rtc-bfin.c 13.2 KB
Newer Older
1 2
/*
 * Blackfin On-Chip Real Time Clock Driver
3
 *  Supports BF51x/BF52x/BF53[123]/BF53[467]/BF54x
4
 *
5
 * Copyright 2004-2009 Analog Devices Inc.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 * Enter bugs at http://blackfin.uclinux.org/
 *
 * Licensed under the GPL-2 or later.
 */

/* The biggest issue we deal with in this driver is that register writes are
 * synced to the RTC frequency of 1Hz.  So if you write to a register and
 * attempt to write again before the first write has completed, the new write
 * is simply discarded.  This can easily be troublesome if userspace disables
 * one event (say periodic) and then right after enables an event (say alarm).
 * Since all events are maintained in the same interrupt mask register, if
 * we wrote to it to disable the first event and then wrote to it again to
 * enable the second event, that second event would not be enabled as the
 * write would be discarded and things quickly fall apart.
 *
 * To keep this delay from significantly degrading performance (we, in theory,
 * would have to sleep for up to 1 second everytime we wanted to write a
 * register), we only check the write pending status before we start to issue
 * a new write.  We bank on the idea that it doesnt matter when the sync
 * happens so long as we don't attempt another write before it does.  The only
 * time userspace would take this penalty is when they try and do multiple
 * operations right after another ... but in this case, they need to take the
 * sync penalty, so we should be OK.
 *
 * Also note that the RTC_ISTAT register does not suffer this penalty; its
 * writes to clear status registers complete immediately.
 */

35 36 37 38 39 40 41 42 43
/* It may seem odd that there is no SWCNT code in here (which would be exposed
 * via the periodic interrupt event, or PIE).  Since the Blackfin RTC peripheral
 * runs in units of seconds (N/HZ) but the Linux framework runs in units of HZ
 * (2^N HZ), there is no point in keeping code that only provides 1 HZ PIEs.
 * The same exact behavior can be accomplished by using the update interrupt
 * event (UIE).  Maybe down the line the RTC peripheral will suck less in which
 * case we can re-introduce PIE support.
 */

44
#include <linux/bcd.h>
45 46
#include <linux/completion.h>
#include <linux/delay.h>
47
#include <linux/init.h>
48 49 50
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
51
#include <linux/platform_device.h>
52
#include <linux/rtc.h>
53 54 55 56
#include <linux/seq_file.h>

#include <asm/blackfin.h>

57
#define dev_dbg_stamp(dev) dev_dbg(dev, "%s:%i: here i am\n", __func__, __LINE__)
58 59 60 61

struct bfin_rtc {
	struct rtc_device *rtc_dev;
	struct rtc_time rtc_alarm;
62
	u16 rtc_wrote_regs;
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
};

/* Bit values for the ISTAT / ICTL registers */
#define RTC_ISTAT_WRITE_COMPLETE  0x8000
#define RTC_ISTAT_WRITE_PENDING   0x4000
#define RTC_ISTAT_ALARM_DAY       0x0040
#define RTC_ISTAT_24HR            0x0020
#define RTC_ISTAT_HOUR            0x0010
#define RTC_ISTAT_MIN             0x0008
#define RTC_ISTAT_SEC             0x0004
#define RTC_ISTAT_ALARM           0x0002
#define RTC_ISTAT_STOPWATCH       0x0001

/* Shift values for RTC_STAT register */
#define DAY_BITS_OFF    17
#define HOUR_BITS_OFF   12
#define MIN_BITS_OFF    6
#define SEC_BITS_OFF    0

/* Some helper functions to convert between the common RTC notion of time
83
 * and the internal Blackfin notion that is encoded in 32bits.
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 */
static inline u32 rtc_time_to_bfin(unsigned long now)
{
	u32 sec  = (now % 60);
	u32 min  = (now % (60 * 60)) / 60;
	u32 hour = (now % (60 * 60 * 24)) / (60 * 60);
	u32 days = (now / (60 * 60 * 24));
	return (sec  << SEC_BITS_OFF) +
	       (min  << MIN_BITS_OFF) +
	       (hour << HOUR_BITS_OFF) +
	       (days << DAY_BITS_OFF);
}
static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin)
{
	return (((rtc_bfin >> SEC_BITS_OFF)  & 0x003F)) +
	       (((rtc_bfin >> MIN_BITS_OFF)  & 0x003F) * 60) +
	       (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) +
	       (((rtc_bfin >> DAY_BITS_OFF)  & 0x7FFF) * 60 * 60 * 24);
}
static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm)
{
	rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm);
}

108 109 110 111
/**
 *	bfin_rtc_sync_pending - make sure pending writes have complete
 *
 * Wait for the previous write to a RTC register to complete.
112 113 114 115 116 117 118 119 120 121 122 123 124 125
 * Unfortunately, we can't sleep here as that introduces a race condition when
 * turning on interrupt events.  Consider this:
 *  - process sets alarm
 *  - process enables alarm
 *  - process sleeps while waiting for rtc write to sync
 *  - interrupt fires while process is sleeping
 *  - interrupt acks the event by writing to ISTAT
 *  - interrupt sets the WRITE PENDING bit
 *  - interrupt handler finishes
 *  - process wakes up, sees WRITE PENDING bit set, goes to sleep
 *  - interrupt fires while process is sleeping
 * If anyone can point out the obvious solution here, i'm listening :).  This
 * shouldn't be an issue on an SMP or preempt system as this function should
 * only be called with the rtc lock held.
126 127 128 129 130
 *
 * Other options:
 *  - disable PREN so the sync happens at 32.768kHZ ... but this changes the
 *    inc rate for all RTC registers from 1HZ to 32.768kHZ ...
 *  - use the write complete IRQ
131
 */
132 133
/*
static void bfin_rtc_sync_pending_polled(void)
134
{
135
	while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE))
136 137 138 139
		if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING))
			break;
	bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
}
140 141 142 143 144 145 146 147 148
*/
static DECLARE_COMPLETION(bfin_write_complete);
static void bfin_rtc_sync_pending(struct device *dev)
{
	dev_dbg_stamp(dev);
	while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
		wait_for_completion_timeout(&bfin_write_complete, HZ * 5);
	dev_dbg_stamp(dev);
}
149

150 151 152 153 154 155
/**
 *	bfin_rtc_reset - set RTC to sane/known state
 *
 * Initialize the RTC.  Enable pre-scaler to scale RTC clock
 * to 1Hz and clear interrupt/status registers.
 */
156
static void bfin_rtc_reset(struct device *dev, u16 rtc_ictl)
157
{
158
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
159 160
	dev_dbg_stamp(dev);
	bfin_rtc_sync_pending(dev);
161
	bfin_write_RTC_PREN(0x1);
162
	bfin_write_RTC_ICTL(rtc_ictl);
163 164
	bfin_write_RTC_ALARM(0);
	bfin_write_RTC_ISTAT(0xFFFF);
165
	rtc->rtc_wrote_regs = 0;
166 167
}

168 169 170 171 172 173 174 175 176 177 178
/**
 *	bfin_rtc_interrupt - handle interrupt from RTC
 *
 * Since we handle all RTC events here, we have to make sure the requested
 * interrupt is enabled (in RTC_ICTL) as the event status register (RTC_ISTAT)
 * always gets updated regardless of the interrupt being enabled.  So when one
 * even we care about (e.g. stopwatch) goes off, we don't want to turn around
 * and say that other events have happened as well (e.g. second).  We do not
 * have to worry about pending writes to the RTC_ICTL register as interrupts
 * only fire if they are enabled in the RTC_ICTL register.
 */
179 180
static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id)
{
181 182
	struct device *dev = dev_id;
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
183
	unsigned long events = 0;
184 185
	bool write_complete = false;
	u16 rtc_istat, rtc_ictl;
186

187
	dev_dbg_stamp(dev);
188 189

	rtc_istat = bfin_read_RTC_ISTAT();
190
	rtc_ictl = bfin_read_RTC_ICTL();
191

192 193 194 195
	if (rtc_istat & RTC_ISTAT_WRITE_COMPLETE) {
		bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
		write_complete = true;
		complete(&bfin_write_complete);
196 197
	}

198 199 200 201 202
	if (rtc_ictl & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)) {
		if (rtc_istat & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)) {
			bfin_write_RTC_ISTAT(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY);
			events |= RTC_AF | RTC_IRQF;
		}
203 204
	}

205 206 207 208 209 210
	if (rtc_ictl & RTC_ISTAT_SEC) {
		if (rtc_istat & RTC_ISTAT_SEC) {
			bfin_write_RTC_ISTAT(RTC_ISTAT_SEC);
			events |= RTC_UF | RTC_IRQF;
		}
	}
211

212 213
	if (events)
		rtc_update_irq(rtc->rtc_dev, 1, events);
214

215 216 217 218
	if (write_complete || events)
		return IRQ_HANDLED;
	else
		return IRQ_NONE;
219 220
}

221
static void bfin_rtc_int_set(u16 rtc_int)
222 223 224 225
{
	bfin_write_RTC_ISTAT(rtc_int);
	bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | rtc_int);
}
226
static void bfin_rtc_int_clear(u16 rtc_int)
227 228 229 230 231 232 233 234
{
	bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & rtc_int);
}
static void bfin_rtc_int_set_alarm(struct bfin_rtc *rtc)
{
	/* Blackfin has different bits for whether the alarm is
	 * more than 24 hours away.
	 */
235
	bfin_rtc_int_set(rtc->rtc_alarm.tm_yday == -1 ? RTC_ISTAT_ALARM : RTC_ISTAT_ALARM_DAY);
236
}
237 238 239
static int bfin_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
240
	int ret = 0;
241

242
	dev_dbg_stamp(dev);
243

244 245
	bfin_rtc_sync_pending(dev);

246 247
	switch (cmd) {
	case RTC_UIE_ON:
248
		dev_dbg_stamp(dev);
249
		bfin_rtc_int_set(RTC_ISTAT_SEC);
250
		break;
251
	case RTC_UIE_OFF:
252
		dev_dbg_stamp(dev);
253
		bfin_rtc_int_clear(~RTC_ISTAT_SEC);
254
		break;
255

256
	case RTC_AIE_ON:
257
		dev_dbg_stamp(dev);
258 259
		bfin_rtc_int_set_alarm(rtc);
		break;
260
	case RTC_AIE_OFF:
261
		dev_dbg_stamp(dev);
262
		bfin_rtc_int_clear(~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
263 264 265 266 267
		break;

	default:
		dev_dbg_stamp(dev);
		ret = -ENOIOCTLCMD;
268 269
	}

270
	return ret;
271 272 273 274 275 276
}

static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);

277
	dev_dbg_stamp(dev);
278

279 280 281
	if (rtc->rtc_wrote_regs & 0x1)
		bfin_rtc_sync_pending(dev);

282 283 284 285 286 287 288 289 290 291 292
	rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm);

	return 0;
}

static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
	int ret;
	unsigned long now;

293
	dev_dbg_stamp(dev);
294 295 296

	ret = rtc_tm_to_time(tm, &now);
	if (ret == 0) {
297 298
		if (rtc->rtc_wrote_regs & 0x1)
			bfin_rtc_sync_pending(dev);
299
		bfin_write_RTC_STAT(rtc_time_to_bfin(now));
300
		rtc->rtc_wrote_regs = 0x1;
301 302 303 304 305 306 307 308
	}

	return ret;
}

static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
309
	dev_dbg_stamp(dev);
310
	alrm->time = rtc->rtc_alarm;
311
	bfin_rtc_sync_pending(dev);
312
	alrm->enabled = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
313 314 315 316 317 318
	return 0;
}

static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
319 320
	unsigned long rtc_alarm;

321
	dev_dbg_stamp(dev);
322 323 324 325

	if (rtc_tm_to_time(&alrm->time, &rtc_alarm))
		return -EINVAL;

326
	rtc->rtc_alarm = alrm->time;
327 328 329 330 331 332

	bfin_rtc_sync_pending(dev);
	bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm));
	if (alrm->enabled)
		bfin_rtc_int_set_alarm(rtc);

333 334 335 336 337
	return 0;
}

static int bfin_rtc_proc(struct device *dev, struct seq_file *seq)
{
338
#define yesno(x) ((x) ? "yes" : "no")
339
	u16 ictl = bfin_read_RTC_ICTL();
340
	dev_dbg_stamp(dev);
341 342 343
	seq_printf(seq,
		"alarm_IRQ\t: %s\n"
		"wkalarm_IRQ\t: %s\n"
344
		"seconds_IRQ\t: %s\n",
345 346
		yesno(ictl & RTC_ISTAT_ALARM),
		yesno(ictl & RTC_ISTAT_ALARM_DAY),
347
		yesno(ictl & RTC_ISTAT_SEC));
348
	return 0;
349
#undef yesno
350 351 352 353 354 355 356 357 358 359 360 361 362 363
}

static struct rtc_class_ops bfin_rtc_ops = {
	.ioctl         = bfin_rtc_ioctl,
	.read_time     = bfin_rtc_read_time,
	.set_time      = bfin_rtc_set_time,
	.read_alarm    = bfin_rtc_read_alarm,
	.set_alarm     = bfin_rtc_set_alarm,
	.proc          = bfin_rtc_proc,
};

static int __devinit bfin_rtc_probe(struct platform_device *pdev)
{
	struct bfin_rtc *rtc;
364
	struct device *dev = &pdev->dev;
365
	int ret = 0;
366
	unsigned long timeout = jiffies + HZ;
367

368
	dev_dbg_stamp(dev);
369

370
	/* Allocate memory for our RTC struct */
371 372 373
	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
	if (unlikely(!rtc))
		return -ENOMEM;
374
	platform_set_drvdata(pdev, rtc);
375
	device_init_wakeup(dev, 1);
376

377 378 379 380 381 382 383 384
	/* Register our RTC with the RTC framework */
	rtc->rtc_dev = rtc_device_register(pdev->name, dev, &bfin_rtc_ops,
						THIS_MODULE);
	if (unlikely(IS_ERR(rtc->rtc_dev))) {
		ret = PTR_ERR(rtc->rtc_dev);
		goto err;
	}

385 386 387
	/* Grab the IRQ and init the hardware */
	ret = request_irq(IRQ_RTC, bfin_rtc_interrupt, IRQF_SHARED, pdev->name, dev);
	if (unlikely(ret))
388
		goto err_reg;
389 390 391 392 393 394
	/* sometimes the bootloader touched things, but the write complete was not
	 * enabled, so let's just do a quick timeout here since the IRQ will not fire ...
	 */
	while (bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING)
		if (time_after(jiffies, timeout))
			break;
395
	bfin_rtc_reset(dev, RTC_ISTAT_WRITE_COMPLETE);
396
	bfin_write_RTC_SWCNT(0);
397 398 399

	return 0;

400 401 402
err_reg:
	rtc_device_unregister(rtc->rtc_dev);
err:
403 404 405 406 407 408 409
	kfree(rtc);
	return ret;
}

static int __devexit bfin_rtc_remove(struct platform_device *pdev)
{
	struct bfin_rtc *rtc = platform_get_drvdata(pdev);
410
	struct device *dev = &pdev->dev;
411

412 413
	bfin_rtc_reset(dev, 0);
	free_irq(IRQ_RTC, dev);
414 415 416 417 418 419 420
	rtc_device_unregister(rtc->rtc_dev);
	platform_set_drvdata(pdev, NULL);
	kfree(rtc);

	return 0;
}

421 422 423
#ifdef CONFIG_PM
static int bfin_rtc_suspend(struct platform_device *pdev, pm_message_t state)
{
424
	if (device_may_wakeup(&pdev->dev)) {
425
		enable_irq_wake(IRQ_RTC);
426 427
		bfin_rtc_sync_pending(&pdev->dev);
	} else
428
		bfin_rtc_int_clear(-1);
429

430 431 432 433 434
	return 0;
}

static int bfin_rtc_resume(struct platform_device *pdev)
{
435 436 437 438 439
	if (device_may_wakeup(&pdev->dev))
		disable_irq_wake(IRQ_RTC);
	else
		bfin_write_RTC_ISTAT(-1);

440 441
	return 0;
}
442 443 444
#else
# define bfin_rtc_suspend NULL
# define bfin_rtc_resume  NULL
445 446
#endif

447 448 449 450 451 452 453
static struct platform_driver bfin_rtc_driver = {
	.driver		= {
		.name	= "rtc-bfin",
		.owner	= THIS_MODULE,
	},
	.probe		= bfin_rtc_probe,
	.remove		= __devexit_p(bfin_rtc_remove),
454 455
	.suspend	= bfin_rtc_suspend,
	.resume		= bfin_rtc_resume,
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
};

static int __init bfin_rtc_init(void)
{
	return platform_driver_register(&bfin_rtc_driver);
}

static void __exit bfin_rtc_exit(void)
{
	platform_driver_unregister(&bfin_rtc_driver);
}

module_init(bfin_rtc_init);
module_exit(bfin_rtc_exit);

MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver");
MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>");
MODULE_LICENSE("GPL");
474
MODULE_ALIAS("platform:rtc-bfin");