersave_bias_init_cpu(int cpu)
{
224
	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
225 226 227 228
	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
	dbs_info->freq_lo = 0;
}

229 230 231 232
static void ondemand_powersave_bias_init(void)
{
	int i;
	for_each_online_cpu(i) {
233
		ondemand_powersave_bias_init_cpu(i);
234 235 236
	}
}

L
Linus Torvalds 已提交
237
/************************** sysfs interface ************************/
238 239 240

static ssize_t show_sampling_rate_min(struct kobject *kobj,
				      struct attribute *attr, char *buf)
L
Linus Torvalds 已提交
241
{
242
	return sprintf(buf, "%u\n", min_sampling_rate);
L
Linus Torvalds 已提交
243 244
}

245
define_one_global_ro(sampling_rate_min);
L
Linus Torvalds 已提交
246 247 248 249

/* cpufreq_ondemand Governor Tunables */
#define show_one(file_name, object)					\
static ssize_t show_##file_name						\
250
(struct kobject *kobj, struct attribute *attr, char *buf)              \
L
Linus Torvalds 已提交
251 252 253 254
{									\
	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
}
show_one(sampling_rate, sampling_rate);
255
show_one(io_is_busy, io_is_busy);
L
Linus Torvalds 已提交
256
show_one(up_threshold, up_threshold);
257
show_one(sampling_down_factor, sampling_down_factor);
258
show_one(ignore_nice_load, ignore_nice);
259
show_one(powersave_bias, powersave_bias);
L
Linus Torvalds 已提交
260

261 262
static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
				   const char *buf, size_t count)
L
Linus Torvalds 已提交
263 264 265
{
	unsigned int input;
	int ret;
266
	ret = sscanf(buf, "%u", &input);
267 268
	if (ret != 1)
		return -EINVAL;
269
	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
L
Linus Torvalds 已提交
270 271 272
	return count;
}

273 274 275 276 277 278 279 280 281 282 283 284 285
static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
				   const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
	dbs_tuners_ins.io_is_busy = !!input;
	return count;
}

286 287
static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
				  const char *buf, size_t count)
L
Linus Torvalds 已提交
288 289 290
{
	unsigned int input;
	int ret;
291
	ret = sscanf(buf, "%u", &input);
L
Linus Torvalds 已提交
292

293
	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
294
			input < MIN_FREQUENCY_UP_THRESHOLD) {
L
Linus Torvalds 已提交
295 296 297 298 299 300
		return -EINVAL;
	}
	dbs_tuners_ins.up_threshold = input;
	return count;
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
static ssize_t store_sampling_down_factor(struct kobject *a,
			struct attribute *b, const char *buf, size_t count)
{
	unsigned int input, j;
	int ret;
	ret = sscanf(buf, "%u", &input);

	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
		return -EINVAL;
	dbs_tuners_ins.sampling_down_factor = input;

	/* Reset down sampling multiplier in case it was active */
	for_each_online_cpu(j) {
		struct cpu_dbs_info_s *dbs_info;
		dbs_info = &per_cpu(od_cpu_dbs_info, j);
		dbs_info->rate_mult = 1;
	}
	return count;
}

321 322
static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
				      const char *buf, size_t count)
323 324 325 326 327
{
	unsigned int input;
	int ret;

	unsigned int j;
328

329
	ret = sscanf(buf, "%u", &input);
330
	if (ret != 1)
331 332
		return -EINVAL;

333
	if (input > 1)
334
		input = 1;
335

336
	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
337 338 339 340
		return count;
	}
	dbs_tuners_ins.ignore_nice = input;

341
	/* we need to re-evaluate prev_cpu_idle */
342
	for_each_online_cpu(j) {
343
		struct cpu_dbs_info_s *dbs_info;
344
		dbs_info = &per_cpu(od_cpu_dbs_info, j);
345 346
		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&dbs_info->prev_cpu_wall);
347 348 349
		if (dbs_tuners_ins.ignore_nice)
			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;

350 351 352 353
	}
	return count;
}

354 355
static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
				    const char *buf, size_t count)
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
{
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);

	if (ret != 1)
		return -EINVAL;

	if (input > 1000)
		input = 1000;

	dbs_tuners_ins.powersave_bias = input;
	ondemand_powersave_bias_init();
	return count;
}

372
define_one_global_rw(sampling_rate);
373
define_one_global_rw(io_is_busy);
374
define_one_global_rw(up_threshold);
375
define_one_global_rw(sampling_down_factor);
376 377
define_one_global_rw(ignore_nice_load);
define_one_global_rw(powersave_bias);
L
Linus Torvalds 已提交
378

379
static struct attribute *dbs_attributes[] = {
L
Linus Torvalds 已提交
380 381 382
	&sampling_rate_min.attr,
	&sampling_rate.attr,
	&up_threshold.attr,
383
	&sampling_down_factor.attr,
384
	&ignore_nice_load.attr,
385
	&powersave_bias.attr,
386
	&io_is_busy.attr,
L
Linus Torvalds 已提交
387 388 389 390 391 392 393 394 395 396
	NULL
};

static struct attribute_group dbs_attr_group = {
	.attrs = dbs_attributes,
	.name = "ondemand",
};

/************************** sysfs end ************************/

397 398 399 400 401 402 403 404 405 406 407
static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
{
	if (dbs_tuners_ins.powersave_bias)
		freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
	else if (p->cur == p->max)
		return;

	__cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
}

408
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
L
Linus Torvalds 已提交
409
{
410
	unsigned int max_load_freq;
L
Linus Torvalds 已提交
411 412 413 414

	struct cpufreq_policy *policy;
	unsigned int j;

415
	this_dbs_info->freq_lo = 0;
L
Linus Torvalds 已提交
416
	policy = this_dbs_info->cur_policy;
417

418
	/*
419 420
	 * Every sampling_rate, we check, if current idle time is less
	 * than 20% (default), then we try to increase frequency
421
	 * Every sampling_rate, we look for a the lowest
422 423
	 * frequency which can sustain the load while keeping idle time over
	 * 30%. If such a frequency exist, we try to decrease to this frequency.
L
Linus Torvalds 已提交
424
	 *
425 426 427
	 * Any frequency increase takes it to the maximum frequency.
	 * Frequency reduction happens at minimum steps of
	 * 5% (default) of current frequency
L
Linus Torvalds 已提交
428 429
	 */

430 431 432
	/* Get Absolute Load - in terms of freq */
	max_load_freq = 0;

433
	for_each_cpu(j, policy->cpus) {
L
Linus Torvalds 已提交
434
		struct cpu_dbs_info_s *j_dbs_info;
435 436
		cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
		unsigned int idle_time, wall_time, iowait_time;
437 438
		unsigned int load, load_freq;
		int freq_avg;
L
Linus Torvalds 已提交
439

440
		j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
441 442

		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
443
		cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
444

445 446 447 448 449
		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
				j_dbs_info->prev_cpu_wall);
		j_dbs_info->prev_cpu_wall = cur_wall_time;

		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
450
				j_dbs_info->prev_cpu_idle);
451
		j_dbs_info->prev_cpu_idle = cur_idle_time;
L
Linus Torvalds 已提交
452

453 454 455 456
		iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
				j_dbs_info->prev_cpu_iowait);
		j_dbs_info->prev_cpu_iowait = cur_iowait_time;

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
		if (dbs_tuners_ins.ignore_nice) {
			cputime64_t cur_nice;
			unsigned long cur_nice_jiffies;

			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
					 j_dbs_info->prev_cpu_nice);
			/*
			 * Assumption: nice time between sampling periods will
			 * be less than 2^32 jiffies for 32 bit sys
			 */
			cur_nice_jiffies = (unsigned long)
					cputime64_to_jiffies64(cur_nice);

			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
			idle_time += jiffies_to_usecs(cur_nice_jiffies);
		}

474 475 476 477 478 479 480
		/*
		 * For the purpose of ondemand, waiting for disk IO is an
		 * indication that you're performance critical, and not that
		 * the system is actually idle. So subtract the iowait time
		 * from the cpu idle time.
		 */

481
		if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
482 483
			idle_time -= iowait_time;

484
		if (unlikely(!wall_time || wall_time < idle_time))
485 486 487 488 489 490 491 492 493 494 495
			continue;

		load = 100 * (wall_time - idle_time) / wall_time;

		freq_avg = __cpufreq_driver_getavg(policy, j);
		if (freq_avg <= 0)
			freq_avg = policy->cur;

		load_freq = load * freq_avg;
		if (load_freq > max_load_freq)
			max_load_freq = load_freq;
L
Linus Torvalds 已提交
496 497
	}

498
	/* Check for frequency increase */
499
	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
500 501 502 503
		/* If switching to max speed, apply sampling_down_factor */
		if (policy->cur < policy->max)
			this_dbs_info->rate_mult =
				dbs_tuners_ins.sampling_down_factor;
504
		dbs_freq_increase(policy, policy->max);
L
Linus Torvalds 已提交
505 506 507 508
		return;
	}

	/* Check for frequency decrease */
509 510 511
	/* if we cannot reduce the frequency anymore, break out early */
	if (policy->cur == policy->min)
		return;
L
Linus Torvalds 已提交
512

513 514 515 516 517
	/*
	 * The optimal frequency is the frequency that is the lowest that
	 * can support the current CPU usage without triggering the up
	 * policy. To be safe, we focus 10 points under the threshold.
	 */
518 519 520
	if (max_load_freq <
	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
	     policy->cur) {
521
		unsigned int freq_next;
522 523 524
		freq_next = max_load_freq /
				(dbs_tuners_ins.up_threshold -
				 dbs_tuners_ins.down_differential);
525

526 527 528
		/* No longer fully busy, reset rate_mult */
		this_dbs_info->rate_mult = 1;

529 530 531
		if (freq_next < policy->min)
			freq_next = policy->min;

532 533 534 535 536 537 538 539 540
		if (!dbs_tuners_ins.powersave_bias) {
			__cpufreq_driver_target(policy, freq_next,
					CPUFREQ_RELATION_L);
		} else {
			int freq = powersave_bias_target(policy, freq_next,
					CPUFREQ_RELATION_L);
			__cpufreq_driver_target(policy, freq,
				CPUFREQ_RELATION_L);
		}
541
	}
L
Linus Torvalds 已提交
542 543
}

D
David Howells 已提交
544
static void do_dbs_timer(struct work_struct *work)
545
{
546 547 548 549 550
	struct cpu_dbs_info_s *dbs_info =
		container_of(work, struct cpu_dbs_info_s, work.work);
	unsigned int cpu = dbs_info->cpu;
	int sample_type = dbs_info->sample_type;

551
	int delay;
552

553
	mutex_lock(&dbs_info->timer_mutex);
554

555
	/* Common NORMAL_SAMPLE setup */
D
David Howells 已提交
556
	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
557
	if (!dbs_tuners_ins.powersave_bias ||
D
David Howells 已提交
558
	    sample_type == DBS_NORMAL_SAMPLE) {
559 560 561
		dbs_check_cpu(dbs_info);
		if (dbs_info->freq_lo) {
			/* Setup timer for SUB_SAMPLE */
D
David Howells 已提交
562
			dbs_info->sample_type = DBS_SUB_SAMPLE;
563
			delay = dbs_info->freq_hi_jiffies;
564 565 566 567 568 569 570 571 572
		} else {
			/* We want all CPUs to do sampling nearly on
			 * same jiffy
			 */
			delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
				* dbs_info->rate_mult);

			if (num_online_cpus() > 1)
				delay -= jiffies % delay;
573 574 575
		}
	} else {
		__cpufreq_driver_target(dbs_info->cur_policy,
576
			dbs_info->freq_lo, CPUFREQ_RELATION_H);
577
		delay = dbs_info->freq_lo_jiffies;
578
	}
579
	schedule_delayed_work_on(cpu, &dbs_info->work, delay);
580
	mutex_unlock(&dbs_info->timer_mutex);
581
}
L
Linus Torvalds 已提交
582

583
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
L
Linus Torvalds 已提交
584
{
585 586
	/* We want all CPUs to do sampling nearly on same jiffy */
	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
587 588 589

	if (num_online_cpus() > 1)
		delay -= jiffies % delay;
590

D
David Howells 已提交
591
	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
592
	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
593
	schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
L
Linus Torvalds 已提交
594 595
}

596
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
L
Linus Torvalds 已提交
597
{
598
	cancel_delayed_work_sync(&dbs_info->work);
L
Linus Torvalds 已提交
599 600
}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
/*
 * Not all CPUs want IO time to be accounted as busy; this dependson how
 * efficient idling at a higher frequency/voltage is.
 * Pavel Machek says this is not so for various generations of AMD and old
 * Intel systems.
 * Mike Chan (androidlcom) calis this is also not true for ARM.
 * Because of this, whitelist specific known (series) of CPUs by default, and
 * leave all others up to the user.
 */
static int should_io_be_busy(void)
{
#if defined(CONFIG_X86)
	/*
	 * For Intel, Core 2 (model 15) andl later have an efficient idle.
	 */
	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
	    boot_cpu_data.x86 == 6 &&
	    boot_cpu_data.x86_model >= 15)
		return 1;
#endif
	return 0;
}

L
Linus Torvalds 已提交
624 625 626 627 628 629
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
				   unsigned int event)
{
	unsigned int cpu = policy->cpu;
	struct cpu_dbs_info_s *this_dbs_info;
	unsigned int j;
J
Jeff Garzik 已提交
630
	int rc;
L
Linus Torvalds 已提交
631

632
	this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
L
Linus Torvalds 已提交
633 634 635

	switch (event) {
	case CPUFREQ_GOV_START:
636
		if ((!cpu_online(cpu)) || (!policy->cur))
L
Linus Torvalds 已提交
637 638
			return -EINVAL;

639
		mutex_lock(&dbs_mutex);
J
Jeff Garzik 已提交
640

641
		dbs_enable++;
642
		for_each_cpu(j, policy->cpus) {
L
Linus Torvalds 已提交
643
			struct cpu_dbs_info_s *j_dbs_info;
644
			j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
L
Linus Torvalds 已提交
645
			j_dbs_info->cur_policy = policy;
646

647 648
			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
						&j_dbs_info->prev_cpu_wall);
649 650 651 652
			if (dbs_tuners_ins.ignore_nice) {
				j_dbs_info->prev_cpu_nice =
						kstat_cpu(j).cpustat.nice;
			}
L
Linus Torvalds 已提交
653
		}
654
		this_dbs_info->cpu = cpu;
655
		this_dbs_info->rate_mult = 1;
656
		ondemand_powersave_bias_init_cpu(cpu);
L
Linus Torvalds 已提交
657 658 659 660 661 662
		/*
		 * Start the timerschedule work, when this governor
		 * is used for first time
		 */
		if (dbs_enable == 1) {
			unsigned int latency;
663 664 665 666 667 668 669 670

			rc = sysfs_create_group(cpufreq_global_kobject,
						&dbs_attr_group);
			if (rc) {
				mutex_unlock(&dbs_mutex);
				return rc;
			}

L
Linus Torvalds 已提交
671
			/* policy latency is in nS. Convert it to uS first */
672 673 674
			latency = policy->cpuinfo.transition_latency / 1000;
			if (latency == 0)
				latency = 1;
675 676 677 678 679 680
			/* Bring kernel and HW constraints together */
			min_sampling_rate = max(min_sampling_rate,
					MIN_LATENCY_MULTIPLIER * latency);
			dbs_tuners_ins.sampling_rate =
				max(min_sampling_rate,
				    latency * LATENCY_MULTIPLIER);
681
			dbs_tuners_ins.io_is_busy = should_io_be_busy();
L
Linus Torvalds 已提交
682
		}
683
		mutex_unlock(&dbs_mutex);
684

685
		mutex_init(&this_dbs_info->timer_mutex);
686
		dbs_timer_init(this_dbs_info);
L
Linus Torvalds 已提交
687 688 689
		break;

	case CPUFREQ_GOV_STOP:
690
		dbs_timer_exit(this_dbs_info);
691 692

		mutex_lock(&dbs_mutex);
693
		mutex_destroy(&this_dbs_info->timer_mutex);
L
Linus Torvalds 已提交
694
		dbs_enable--;
695
		mutex_unlock(&dbs_mutex);
696 697 698
		if (!dbs_enable)
			sysfs_remove_group(cpufreq_global_kobject,
					   &dbs_attr_group);
L
Linus Torvalds 已提交
699 700 701 702

		break;

	case CPUFREQ_GOV_LIMITS:
703
		mutex_lock(&this_dbs_info->timer_mutex);
L
Linus Torvalds 已提交
704
		if (policy->max < this_dbs_info->cur_policy->cur)
705
			__cpufreq_driver_target(this_dbs_info->cur_policy,
706
				policy->max, CPUFREQ_RELATION_H);
L
Linus Torvalds 已提交
707
		else if (policy->min > this_dbs_info->cur_policy->cur)
708
			__cpufreq_driver_target(this_dbs_info->cur_policy,
709
				policy->min, CPUFREQ_RELATION_L);
710
		mutex_unlock(&this_dbs_info->timer_mutex);
L
Linus Torvalds 已提交
711 712 713 714 715 716 717
		break;
	}
	return 0;
}

static int __init cpufreq_gov_dbs_init(void)
{
718
	cputime64_t wall;
719 720
	u64 idle_time;
	int cpu = get_cpu();
721

722 723
	idle_time = get_cpu_idle_time_us(cpu, &wall);
	put_cpu();
724 725 726 727 728
	if (idle_time != -1ULL) {
		/* Idle micro accounting is supported. Use finer thresholds */
		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
		dbs_tuners_ins.down_differential =
					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
729
		/*
730
		 * In nohz/micro accounting case we set the minimum frequency
731 732 733 734 735 736 737 738
		 * not depending on HZ, but fixed (very low). The deferred
		 * timer might skip some samples if idle/sleeping as needed.
		*/
		min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
	} else {
		/* For correct statistics, we need 10 ticks for each measure */
		min_sampling_rate =
			MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
739
	}
740

741
	return cpufreq_register_governor(&cpufreq_gov_ondemand);
L
Linus Torvalds 已提交
742 743 744 745
}

static void __exit cpufreq_gov_dbs_exit(void)
{
746
	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
L
Linus Torvalds 已提交
747 748 749
}


750 751 752
MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
753
	"Low Latency Frequency Transition capable processors");
754
MODULE_LICENSE("GPL");
L
Linus Torvalds 已提交
755

756 757 758
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
fs_initcall(cpufreq_gov_dbs_init);
#else
L
Linus Torvalds 已提交
759
module_init(cpufreq_gov_dbs_init);
760
#endif
L
Linus Torvalds 已提交
761
module_exit(cpufreq_gov_dbs_exit);