rtc-bfin.c 13.1 KB
Newer Older
1 2
/*
 * Blackfin On-Chip Real Time Clock Driver
3
 *  Supports BF51x/BF52x/BF53[123]/BF53[467]/BF54x
4
 *
5
 * Copyright 2004-2010 Analog Devices Inc.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * Enter bugs at http://blackfin.uclinux.org/
 *
 * Licensed under the GPL-2 or later.
 */

/* The biggest issue we deal with in this driver is that register writes are
 * synced to the RTC frequency of 1Hz.  So if you write to a register and
 * attempt to write again before the first write has completed, the new write
 * is simply discarded.  This can easily be troublesome if userspace disables
 * one event (say periodic) and then right after enables an event (say alarm).
 * Since all events are maintained in the same interrupt mask register, if
 * we wrote to it to disable the first event and then wrote to it again to
 * enable the second event, that second event would not be enabled as the
 * write would be discarded and things quickly fall apart.
 *
 * To keep this delay from significantly degrading performance (we, in theory,
L
Lucas De Marchi 已提交
23
 * would have to sleep for up to 1 second every time we wanted to write a
24
 * register), we only check the write pending status before we start to issue
L
Lucas De Marchi 已提交
25
 * a new write.  We bank on the idea that it doesn't matter when the sync
26 27 28 29 30 31 32 33 34
 * happens so long as we don't attempt another write before it does.  The only
 * time userspace would take this penalty is when they try and do multiple
 * operations right after another ... but in this case, they need to take the
 * sync penalty, so we should be OK.
 *
 * Also note that the RTC_ISTAT register does not suffer this penalty; its
 * writes to clear status registers complete immediately.
 */

35 36 37 38 39 40 41 42 43
/* It may seem odd that there is no SWCNT code in here (which would be exposed
 * via the periodic interrupt event, or PIE).  Since the Blackfin RTC peripheral
 * runs in units of seconds (N/HZ) but the Linux framework runs in units of HZ
 * (2^N HZ), there is no point in keeping code that only provides 1 HZ PIEs.
 * The same exact behavior can be accomplished by using the update interrupt
 * event (UIE).  Maybe down the line the RTC peripheral will suck less in which
 * case we can re-introduce PIE support.
 */

44
#include <linux/bcd.h>
45 46
#include <linux/completion.h>
#include <linux/delay.h>
47
#include <linux/init.h>
48 49 50
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
51
#include <linux/platform_device.h>
52
#include <linux/rtc.h>
53
#include <linux/seq_file.h>
54
#include <linux/slab.h>
55 56 57

#include <asm/blackfin.h>

58
#define dev_dbg_stamp(dev) dev_dbg(dev, "%s:%i: here i am\n", __func__, __LINE__)
59 60 61 62

struct bfin_rtc {
	struct rtc_device *rtc_dev;
	struct rtc_time rtc_alarm;
63
	u16 rtc_wrote_regs;
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
};

/* Bit values for the ISTAT / ICTL registers */
#define RTC_ISTAT_WRITE_COMPLETE  0x8000
#define RTC_ISTAT_WRITE_PENDING   0x4000
#define RTC_ISTAT_ALARM_DAY       0x0040
#define RTC_ISTAT_24HR            0x0020
#define RTC_ISTAT_HOUR            0x0010
#define RTC_ISTAT_MIN             0x0008
#define RTC_ISTAT_SEC             0x0004
#define RTC_ISTAT_ALARM           0x0002
#define RTC_ISTAT_STOPWATCH       0x0001

/* Shift values for RTC_STAT register */
#define DAY_BITS_OFF    17
#define HOUR_BITS_OFF   12
#define MIN_BITS_OFF    6
#define SEC_BITS_OFF    0

/* Some helper functions to convert between the common RTC notion of time
84
 * and the internal Blackfin notion that is encoded in 32bits.
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
 */
static inline u32 rtc_time_to_bfin(unsigned long now)
{
	u32 sec  = (now % 60);
	u32 min  = (now % (60 * 60)) / 60;
	u32 hour = (now % (60 * 60 * 24)) / (60 * 60);
	u32 days = (now / (60 * 60 * 24));
	return (sec  << SEC_BITS_OFF) +
	       (min  << MIN_BITS_OFF) +
	       (hour << HOUR_BITS_OFF) +
	       (days << DAY_BITS_OFF);
}
static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin)
{
	return (((rtc_bfin >> SEC_BITS_OFF)  & 0x003F)) +
	       (((rtc_bfin >> MIN_BITS_OFF)  & 0x003F) * 60) +
	       (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) +
	       (((rtc_bfin >> DAY_BITS_OFF)  & 0x7FFF) * 60 * 60 * 24);
}
static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm)
{
	rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm);
}

109 110 111 112
/**
 *	bfin_rtc_sync_pending - make sure pending writes have complete
 *
 * Wait for the previous write to a RTC register to complete.
113 114 115 116 117 118 119 120 121 122 123 124 125 126
 * Unfortunately, we can't sleep here as that introduces a race condition when
 * turning on interrupt events.  Consider this:
 *  - process sets alarm
 *  - process enables alarm
 *  - process sleeps while waiting for rtc write to sync
 *  - interrupt fires while process is sleeping
 *  - interrupt acks the event by writing to ISTAT
 *  - interrupt sets the WRITE PENDING bit
 *  - interrupt handler finishes
 *  - process wakes up, sees WRITE PENDING bit set, goes to sleep
 *  - interrupt fires while process is sleeping
 * If anyone can point out the obvious solution here, i'm listening :).  This
 * shouldn't be an issue on an SMP or preempt system as this function should
 * only be called with the rtc lock held.
127 128 129 130 131
 *
 * Other options:
 *  - disable PREN so the sync happens at 32.768kHZ ... but this changes the
 *    inc rate for all RTC registers from 1HZ to 32.768kHZ ...
 *  - use the write complete IRQ
132
 */
133 134
/*
static void bfin_rtc_sync_pending_polled(void)
135
{
136
	while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE))
137 138 139 140
		if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING))
			break;
	bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
}
141 142 143 144 145 146 147 148 149
*/
static DECLARE_COMPLETION(bfin_write_complete);
static void bfin_rtc_sync_pending(struct device *dev)
{
	dev_dbg_stamp(dev);
	while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
		wait_for_completion_timeout(&bfin_write_complete, HZ * 5);
	dev_dbg_stamp(dev);
}
150

151 152 153 154 155 156
/**
 *	bfin_rtc_reset - set RTC to sane/known state
 *
 * Initialize the RTC.  Enable pre-scaler to scale RTC clock
 * to 1Hz and clear interrupt/status registers.
 */
157
static void bfin_rtc_reset(struct device *dev, u16 rtc_ictl)
158
{
159
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
160 161
	dev_dbg_stamp(dev);
	bfin_rtc_sync_pending(dev);
162
	bfin_write_RTC_PREN(0x1);
163
	bfin_write_RTC_ICTL(rtc_ictl);
164 165
	bfin_write_RTC_ALARM(0);
	bfin_write_RTC_ISTAT(0xFFFF);
166
	rtc->rtc_wrote_regs = 0;
167 168
}

169 170 171 172 173 174 175 176 177 178 179
/**
 *	bfin_rtc_interrupt - handle interrupt from RTC
 *
 * Since we handle all RTC events here, we have to make sure the requested
 * interrupt is enabled (in RTC_ICTL) as the event status register (RTC_ISTAT)
 * always gets updated regardless of the interrupt being enabled.  So when one
 * even we care about (e.g. stopwatch) goes off, we don't want to turn around
 * and say that other events have happened as well (e.g. second).  We do not
 * have to worry about pending writes to the RTC_ICTL register as interrupts
 * only fire if they are enabled in the RTC_ICTL register.
 */
180 181
static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id)
{
182 183
	struct device *dev = dev_id;
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
184
	unsigned long events = 0;
185
	bool write_complete = false;
186
	u16 rtc_istat, rtc_istat_clear, rtc_ictl, bits;
187

188
	dev_dbg_stamp(dev);
189 190

	rtc_istat = bfin_read_RTC_ISTAT();
191
	rtc_ictl = bfin_read_RTC_ICTL();
192
	rtc_istat_clear = 0;
193

194 195 196
	bits = RTC_ISTAT_WRITE_COMPLETE;
	if (rtc_istat & bits) {
		rtc_istat_clear |= bits;
197 198
		write_complete = true;
		complete(&bfin_write_complete);
199 200
	}

201 202 203 204
	bits = (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY);
	if (rtc_ictl & bits) {
		if (rtc_istat & bits) {
			rtc_istat_clear |= bits;
205 206
			events |= RTC_AF | RTC_IRQF;
		}
207 208
	}

209 210 211 212
	bits = RTC_ISTAT_SEC;
	if (rtc_ictl & bits) {
		if (rtc_istat & bits) {
			rtc_istat_clear |= bits;
213 214 215
			events |= RTC_UF | RTC_IRQF;
		}
	}
216

217 218
	if (events)
		rtc_update_irq(rtc->rtc_dev, 1, events);
219

220 221
	if (write_complete || events) {
		bfin_write_RTC_ISTAT(rtc_istat_clear);
222
		return IRQ_HANDLED;
223
	} else
224
		return IRQ_NONE;
225 226
}

227
static void bfin_rtc_int_set(u16 rtc_int)
228 229 230 231
{
	bfin_write_RTC_ISTAT(rtc_int);
	bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | rtc_int);
}
232
static void bfin_rtc_int_clear(u16 rtc_int)
233 234 235 236 237 238 239 240
{
	bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & rtc_int);
}
static void bfin_rtc_int_set_alarm(struct bfin_rtc *rtc)
{
	/* Blackfin has different bits for whether the alarm is
	 * more than 24 hours away.
	 */
241
	bfin_rtc_int_set(rtc->rtc_alarm.tm_yday == -1 ? RTC_ISTAT_ALARM : RTC_ISTAT_ALARM_DAY);
242
}
243

244 245 246 247 248 249 250 251 252
static int bfin_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);

	dev_dbg_stamp(dev);
	if (enabled)
		bfin_rtc_int_set_alarm(rtc);
	else
		bfin_rtc_int_clear(~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
253 254

	return 0;
255 256
}

257 258 259 260
static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);

261
	dev_dbg_stamp(dev);
262

263 264 265
	if (rtc->rtc_wrote_regs & 0x1)
		bfin_rtc_sync_pending(dev);

266 267 268 269 270 271 272 273 274 275 276
	rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm);

	return 0;
}

static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
	int ret;
	unsigned long now;

277
	dev_dbg_stamp(dev);
278 279 280

	ret = rtc_tm_to_time(tm, &now);
	if (ret == 0) {
281 282
		if (rtc->rtc_wrote_regs & 0x1)
			bfin_rtc_sync_pending(dev);
283
		bfin_write_RTC_STAT(rtc_time_to_bfin(now));
284
		rtc->rtc_wrote_regs = 0x1;
285 286 287 288 289 290 291 292
	}

	return ret;
}

static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
293
	dev_dbg_stamp(dev);
294
	alrm->time = rtc->rtc_alarm;
295
	bfin_rtc_sync_pending(dev);
296
	alrm->enabled = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
297 298 299 300 301 302
	return 0;
}

static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
303 304
	unsigned long rtc_alarm;

305
	dev_dbg_stamp(dev);
306 307 308 309

	if (rtc_tm_to_time(&alrm->time, &rtc_alarm))
		return -EINVAL;

310
	rtc->rtc_alarm = alrm->time;
311 312 313 314 315 316

	bfin_rtc_sync_pending(dev);
	bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm));
	if (alrm->enabled)
		bfin_rtc_int_set_alarm(rtc);

317 318 319 320 321
	return 0;
}

static int bfin_rtc_proc(struct device *dev, struct seq_file *seq)
{
322
#define yesno(x) ((x) ? "yes" : "no")
323
	u16 ictl = bfin_read_RTC_ICTL();
324
	dev_dbg_stamp(dev);
325 326 327
	seq_printf(seq,
		"alarm_IRQ\t: %s\n"
		"wkalarm_IRQ\t: %s\n"
328
		"seconds_IRQ\t: %s\n",
329 330
		yesno(ictl & RTC_ISTAT_ALARM),
		yesno(ictl & RTC_ISTAT_ALARM_DAY),
331
		yesno(ictl & RTC_ISTAT_SEC));
332
	return 0;
333
#undef yesno
334 335 336 337 338 339 340 341
}

static struct rtc_class_ops bfin_rtc_ops = {
	.read_time     = bfin_rtc_read_time,
	.set_time      = bfin_rtc_set_time,
	.read_alarm    = bfin_rtc_read_alarm,
	.set_alarm     = bfin_rtc_set_alarm,
	.proc          = bfin_rtc_proc,
342
	.alarm_irq_enable = bfin_rtc_alarm_irq_enable,
343 344 345 346 347
};

static int __devinit bfin_rtc_probe(struct platform_device *pdev)
{
	struct bfin_rtc *rtc;
348
	struct device *dev = &pdev->dev;
349
	int ret = 0;
350
	unsigned long timeout = jiffies + HZ;
351

352
	dev_dbg_stamp(dev);
353

354
	/* Allocate memory for our RTC struct */
355 356 357
	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
	if (unlikely(!rtc))
		return -ENOMEM;
358
	platform_set_drvdata(pdev, rtc);
359
	device_init_wakeup(dev, 1);
360

361 362 363 364 365 366 367 368
	/* Register our RTC with the RTC framework */
	rtc->rtc_dev = rtc_device_register(pdev->name, dev, &bfin_rtc_ops,
						THIS_MODULE);
	if (unlikely(IS_ERR(rtc->rtc_dev))) {
		ret = PTR_ERR(rtc->rtc_dev);
		goto err;
	}

369
	/* Grab the IRQ and init the hardware */
370
	ret = request_irq(IRQ_RTC, bfin_rtc_interrupt, 0, pdev->name, dev);
371
	if (unlikely(ret))
372
		goto err_reg;
373 374 375 376 377 378
	/* sometimes the bootloader touched things, but the write complete was not
	 * enabled, so let's just do a quick timeout here since the IRQ will not fire ...
	 */
	while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
		if (time_after(jiffies, timeout))
			break;
379
	bfin_rtc_reset(dev, RTC_ISTAT_WRITE_COMPLETE);
380
	bfin_write_RTC_SWCNT(0);
381 382 383

	return 0;

384 385 386
err_reg:
	rtc_device_unregister(rtc->rtc_dev);
err:
387 388 389 390 391 392 393
	kfree(rtc);
	return ret;
}

static int __devexit bfin_rtc_remove(struct platform_device *pdev)
{
	struct bfin_rtc *rtc = platform_get_drvdata(pdev);
394
	struct device *dev = &pdev->dev;
395

396 397
	bfin_rtc_reset(dev, 0);
	free_irq(IRQ_RTC, dev);
398 399 400 401 402 403 404
	rtc_device_unregister(rtc->rtc_dev);
	platform_set_drvdata(pdev, NULL);
	kfree(rtc);

	return 0;
}

405 406 407
#ifdef CONFIG_PM
static int bfin_rtc_suspend(struct platform_device *pdev, pm_message_t state)
{
408 409 410 411 412
	struct device *dev = &pdev->dev;

	dev_dbg_stamp(dev);

	if (device_may_wakeup(dev)) {
413
		enable_irq_wake(IRQ_RTC);
414
		bfin_rtc_sync_pending(dev);
415
	} else
416
		bfin_rtc_int_clear(0);
417

418 419 420 421 422
	return 0;
}

static int bfin_rtc_resume(struct platform_device *pdev)
{
423 424 425 426 427
	struct device *dev = &pdev->dev;

	dev_dbg_stamp(dev);

	if (device_may_wakeup(dev))
428
		disable_irq_wake(IRQ_RTC);
429 430 431 432 433 434 435 436 437 438 439

	/*
	 * Since only some of the RTC bits are maintained externally in the
	 * Vbat domain, we need to wait for the RTC MMRs to be synced into
	 * the core after waking up.  This happens every RTC 1HZ.  Once that
	 * has happened, we can go ahead and re-enable the important write
	 * complete interrupt event.
	 */
	while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_SEC))
		continue;
	bfin_rtc_int_set(RTC_ISTAT_WRITE_COMPLETE);
440

441 442
	return 0;
}
443 444 445
#else
# define bfin_rtc_suspend NULL
# define bfin_rtc_resume  NULL
446 447
#endif

448 449 450 451 452 453 454
static struct platform_driver bfin_rtc_driver = {
	.driver		= {
		.name	= "rtc-bfin",
		.owner	= THIS_MODULE,
	},
	.probe		= bfin_rtc_probe,
	.remove		= __devexit_p(bfin_rtc_remove),
455 456
	.suspend	= bfin_rtc_suspend,
	.resume		= bfin_rtc_resume,
457 458
};

459
module_platform_driver(bfin_rtc_driver);
460 461 462 463

MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver");
MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>");
MODULE_LICENSE("GPL");
464
MODULE_ALIAS("platform:rtc-bfin");