rtc-bfin.c 12.0 KB
Newer Older
1 2
/*
 * Blackfin On-Chip Real Time Clock Driver
3
 *  Supports BF53[123]/BF53[467]/BF54[2489]
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 *
 * Copyright 2004-2007 Analog Devices Inc.
 *
 * Enter bugs at http://blackfin.uclinux.org/
 *
 * Licensed under the GPL-2 or later.
 */

/* The biggest issue we deal with in this driver is that register writes are
 * synced to the RTC frequency of 1Hz.  So if you write to a register and
 * attempt to write again before the first write has completed, the new write
 * is simply discarded.  This can easily be troublesome if userspace disables
 * one event (say periodic) and then right after enables an event (say alarm).
 * Since all events are maintained in the same interrupt mask register, if
 * we wrote to it to disable the first event and then wrote to it again to
 * enable the second event, that second event would not be enabled as the
 * write would be discarded and things quickly fall apart.
 *
 * To keep this delay from significantly degrading performance (we, in theory,
 * would have to sleep for up to 1 second everytime we wanted to write a
 * register), we only check the write pending status before we start to issue
 * a new write.  We bank on the idea that it doesnt matter when the sync
 * happens so long as we don't attempt another write before it does.  The only
 * time userspace would take this penalty is when they try and do multiple
 * operations right after another ... but in this case, they need to take the
 * sync penalty, so we should be OK.
 *
 * Also note that the RTC_ISTAT register does not suffer this penalty; its
 * writes to clear status registers complete immediately.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/bcd.h>
#include <linux/rtc.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/seq_file.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/delay.h>

#include <asm/blackfin.h>

48
#define dev_dbg_stamp(dev) dev_dbg(dev, "%s:%i: here i am\n", __func__, __LINE__)
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

struct bfin_rtc {
	struct rtc_device *rtc_dev;
	struct rtc_time rtc_alarm;
	spinlock_t lock;
};

/* Bit values for the ISTAT / ICTL registers */
#define RTC_ISTAT_WRITE_COMPLETE  0x8000
#define RTC_ISTAT_WRITE_PENDING   0x4000
#define RTC_ISTAT_ALARM_DAY       0x0040
#define RTC_ISTAT_24HR            0x0020
#define RTC_ISTAT_HOUR            0x0010
#define RTC_ISTAT_MIN             0x0008
#define RTC_ISTAT_SEC             0x0004
#define RTC_ISTAT_ALARM           0x0002
#define RTC_ISTAT_STOPWATCH       0x0001

/* Shift values for RTC_STAT register */
#define DAY_BITS_OFF    17
#define HOUR_BITS_OFF   12
#define MIN_BITS_OFF    6
#define SEC_BITS_OFF    0

/* Some helper functions to convert between the common RTC notion of time
74
 * and the internal Blackfin notion that is encoded in 32bits.
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
 */
static inline u32 rtc_time_to_bfin(unsigned long now)
{
	u32 sec  = (now % 60);
	u32 min  = (now % (60 * 60)) / 60;
	u32 hour = (now % (60 * 60 * 24)) / (60 * 60);
	u32 days = (now / (60 * 60 * 24));
	return (sec  << SEC_BITS_OFF) +
	       (min  << MIN_BITS_OFF) +
	       (hour << HOUR_BITS_OFF) +
	       (days << DAY_BITS_OFF);
}
static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin)
{
	return (((rtc_bfin >> SEC_BITS_OFF)  & 0x003F)) +
	       (((rtc_bfin >> MIN_BITS_OFF)  & 0x003F) * 60) +
	       (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) +
	       (((rtc_bfin >> DAY_BITS_OFF)  & 0x7FFF) * 60 * 60 * 24);
}
static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm)
{
	rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm);
}

/* Wait for the previous write to a RTC register to complete.
 * Unfortunately, we can't sleep here as that introduces a race condition when
 * turning on interrupt events.  Consider this:
 *  - process sets alarm
 *  - process enables alarm
 *  - process sleeps while waiting for rtc write to sync
 *  - interrupt fires while process is sleeping
 *  - interrupt acks the event by writing to ISTAT
 *  - interrupt sets the WRITE PENDING bit
 *  - interrupt handler finishes
 *  - process wakes up, sees WRITE PENDING bit set, goes to sleep
 *  - interrupt fires while process is sleeping
 * If anyone can point out the obvious solution here, i'm listening :).  This
 * shouldn't be an issue on an SMP or preempt system as this function should
 * only be called with the rtc lock held.
114 115 116 117 118
 *
 * Other options:
 *  - disable PREN so the sync happens at 32.768kHZ ... but this changes the
 *    inc rate for all RTC registers from 1HZ to 32.768kHZ ...
 *  - use the write complete IRQ
119 120 121 122 123 124 125 126 127 128
 */
static void rtc_bfin_sync_pending(void)
{
	while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE)) {
		if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING))
			break;
	}
	bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
}

129
static void rtc_bfin_reset(struct device *dev)
130
{
131
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
132 133 134 135 136 137 138 139 140 141 142 143 144 145
	/* Initialize the RTC. Enable pre-scaler to scale RTC clock
	 * to 1Hz and clear interrupt/status registers. */
	spin_lock_irq(&rtc->lock);
	rtc_bfin_sync_pending();
	bfin_write_RTC_PREN(0x1);
	bfin_write_RTC_ICTL(0);
	bfin_write_RTC_SWCNT(0);
	bfin_write_RTC_ALARM(0);
	bfin_write_RTC_ISTAT(0xFFFF);
	spin_unlock_irq(&rtc->lock);
}

static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id)
{
146 147
	struct device *dev = dev_id;
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
148 149 150
	unsigned long events = 0;
	u16 rtc_istat;

151
	dev_dbg_stamp(dev);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

	spin_lock_irq(&rtc->lock);

	rtc_istat = bfin_read_RTC_ISTAT();

	if (rtc_istat & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)) {
		bfin_write_RTC_ISTAT(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY);
		events |= RTC_AF | RTC_IRQF;
	}

	if (rtc_istat & RTC_ISTAT_STOPWATCH) {
		bfin_write_RTC_ISTAT(RTC_ISTAT_STOPWATCH);
		events |= RTC_PF | RTC_IRQF;
		bfin_write_RTC_SWCNT(rtc->rtc_dev->irq_freq);
	}

	if (rtc_istat & RTC_ISTAT_SEC) {
		bfin_write_RTC_ISTAT(RTC_ISTAT_SEC);
		events |= RTC_UF | RTC_IRQF;
	}

	rtc_update_irq(rtc->rtc_dev, 1, events);

	spin_unlock_irq(&rtc->lock);

	return IRQ_HANDLED;
}

static int bfin_rtc_open(struct device *dev)
{
	int ret;

184
	dev_dbg_stamp(dev);
185 186 187 188 189 190 191

	ret = request_irq(IRQ_RTC, bfin_rtc_interrupt, IRQF_DISABLED, "rtc-bfin", dev);
	if (unlikely(ret)) {
		dev_err(dev, "request RTC IRQ failed with %d\n", ret);
		return ret;
	}

192
	rtc_bfin_reset(dev);
193 194 195 196 197 198

	return ret;
}

static void bfin_rtc_release(struct device *dev)
{
199 200
	dev_dbg_stamp(dev);
	rtc_bfin_reset(dev);
201 202 203 204 205 206 207
	free_irq(IRQ_RTC, dev);
}

static int bfin_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);

208
	dev_dbg_stamp(dev);
209 210 211

	switch (cmd) {
	case RTC_PIE_ON:
212
		dev_dbg_stamp(dev);
213 214 215 216 217 218 219 220
		spin_lock_irq(&rtc->lock);
		rtc_bfin_sync_pending();
		bfin_write_RTC_ISTAT(RTC_ISTAT_STOPWATCH);
		bfin_write_RTC_SWCNT(rtc->rtc_dev->irq_freq);
		bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | RTC_ISTAT_STOPWATCH);
		spin_unlock_irq(&rtc->lock);
		return 0;
	case RTC_PIE_OFF:
221
		dev_dbg_stamp(dev);
222 223 224 225 226 227 228 229
		spin_lock_irq(&rtc->lock);
		rtc_bfin_sync_pending();
		bfin_write_RTC_SWCNT(0);
		bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & ~RTC_ISTAT_STOPWATCH);
		spin_unlock_irq(&rtc->lock);
		return 0;

	case RTC_UIE_ON:
230
		dev_dbg_stamp(dev);
231 232 233 234 235 236 237
		spin_lock_irq(&rtc->lock);
		rtc_bfin_sync_pending();
		bfin_write_RTC_ISTAT(RTC_ISTAT_SEC);
		bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | RTC_ISTAT_SEC);
		spin_unlock_irq(&rtc->lock);
		return 0;
	case RTC_UIE_OFF:
238
		dev_dbg_stamp(dev);
239 240 241 242 243 244 245 246 247 248 249
		spin_lock_irq(&rtc->lock);
		rtc_bfin_sync_pending();
		bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & ~RTC_ISTAT_SEC);
		spin_unlock_irq(&rtc->lock);
		return 0;

	case RTC_AIE_ON: {
		unsigned long rtc_alarm;
		u16 which_alarm;
		int ret = 0;

250
		dev_dbg_stamp(dev);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

		spin_lock_irq(&rtc->lock);

		rtc_bfin_sync_pending();
		if (rtc->rtc_alarm.tm_yday == -1) {
			struct rtc_time now;
			rtc_bfin_to_tm(bfin_read_RTC_STAT(), &now);
			now.tm_sec = rtc->rtc_alarm.tm_sec;
			now.tm_min = rtc->rtc_alarm.tm_min;
			now.tm_hour = rtc->rtc_alarm.tm_hour;
			ret = rtc_tm_to_time(&now, &rtc_alarm);
			which_alarm = RTC_ISTAT_ALARM;
		} else {
			ret = rtc_tm_to_time(&rtc->rtc_alarm, &rtc_alarm);
			which_alarm = RTC_ISTAT_ALARM_DAY;
		}
		if (ret == 0) {
			bfin_write_RTC_ISTAT(which_alarm);
			bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm));
			bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | which_alarm);
		}

		spin_unlock_irq(&rtc->lock);

		return ret;
	}
	case RTC_AIE_OFF:
278
		dev_dbg_stamp(dev);
279 280 281 282 283 284 285 286 287 288 289 290 291 292
		spin_lock_irq(&rtc->lock);
		rtc_bfin_sync_pending();
		bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & ~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
		spin_unlock_irq(&rtc->lock);
		return 0;
	}

	return -ENOIOCTLCMD;
}

static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);

293
	dev_dbg_stamp(dev);
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

	spin_lock_irq(&rtc->lock);
	rtc_bfin_sync_pending();
	rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm);
	spin_unlock_irq(&rtc->lock);

	return 0;
}

static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
	int ret;
	unsigned long now;

309
	dev_dbg_stamp(dev);
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

	spin_lock_irq(&rtc->lock);

	ret = rtc_tm_to_time(tm, &now);
	if (ret == 0) {
		rtc_bfin_sync_pending();
		bfin_write_RTC_STAT(rtc_time_to_bfin(now));
	}

	spin_unlock_irq(&rtc->lock);

	return ret;
}

static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
327
	dev_dbg_stamp(dev);
328
	alrm->time = rtc->rtc_alarm;
329
	alrm->enabled = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
330 331 332 333 334 335
	return 0;
}

static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct bfin_rtc *rtc = dev_get_drvdata(dev);
336
	dev_dbg_stamp(dev);
337
	rtc->rtc_alarm = alrm->time;
338 339 340 341 342
	return 0;
}

static int bfin_rtc_proc(struct device *dev, struct seq_file *seq)
{
343
#define yesno(x) ((x) ? "yes" : "no")
344
	u16 ictl = bfin_read_RTC_ICTL();
345
	dev_dbg_stamp(dev);
346 347 348 349 350 351 352 353 354
	seq_printf(seq,
		"alarm_IRQ\t: %s\n"
		"wkalarm_IRQ\t: %s\n"
		"seconds_IRQ\t: %s\n"
		"periodic_IRQ\t: %s\n",
		yesno(ictl & RTC_ISTAT_ALARM),
		yesno(ictl & RTC_ISTAT_ALARM_DAY),
		yesno(ictl & RTC_ISTAT_SEC),
		yesno(ictl & RTC_ISTAT_STOPWATCH));
355
	return 0;
356
#undef yesno
357 358
}

359 360 361 362 363 364 365 366
/**
 *	bfin_irq_set_freq - make sure hardware supports requested freq
 *	@dev: pointer to RTC device structure
 *	@freq: requested frequency rate
 *
 *	The Blackfin RTC can only generate periodic events at 1 per
 *	second (1 Hz), so reject any attempt at changing it.
 */
367 368
static int bfin_irq_set_freq(struct device *dev, int freq)
{
369
	dev_dbg_stamp(dev);
370
	return -ENOTTY;
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
}

static struct rtc_class_ops bfin_rtc_ops = {
	.open          = bfin_rtc_open,
	.release       = bfin_rtc_release,
	.ioctl         = bfin_rtc_ioctl,
	.read_time     = bfin_rtc_read_time,
	.set_time      = bfin_rtc_set_time,
	.read_alarm    = bfin_rtc_read_alarm,
	.set_alarm     = bfin_rtc_set_alarm,
	.proc          = bfin_rtc_proc,
	.irq_set_freq  = bfin_irq_set_freq,
};

static int __devinit bfin_rtc_probe(struct platform_device *pdev)
{
	struct bfin_rtc *rtc;
	int ret = 0;

390
	dev_dbg_stamp(&pdev->dev);
391 392 393 394 395 396 397 398 399 400 401 402

	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
	if (unlikely(!rtc))
		return -ENOMEM;

	spin_lock_init(&rtc->lock);

	rtc->rtc_dev = rtc_device_register(pdev->name, &pdev->dev, &bfin_rtc_ops, THIS_MODULE);
	if (unlikely(IS_ERR(rtc))) {
		ret = PTR_ERR(rtc->rtc_dev);
		goto err;
	}
403
	rtc->rtc_dev->irq_freq = 1;
404 405 406 407 408

	platform_set_drvdata(pdev, rtc);

	return 0;

409
 err:
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
	kfree(rtc);
	return ret;
}

static int __devexit bfin_rtc_remove(struct platform_device *pdev)
{
	struct bfin_rtc *rtc = platform_get_drvdata(pdev);

	rtc_device_unregister(rtc->rtc_dev);
	platform_set_drvdata(pdev, NULL);
	kfree(rtc);

	return 0;
}

static struct platform_driver bfin_rtc_driver = {
	.driver		= {
		.name	= "rtc-bfin",
		.owner	= THIS_MODULE,
	},
	.probe		= bfin_rtc_probe,
	.remove		= __devexit_p(bfin_rtc_remove),
};

static int __init bfin_rtc_init(void)
{
	return platform_driver_register(&bfin_rtc_driver);
}

static void __exit bfin_rtc_exit(void)
{
	platform_driver_unregister(&bfin_rtc_driver);
}

module_init(bfin_rtc_init);
module_exit(bfin_rtc_exit);

MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver");
MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>");
MODULE_LICENSE("GPL");