slab_common.c 30.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/compiler.h>
#include <linux/module.h>
14 15
#include <linux/cpu.h>
#include <linux/uaccess.h>
16 17
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
18 19 20
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
21
#include <linux/memcontrol.h>
22 23

#define CREATE_TRACE_POINTS
24
#include <trace/events/kmem.h>
25

26 27 28
#include "slab.h"

enum slab_state slab_state;
29 30
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
31
struct kmem_cache *kmem_cache;
32

33 34 35 36 37 38 39
/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)

V
Vladimir Davydov 已提交
40 41
#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
			 SLAB_NOTRACK | SLAB_ACCOUNT)
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 * (Could be removed. This was introduced to pacify the merge skeptics.)
 */
static int slab_nomerge;

static int __init setup_slab_nomerge(char *str)
{
	slab_nomerge = 1;
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

61 62 63 64 65 66 67 68 69
/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

70
#ifdef CONFIG_DEBUG_VM
71
static int kmem_cache_sanity_check(const char *name, size_t size)
72 73 74 75 76
{
	struct kmem_cache *s = NULL;

	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
77 78
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
79
	}
80

81 82 83 84 85 86 87 88 89 90 91
	list_for_each_entry(s, &slab_caches, list) {
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		res = probe_kernel_address(s->name, tmp);
		if (res) {
92
			pr_err("Slab cache with size %d has lost its name\n",
93 94 95 96 97 98
			       s->object_size);
			continue;
		}
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
99 100 101
	return 0;
}
#else
102
static inline int kmem_cache_sanity_check(const char *name, size_t size)
103 104 105
{
	return 0;
}
106 107
#endif

108 109 110 111
void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

112 113 114 115 116 117
	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
118 119
}

120
int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
121 122 123 124 125 126 127 128
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
129
			return 0;
130 131
		}
	}
132
	return i;
133 134
}

135
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
136
void slab_init_memcg_params(struct kmem_cache *s)
137
{
138
	s->memcg_params.is_root_cache = true;
139
	INIT_LIST_HEAD(&s->memcg_params.list);
140 141 142 143 144 145 146
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
}

static int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct memcg_cache_array *arr;
147

148 149 150 151
	if (memcg) {
		s->memcg_params.is_root_cache = false;
		s->memcg_params.memcg = memcg;
		s->memcg_params.root_cache = root_cache;
152
		return 0;
153
	}
154

155
	slab_init_memcg_params(s);
156

157 158
	if (!memcg_nr_cache_ids)
		return 0;
159

160 161 162 163 164
	arr = kzalloc(sizeof(struct memcg_cache_array) +
		      memcg_nr_cache_ids * sizeof(void *),
		      GFP_KERNEL);
	if (!arr)
		return -ENOMEM;
165

166
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
167 168 169
	return 0;
}

170
static void destroy_memcg_params(struct kmem_cache *s)
171
{
172 173
	if (is_root_cache(s))
		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
174 175
}

176
static int update_memcg_params(struct kmem_cache *s, int new_array_size)
177
{
178
	struct memcg_cache_array *old, *new;
179

180 181
	if (!is_root_cache(s))
		return 0;
182

183 184 185
	new = kzalloc(sizeof(struct memcg_cache_array) +
		      new_array_size * sizeof(void *), GFP_KERNEL);
	if (!new)
186 187
		return -ENOMEM;

188 189 190 191 192
	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));
193

194 195 196
	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
		kfree_rcu(old, rcu);
197 198 199
	return 0;
}

200 201 202 203 204
int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

205
	mutex_lock(&slab_mutex);
206
	list_for_each_entry(s, &slab_caches, list) {
207
		ret = update_memcg_params(s, num_memcgs);
208 209 210 211 212
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
213
			break;
214 215 216 217
	}
	mutex_unlock(&slab_mutex);
	return ret;
}
218
#else
219 220
static inline int init_memcg_params(struct kmem_cache *s,
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
221 222 223 224
{
	return 0;
}

225
static inline void destroy_memcg_params(struct kmem_cache *s)
226 227
{
}
228
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
229

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *))
{
	struct kmem_cache *s;

	if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

269
	list_for_each_entry_reverse(s, &slab_caches, list) {
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

288 289 290 291
		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

292 293 294 295 296
		return s;
	}
	return NULL;
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

324 325 326 327
static struct kmem_cache *create_cache(const char *name,
		size_t object_size, size_t size, size_t align,
		unsigned long flags, void (*ctor)(void *),
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
{
	struct kmem_cache *s;
	int err;

	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
	s->object_size = object_size;
	s->size = size;
	s->align = align;
	s->ctor = ctor;

343
	err = init_memcg_params(s, memcg, root_cache);
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
359
	destroy_memcg_params(s);
360
	kmem_cache_free(kmem_cache, s);
361 362
	goto out;
}
363

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
/*
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
388
struct kmem_cache *
389 390
kmem_cache_create(const char *name, size_t size, size_t align,
		  unsigned long flags, void (*ctor)(void *))
391
{
392
	struct kmem_cache *s = NULL;
393
	const char *cache_name;
394
	int err;
395

396
	get_online_cpus();
397
	get_online_mems();
398
	memcg_get_cache_ids();
399

400
	mutex_lock(&slab_mutex);
401

402
	err = kmem_cache_sanity_check(name, size);
A
Andrew Morton 已提交
403
	if (err) {
404
		goto out_unlock;
A
Andrew Morton 已提交
405
	}
406

407 408 409 410 411 412 413
	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;
414

415 416
	s = __kmem_cache_alias(name, size, align, flags, ctor);
	if (s)
417
		goto out_unlock;
418

419
	cache_name = kstrdup_const(name, GFP_KERNEL);
420 421 422 423
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}
424

425 426 427
	s = create_cache(cache_name, size, size,
			 calculate_alignment(flags, align, size),
			 flags, ctor, NULL, NULL);
428 429
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
430
		kfree_const(cache_name);
431
	}
432 433

out_unlock:
434
	mutex_unlock(&slab_mutex);
435

436
	memcg_put_cache_ids();
437
	put_online_mems();
438 439
	put_online_cpus();

440
	if (err) {
441 442 443 444 445 446 447 448 449 450
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
			printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
				name, err);
			dump_stack();
		}
		return NULL;
	}
451 452
	return s;
}
453
EXPORT_SYMBOL(kmem_cache_create);
454

455
static int shutdown_cache(struct kmem_cache *s,
456 457
		struct list_head *release, bool *need_rcu_barrier)
{
458
	if (__kmem_cache_shutdown(s) != 0)
459 460 461 462 463 464 465 466 467
		return -EBUSY;

	if (s->flags & SLAB_DESTROY_BY_RCU)
		*need_rcu_barrier = true;

	list_move(&s->list, release);
	return 0;
}

468
static void release_caches(struct list_head *release, bool need_rcu_barrier)
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
{
	struct kmem_cache *s, *s2;

	if (need_rcu_barrier)
		rcu_barrier();

	list_for_each_entry_safe(s, s2, release, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_remove(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
}

484
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
485
/*
486
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
487 488 489 490 491 492 493
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
494 495
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
496
{
497
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
M
Michal Hocko 已提交
498
	struct cgroup_subsys_state *css = &memcg->css;
499
	struct memcg_cache_array *arr;
500
	struct kmem_cache *s = NULL;
501
	char *cache_name;
502
	int idx;
503 504

	get_online_cpus();
505 506
	get_online_mems();

507 508
	mutex_lock(&slab_mutex);

509
	/*
510
	 * The memory cgroup could have been offlined while the cache
511 512
	 * creation work was pending.
	 */
513
	if (memcg->kmem_state != KMEM_ONLINE)
514 515
		goto out_unlock;

516 517 518 519
	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

520 521 522 523 524
	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
525
	if (arr->entries[idx])
526 527
		goto out_unlock;

528
	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
529
	cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
530
			       css->id, memcg_name_buf);
531 532 533
	if (!cache_name)
		goto out_unlock;

534 535 536 537
	s = create_cache(cache_name, root_cache->object_size,
			 root_cache->size, root_cache->align,
			 root_cache->flags, root_cache->ctor,
			 memcg, root_cache);
538 539 540 541 542
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
543
	if (IS_ERR(s)) {
544
		kfree(cache_name);
545
		goto out_unlock;
546
	}
547

548 549
	list_add(&s->memcg_params.list, &root_cache->memcg_params.list);

550 551 552 553 554 555
	/*
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
556
	arr->entries[idx] = s;
557

558 559
out_unlock:
	mutex_unlock(&slab_mutex);
560 561

	put_online_mems();
562
	put_online_cpus();
563
}
564

565 566 567 568
void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
{
	int idx;
	struct memcg_cache_array *arr;
569
	struct kmem_cache *s, *c;
570 571 572

	idx = memcg_cache_id(memcg);

573 574 575
	get_online_cpus();
	get_online_mems();

576 577 578 579 580 581 582
	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		if (!is_root_cache(s))
			continue;

		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
583 584 585 586 587
		c = arr->entries[idx];
		if (!c)
			continue;

		__kmem_cache_shrink(c, true);
588 589 590
		arr->entries[idx] = NULL;
	}
	mutex_unlock(&slab_mutex);
591 592 593

	put_online_mems();
	put_online_cpus();
594 595
}

596 597 598 599 600 601 602 603 604 605 606 607
static int __shutdown_memcg_cache(struct kmem_cache *s,
		struct list_head *release, bool *need_rcu_barrier)
{
	BUG_ON(is_root_cache(s));

	if (shutdown_cache(s, release, need_rcu_barrier))
		return -EBUSY;

	list_del(&s->memcg_params.list);
	return 0;
}

608
void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
609
{
610 611 612
	LIST_HEAD(release);
	bool need_rcu_barrier = false;
	struct kmem_cache *s, *s2;
613

614 615
	get_online_cpus();
	get_online_mems();
616 617

	mutex_lock(&slab_mutex);
618
	list_for_each_entry_safe(s, s2, &slab_caches, list) {
619
		if (is_root_cache(s) || s->memcg_params.memcg != memcg)
620 621 622 623 624
			continue;
		/*
		 * The cgroup is about to be freed and therefore has no charges
		 * left. Hence, all its caches must be empty by now.
		 */
625
		BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier));
626 627
	}
	mutex_unlock(&slab_mutex);
628

629 630 631
	put_online_mems();
	put_online_cpus();

632
	release_caches(&release, need_rcu_barrier);
633
}
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695

static int shutdown_memcg_caches(struct kmem_cache *s,
		struct list_head *release, bool *need_rcu_barrier)
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
		if (__shutdown_memcg_cache(c, release, need_rcu_barrier))
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
			list_move(&c->memcg_params.list, &busy);
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
	list_for_each_entry_safe(c, c2, &s->memcg_params.list,
				 memcg_params.list)
		__shutdown_memcg_cache(c, release, need_rcu_barrier);

	list_splice(&busy, &s->memcg_params.list);

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
	if (!list_empty(&s->memcg_params.list))
		return -EBUSY;
	return 0;
}
#else
static inline int shutdown_memcg_caches(struct kmem_cache *s,
		struct list_head *release, bool *need_rcu_barrier)
{
	return 0;
}
696
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
697

698 699
void slab_kmem_cache_release(struct kmem_cache *s)
{
700
	__kmem_cache_release(s);
701
	destroy_memcg_params(s);
702
	kfree_const(s->name);
703 704 705
	kmem_cache_free(kmem_cache, s);
}

706 707
void kmem_cache_destroy(struct kmem_cache *s)
{
708 709
	LIST_HEAD(release);
	bool need_rcu_barrier = false;
710
	int err;
711

712 713 714
	if (unlikely(!s))
		return;

715
	get_online_cpus();
716 717
	get_online_mems();

718
	mutex_lock(&slab_mutex);
719

720
	s->refcount--;
721 722 723
	if (s->refcount)
		goto out_unlock;

724 725
	err = shutdown_memcg_caches(s, &release, &need_rcu_barrier);
	if (!err)
726
		err = shutdown_cache(s, &release, &need_rcu_barrier);
727

728
	if (err) {
J
Joe Perches 已提交
729 730
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
731 732
		dump_stack();
	}
733 734
out_unlock:
	mutex_unlock(&slab_mutex);
735

736
	put_online_mems();
737
	put_online_cpus();
738

739
	release_caches(&release, need_rcu_barrier);
740 741 742
}
EXPORT_SYMBOL(kmem_cache_destroy);

743 744 745 746 747 748 749 750 751 752 753 754 755
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
756
	ret = __kmem_cache_shrink(cachep, false);
757 758 759 760 761 762
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

763
bool slab_is_available(void)
764 765 766
{
	return slab_state >= UP;
}
767

768 769 770 771 772 773 774 775 776
#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
		unsigned long flags)
{
	int err;

	s->name = name;
	s->size = s->object_size = size;
777
	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
778 779 780

	slab_init_memcg_params(s);

781 782 783
	err = __kmem_cache_create(s, flags);

	if (err)
784
		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
				unsigned long flags)
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

	create_boot_cache(s, name, size, flags);
	list_add(&s->list, &slab_caches);
	s->refcount = 1;
	return s;
}

804 805 806 807 808 809 810 811
struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_caches);

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
EXPORT_SYMBOL(kmalloc_dma_caches);
#endif

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	int index;

858
	if (unlikely(size > KMALLOC_MAX_SIZE)) {
859
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
860
		return NULL;
861
	}
862

863 864 865 866 867 868 869 870 871
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else
		index = fls(size - 1);

#ifdef CONFIG_ZONE_DMA
872
	if (unlikely((flags & GFP_DMA)))
873 874 875 876 877 878
		return kmalloc_dma_caches[index];

#endif
	return kmalloc_caches[index];
}

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
static struct {
	const char *name;
	unsigned long size;
} const kmalloc_info[] __initconst = {
	{NULL,                      0},		{"kmalloc-96",             96},
	{"kmalloc-192",           192},		{"kmalloc-8",               8},
	{"kmalloc-16",             16},		{"kmalloc-32",             32},
	{"kmalloc-64",             64},		{"kmalloc-128",           128},
	{"kmalloc-256",           256},		{"kmalloc-512",           512},
	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
	{"kmalloc-67108864", 67108864}
};

904
/*
905 906 907 908 909 910 911 912 913
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
914
 */
915
void __init setup_kmalloc_cache_index_table(void)
916 917 918
{
	int i;

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
949 950
}

951
static void __init new_kmalloc_cache(int idx, unsigned long flags)
952 953 954 955 956
{
	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
					kmalloc_info[idx].size, flags);
}

957 958 959 960 961 962 963 964 965
/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
void __init create_kmalloc_caches(unsigned long flags)
{
	int i;

966 967 968
	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
		if (!kmalloc_caches[i])
			new_kmalloc_cache(i, flags);
969

970
		/*
971 972 973
		 * Caches that are not of the two-to-the-power-of size.
		 * These have to be created immediately after the
		 * earlier power of two caches
974
		 */
975 976 977 978
		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
			new_kmalloc_cache(1, flags);
		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
			new_kmalloc_cache(2, flags);
979 980
	}

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[i];

		if (s) {
			int size = kmalloc_size(i);
			char *n = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", size);

			BUG_ON(!n);
			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
				size, SLAB_CACHE_DMA | flags);
		}
	}
#endif
}
1000 1001
#endif /* !CONFIG_SLOB */

V
Vladimir Davydov 已提交
1002 1003 1004 1005 1006
/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
V
Vladimir Davydov 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret;
	struct page *page;

	flags |= __GFP_COMP;
	page = alloc_kmem_pages(flags, order);
	ret = page ? page_address(page) : NULL;
	kmemleak_alloc(ret, size, 1, flags);
1016
	kasan_kmalloc_large(ret, size);
V
Vladimir Davydov 已提交
1017 1018 1019 1020
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

1021 1022 1023 1024 1025 1026 1027 1028 1029
#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif
1030

1031
#ifdef CONFIG_SLABINFO
1032 1033 1034 1035 1036 1037 1038

#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
#else
#define SLABINFO_RIGHTS S_IRUSR
#endif

1039
static void print_slabinfo_header(struct seq_file *m)
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
J
Joe Perches 已提交
1050
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1051 1052 1053
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
J
Joe Perches 已提交
1054
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1055 1056 1057 1058 1059
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

1060
void *slab_start(struct seq_file *m, loff_t *pos)
1061 1062 1063 1064 1065
{
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
}

1066
void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1067 1068 1069 1070
{
	return seq_list_next(p, &slab_caches, pos);
}

1071
void slab_stop(struct seq_file *m, void *p)
1072 1073 1074 1075
{
	mutex_unlock(&slab_mutex);
}

1076 1077 1078 1079 1080 1081 1082 1083 1084
static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

1085
	for_each_memcg_cache(c, s) {
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

1097
static void cache_show(struct kmem_cache *s, struct seq_file *m)
1098
{
1099 1100 1101 1102 1103
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

1104 1105
	memcg_accumulate_slabinfo(s, &sinfo);

1106
	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1107
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1108 1109 1110 1111 1112 1113 1114 1115
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
1116 1117
}

1118
static int slab_show(struct seq_file *m, void *p)
1119 1120 1121
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);

1122 1123
	if (p == slab_caches.next)
		print_slabinfo_header(m);
1124 1125 1126 1127 1128
	if (is_root_cache(s))
		cache_show(s, m);
	return 0;
}

1129
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1130 1131 1132 1133 1134 1135 1136
int memcg_slab_show(struct seq_file *m, void *p)
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	if (p == slab_caches.next)
		print_slabinfo_header(m);
1137
	if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1138 1139
		cache_show(s, m);
	return 0;
1140
}
1141
#endif
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
1157
	.start = slab_start,
1158 1159
	.next = slab_next,
	.stop = slab_stop,
1160
	.show = slab_show,
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write          = slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
1178 1179
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
						&proc_slabinfo_operations);
1180 1181 1182 1183
	return 0;
}
module_init(slab_proc_init);
#endif /* CONFIG_SLABINFO */
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

1194 1195
	if (ks >= new_size) {
		kasan_krealloc((void *)p, new_size);
1196
		return (void *)p;
1197
	}
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * __krealloc - like krealloc() but don't free @p.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * This function is like krealloc() except it never frees the originally
 * allocated buffer. Use this if you don't want to free the buffer immediately
 * like, for example, with RCU.
 */
void *__krealloc(const void *p, size_t new_size, gfp_t flags)
{
	if (unlikely(!new_size))
		return ZERO_SIZE_PTR;

	return __do_krealloc(p, new_size, flags);

}
EXPORT_SYMBOL(__krealloc);

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
	if (ret && p != ret)
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);