intel_ddi.c 77.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

#include "i915_drv.h"
#include "intel_drv.h"

31 32 33 34 35
struct ddi_buf_trans {
	u32 trans1;	/* balance leg enable, de-emph level */
	u32 trans2;	/* vref sel, vswing */
};

36 37 38 39
/* HDMI/DVI modes ignore everything but the last 2 items. So we share
 * them for both DP and FDI transports, allowing those ports to
 * automatically adapt to HDMI connections as well
 */
40 41 42 43 44 45 46 47 48 49
static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
	{ 0x00FFFFFF, 0x0006000E },
	{ 0x00D75FFF, 0x0005000A },
	{ 0x00C30FFF, 0x00040006 },
	{ 0x80AAAFFF, 0x000B0000 },
	{ 0x00FFFFFF, 0x0005000A },
	{ 0x00D75FFF, 0x000C0004 },
	{ 0x80C30FFF, 0x000B0000 },
	{ 0x00FFFFFF, 0x00040006 },
	{ 0x80D75FFF, 0x000B0000 },
50 51
};

52 53 54 55 56 57 58 59 60 61
static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
	{ 0x00FFFFFF, 0x0007000E },
	{ 0x00D75FFF, 0x000F000A },
	{ 0x00C30FFF, 0x00060006 },
	{ 0x00AAAFFF, 0x001E0000 },
	{ 0x00FFFFFF, 0x000F000A },
	{ 0x00D75FFF, 0x00160004 },
	{ 0x00C30FFF, 0x001E0000 },
	{ 0x00FFFFFF, 0x00060006 },
	{ 0x00D75FFF, 0x001E0000 },
62 63
};

64 65 66 67 68 69 70 71 72 73 74 75 76 77
static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV d	db	*/
	{ 0x00FFFFFF, 0x0006000E },	/* 0:	400	400	0	*/
	{ 0x00E79FFF, 0x000E000C },	/* 1:	400	500	2	*/
	{ 0x00D75FFF, 0x0005000A },	/* 2:	400	600	3.5	*/
	{ 0x00FFFFFF, 0x0005000A },	/* 3:	600	600	0	*/
	{ 0x00E79FFF, 0x001D0007 },	/* 4:	600	750	2	*/
	{ 0x00D75FFF, 0x000C0004 },	/* 5:	600	900	3.5	*/
	{ 0x00FFFFFF, 0x00040006 },	/* 6:	800	800	0	*/
	{ 0x80E79FFF, 0x00030002 },	/* 7:	800	1000	2	*/
	{ 0x00FFFFFF, 0x00140005 },	/* 8:	850	850	0	*/
	{ 0x00FFFFFF, 0x000C0004 },	/* 9:	900	900	0	*/
	{ 0x00FFFFFF, 0x001C0003 },	/* 10:	950	950	0	*/
	{ 0x80FFFFFF, 0x00030002 },	/* 11:	1000	1000	0	*/
78 79
};

80 81 82 83 84 85 86 87 88 89
static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
	{ 0x00FFFFFF, 0x00000012 },
	{ 0x00EBAFFF, 0x00020011 },
	{ 0x00C71FFF, 0x0006000F },
	{ 0x00AAAFFF, 0x000E000A },
	{ 0x00FFFFFF, 0x00020011 },
	{ 0x00DB6FFF, 0x0005000F },
	{ 0x00BEEFFF, 0x000A000C },
	{ 0x00FFFFFF, 0x0005000F },
	{ 0x00DB6FFF, 0x000A000C },
90 91
};

92 93 94 95 96 97
static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
	{ 0x00FFFFFF, 0x0007000E },
	{ 0x00D75FFF, 0x000E000A },
	{ 0x00BEFFFF, 0x00140006 },
	{ 0x80B2CFFF, 0x001B0002 },
	{ 0x00FFFFFF, 0x000E000A },
98
	{ 0x00DB6FFF, 0x00160005 },
99
	{ 0x80C71FFF, 0x001A0002 },
100 101
	{ 0x00F7DFFF, 0x00180004 },
	{ 0x80D75FFF, 0x001B0002 },
102 103
};

104 105 106 107 108 109 110 111 112 113
static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
	{ 0x00FFFFFF, 0x0001000E },
	{ 0x00D75FFF, 0x0004000A },
	{ 0x00C30FFF, 0x00070006 },
	{ 0x00AAAFFF, 0x000C0000 },
	{ 0x00FFFFFF, 0x0004000A },
	{ 0x00D75FFF, 0x00090004 },
	{ 0x00C30FFF, 0x000C0000 },
	{ 0x00FFFFFF, 0x00070006 },
	{ 0x00D75FFF, 0x000C0000 },
114 115
};

116 117 118 119 120 121 122 123 124 125 126 127
static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
					/* Idx	NT mV d	T mV df	db	*/
	{ 0x00FFFFFF, 0x0007000E },	/* 0:	400	400	0	*/
	{ 0x00D75FFF, 0x000E000A },	/* 1:	400	600	3.5	*/
	{ 0x00BEFFFF, 0x00140006 },	/* 2:	400	800	6	*/
	{ 0x00FFFFFF, 0x0009000D },	/* 3:	450	450	0	*/
	{ 0x00FFFFFF, 0x000E000A },	/* 4:	600	600	0	*/
	{ 0x00D7FFFF, 0x00140006 },	/* 5:	600	800	2.5	*/
	{ 0x80CB2FFF, 0x001B0002 },	/* 6:	600	1000	4.5	*/
	{ 0x00FFFFFF, 0x00140006 },	/* 7:	800	800	0	*/
	{ 0x80E79FFF, 0x001B0002 },	/* 8:	800	1000	2	*/
	{ 0x80FFFFFF, 0x001B0002 },	/* 9:	1000	1000	0	*/
128 129
};

130
static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
131 132
	{ 0x00000018, 0x000000a2 },
	{ 0x00004014, 0x0000009B },
133
	{ 0x00006012, 0x00000088 },
134 135
	{ 0x00008010, 0x00000087 },
	{ 0x00000018, 0x0000009B },
136
	{ 0x00004014, 0x00000088 },
137
	{ 0x00006012, 0x00000087 },
138
	{ 0x00000018, 0x00000088 },
139
	{ 0x00004014, 0x00000087 },
140 141
};

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
/* eDP 1.4 low vswing translation parameters */
static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
	{ 0x00000018, 0x000000a8 },
	{ 0x00002016, 0x000000ab },
	{ 0x00006012, 0x000000a2 },
	{ 0x00008010, 0x00000088 },
	{ 0x00000018, 0x000000ab },
	{ 0x00004014, 0x000000a2 },
	{ 0x00006012, 0x000000a6 },
	{ 0x00000018, 0x000000a2 },
	{ 0x00005013, 0x0000009c },
	{ 0x00000018, 0x00000088 },
};


157
static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
158 159 160 161 162 163 164 165 166 167 168
	{ 0x00000018, 0x000000ac },
	{ 0x00005012, 0x0000009d },
	{ 0x00007011, 0x00000088 },
	{ 0x00000018, 0x000000a1 },
	{ 0x00000018, 0x00000098 },
	{ 0x00004013, 0x00000088 },
	{ 0x00006012, 0x00000087 },
	{ 0x00000018, 0x000000df },
	{ 0x00003015, 0x00000087 },
	{ 0x00003015, 0x000000c7 },
	{ 0x00000018, 0x000000c7 },
169 170
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
struct bxt_ddi_buf_trans {
	u32 margin;	/* swing value */
	u32 scale;	/* scale value */
	u32 enable;	/* scale enable */
	u32 deemphasis;
	bool default_index; /* true if the entry represents default value */
};

/* BSpec does not define separate vswing/pre-emphasis values for eDP.
 * Using DP values for eDP as well.
 */
static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
					/* Idx	NT mV diff	db  */
	{ 52,  0,    0, 128, true  },	/* 0:	400		0   */
	{ 78,  0,    0, 85,  false },	/* 1:	400		3.5 */
	{ 104, 0,    0, 64,  false },	/* 2:	400		6   */
	{ 154, 0,    0, 43,  false },	/* 3:	400		9.5 */
	{ 77,  0,    0, 128, false },	/* 4:	600		0   */
	{ 116, 0,    0, 85,  false },	/* 5:	600		3.5 */
	{ 154, 0,    0, 64,  false },	/* 6:	600		6   */
	{ 102, 0,    0, 128, false },	/* 7:	800		0   */
	{ 154, 0,    0, 85,  false },	/* 8:	800		3.5 */
	{ 154, 0x9A, 1, 128, false },  /* 9:	1200		0   */
};

/* BSpec has 2 recommended values - entries 0 and 8.
 * Using the entry with higher vswing.
 */
static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
					/* Idx	NT mV diff	db  */
	{ 52,  0,    0, 128, false },	/* 0:	400		0   */
	{ 52,  0,    0, 85,  false },	/* 1:	400		3.5 */
	{ 52,  0,    0, 64,  false },	/* 2:	400		6   */
	{ 42,  0,    0, 43,  false },	/* 3:	400		9.5 */
	{ 77,  0,    0, 128, false },	/* 4:	600		0   */
	{ 77,  0,    0, 85,  false },	/* 5:	600		3.5 */
	{ 77,  0,    0, 64,  false },	/* 6:	600		6   */
	{ 102, 0,    0, 128, false },	/* 7:	800		0   */
	{ 102, 0,    0, 85,  false },	/* 8:	800		3.5 */
	{ 154, 0x9A, 1, 128, true },	/* 9:	1200		0   */
};

213 214 215
static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
				 struct intel_digital_port **dig_port,
				 enum port *port)
216
{
217
	struct drm_encoder *encoder = &intel_encoder->base;
218 219
	int type = intel_encoder->type;

220
	if (type == INTEL_OUTPUT_DP_MST) {
221 222
		*dig_port = enc_to_mst(encoder)->primary;
		*port = (*dig_port)->port;
223
	} else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
P
Paulo Zanoni 已提交
224
	    type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
225 226
		*dig_port = enc_to_dig_port(encoder);
		*port = (*dig_port)->port;
227
	} else if (type == INTEL_OUTPUT_ANALOG) {
228 229
		*dig_port = NULL;
		*port = PORT_E;
230 231 232 233 234 235
	} else {
		DRM_ERROR("Invalid DDI encoder type %d\n", type);
		BUG();
	}
}

236 237 238 239 240 241 242 243 244 245
enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
{
	struct intel_digital_port *dig_port;
	enum port port;

	ddi_get_encoder_port(intel_encoder, &dig_port, &port);

	return port;
}

246 247 248 249 250 251
static bool
intel_dig_port_supports_hdmi(const struct intel_digital_port *intel_dig_port)
{
	return intel_dig_port->hdmi.hdmi_reg;
}

252 253 254
/*
 * Starting with Haswell, DDI port buffers must be programmed with correct
 * values in advance. The buffer values are different for FDI and DP modes,
255 256 257 258
 * but the HDMI/DVI fields are shared among those. So we program the DDI
 * in either FDI or DP modes only, as HDMI connections will work with both
 * of those
 */
I
Imre Deak 已提交
259 260
static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
				      bool supports_hdmi)
261 262 263
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 reg;
264
	int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
265
	    size;
266
	int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
267 268 269 270 271
	const struct ddi_buf_trans *ddi_translations_fdi;
	const struct ddi_buf_trans *ddi_translations_dp;
	const struct ddi_buf_trans *ddi_translations_edp;
	const struct ddi_buf_trans *ddi_translations_hdmi;
	const struct ddi_buf_trans *ddi_translations;
272

273
	if (IS_BROXTON(dev)) {
I
Imre Deak 已提交
274
		if (!supports_hdmi)
275 276 277 278 279 280 281
			return;

		/* Vswing programming for HDMI */
		bxt_ddi_vswing_sequence(dev, hdmi_level, port,
					INTEL_OUTPUT_HDMI);
		return;
	} else if (IS_SKYLAKE(dev)) {
282 283
		ddi_translations_fdi = NULL;
		ddi_translations_dp = skl_ddi_translations_dp;
284
		n_dp_entries = ARRAY_SIZE(skl_ddi_translations_dp);
285
		if (dev_priv->edp_low_vswing) {
286 287 288 289 290 291 292
			ddi_translations_edp = skl_ddi_translations_edp;
			n_edp_entries = ARRAY_SIZE(skl_ddi_translations_edp);
		} else {
			ddi_translations_edp = skl_ddi_translations_dp;
			n_edp_entries = ARRAY_SIZE(skl_ddi_translations_dp);
		}

293 294
		ddi_translations_hdmi = skl_ddi_translations_hdmi;
		n_hdmi_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
295
		hdmi_default_entry = 7;
296
	} else if (IS_BROADWELL(dev)) {
297 298
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
299
		ddi_translations_edp = bdw_ddi_translations_edp;
300
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
301 302
		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
303
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
304
		hdmi_default_entry = 7;
305 306 307
	} else if (IS_HASWELL(dev)) {
		ddi_translations_fdi = hsw_ddi_translations_fdi;
		ddi_translations_dp = hsw_ddi_translations_dp;
308
		ddi_translations_edp = hsw_ddi_translations_dp;
309
		ddi_translations_hdmi = hsw_ddi_translations_hdmi;
310
		n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
311
		n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
312
		hdmi_default_entry = 6;
313 314
	} else {
		WARN(1, "ddi translation table missing\n");
315
		ddi_translations_edp = bdw_ddi_translations_dp;
316 317
		ddi_translations_fdi = bdw_ddi_translations_fdi;
		ddi_translations_dp = bdw_ddi_translations_dp;
318
		ddi_translations_hdmi = bdw_ddi_translations_hdmi;
319 320
		n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
		n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
321
		n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
322
		hdmi_default_entry = 7;
323 324
	}

325 326 327
	switch (port) {
	case PORT_A:
		ddi_translations = ddi_translations_edp;
328
		size = n_edp_entries;
329 330 331 332
		break;
	case PORT_B:
	case PORT_C:
		ddi_translations = ddi_translations_dp;
333
		size = n_dp_entries;
334
		break;
335
	case PORT_D:
336
		if (intel_dp_is_edp(dev, PORT_D)) {
337
			ddi_translations = ddi_translations_edp;
338 339
			size = n_edp_entries;
		} else {
340
			ddi_translations = ddi_translations_dp;
341 342
			size = n_dp_entries;
		}
343
		break;
344
	case PORT_E:
345 346 347 348
		if (ddi_translations_fdi)
			ddi_translations = ddi_translations_fdi;
		else
			ddi_translations = ddi_translations_dp;
349
		size = n_dp_entries;
350 351 352 353
		break;
	default:
		BUG();
	}
354

355
	for (i = 0, reg = DDI_BUF_TRANS(port); i < size; i++) {
356 357 358
		I915_WRITE(reg, ddi_translations[i].trans1);
		reg += 4;
		I915_WRITE(reg, ddi_translations[i].trans2);
359 360
		reg += 4;
	}
361

I
Imre Deak 已提交
362
	if (!supports_hdmi)
363 364
		return;

365 366 367
	/* Choose a good default if VBT is badly populated */
	if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
	    hdmi_level >= n_hdmi_entries)
368
		hdmi_level = hdmi_default_entry;
369

370
	/* Entry 9 is for HDMI: */
371 372 373 374
	I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
	reg += 4;
	I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
	reg += 4;
375 376 377 378 379 380 381
}

/* Program DDI buffers translations for DP. By default, program ports A-D in DP
 * mode and port E for FDI.
 */
void intel_prepare_ddi(struct drm_device *dev)
{
I
Imre Deak 已提交
382
	struct intel_encoder *intel_encoder;
383
	bool visited[I915_MAX_PORTS] = { 0, };
384

385 386
	if (!HAS_DDI(dev))
		return;
387

I
Imre Deak 已提交
388 389 390 391 392 393 394 395
	for_each_intel_encoder(dev, intel_encoder) {
		struct intel_digital_port *intel_dig_port;
		enum port port;
		bool supports_hdmi;

		ddi_get_encoder_port(intel_encoder, &intel_dig_port, &port);

		if (visited[port])
396 397
			continue;

I
Imre Deak 已提交
398 399 400 401 402
		supports_hdmi = intel_dig_port &&
				intel_dig_port_supports_hdmi(intel_dig_port);

		intel_prepare_ddi_buffers(dev, port, supports_hdmi);
		visited[port] = true;
403
	}
404
}
405

406 407 408 409 410 411
static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
				    enum port port)
{
	uint32_t reg = DDI_BUF_CTL(port);
	int i;

412
	for (i = 0; i < 16; i++) {
413 414 415 416 417 418
		udelay(1);
		if (I915_READ(reg) & DDI_BUF_IS_IDLE)
			return;
	}
	DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
}
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433

/* Starting with Haswell, different DDI ports can work in FDI mode for
 * connection to the PCH-located connectors. For this, it is necessary to train
 * both the DDI port and PCH receiver for the desired DDI buffer settings.
 *
 * The recommended port to work in FDI mode is DDI E, which we use here. Also,
 * please note that when FDI mode is active on DDI E, it shares 2 lines with
 * DDI A (which is used for eDP)
 */

void hsw_fdi_link_train(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
434
	u32 temp, i, rx_ctl_val;
435

436 437 438 439
	/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
	 * mode set "sequence for CRT port" document:
	 * - TP1 to TP2 time with the default value
	 * - FDI delay to 90h
440 441
	 *
	 * WaFDIAutoLinkSetTimingOverrride:hsw
442 443 444 445 446 447
	 */
	I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
				  FDI_RX_PWRDN_LANE0_VAL(2) |
				  FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);

	/* Enable the PCH Receiver FDI PLL */
448
	rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
449
		     FDI_RX_PLL_ENABLE |
450
		     FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
451 452 453 454 455 456 457 458 459
	I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
	POSTING_READ(_FDI_RXA_CTL);
	udelay(220);

	/* Switch from Rawclk to PCDclk */
	rx_ctl_val |= FDI_PCDCLK;
	I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);

	/* Configure Port Clock Select */
460 461
	I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
	WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
462 463 464

	/* Start the training iterating through available voltages and emphasis,
	 * testing each value twice. */
465
	for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
466 467 468 469 470 471 472
		/* Configure DP_TP_CTL with auto-training */
		I915_WRITE(DP_TP_CTL(PORT_E),
					DP_TP_CTL_FDI_AUTOTRAIN |
					DP_TP_CTL_ENHANCED_FRAME_ENABLE |
					DP_TP_CTL_LINK_TRAIN_PAT1 |
					DP_TP_CTL_ENABLE);

473 474 475 476
		/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
		 * DDI E does not support port reversal, the functionality is
		 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
		 * port reversal bit */
477
		I915_WRITE(DDI_BUF_CTL(PORT_E),
478
			   DDI_BUF_CTL_ENABLE |
479
			   ((intel_crtc->config->fdi_lanes - 1) << 1) |
480
			   DDI_BUF_TRANS_SELECT(i / 2));
481
		POSTING_READ(DDI_BUF_CTL(PORT_E));
482 483 484

		udelay(600);

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
		/* Program PCH FDI Receiver TU */
		I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));

		/* Enable PCH FDI Receiver with auto-training */
		rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
		I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
		POSTING_READ(_FDI_RXA_CTL);

		/* Wait for FDI receiver lane calibration */
		udelay(30);

		/* Unset FDI_RX_MISC pwrdn lanes */
		temp = I915_READ(_FDI_RXA_MISC);
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
		I915_WRITE(_FDI_RXA_MISC, temp);
		POSTING_READ(_FDI_RXA_MISC);

		/* Wait for FDI auto training time */
		udelay(5);
504 505 506

		temp = I915_READ(DP_TP_STATUS(PORT_E));
		if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
507
			DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
508 509 510

			/* Enable normal pixel sending for FDI */
			I915_WRITE(DP_TP_CTL(PORT_E),
511 512 513 514
				   DP_TP_CTL_FDI_AUTOTRAIN |
				   DP_TP_CTL_LINK_TRAIN_NORMAL |
				   DP_TP_CTL_ENHANCED_FRAME_ENABLE |
				   DP_TP_CTL_ENABLE);
515

516
			return;
517
		}
518

519 520 521 522 523
		temp = I915_READ(DDI_BUF_CTL(PORT_E));
		temp &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
		POSTING_READ(DDI_BUF_CTL(PORT_E));

524
		/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
525 526 527 528 529 530 531
		temp = I915_READ(DP_TP_CTL(PORT_E));
		temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(PORT_E), temp);
		POSTING_READ(DP_TP_CTL(PORT_E));

		intel_wait_ddi_buf_idle(dev_priv, PORT_E);
532 533 534

		rx_ctl_val &= ~FDI_RX_ENABLE;
		I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
535
		POSTING_READ(_FDI_RXA_CTL);
536 537 538 539 540 541

		/* Reset FDI_RX_MISC pwrdn lanes */
		temp = I915_READ(_FDI_RXA_MISC);
		temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
		temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
		I915_WRITE(_FDI_RXA_MISC, temp);
542
		POSTING_READ(_FDI_RXA_MISC);
543 544
	}

545
	DRM_ERROR("FDI link training failed!\n");
546
}
547

548 549 550 551 552 553 554
void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_digital_port *intel_dig_port =
		enc_to_dig_port(&encoder->base);

	intel_dp->DP = intel_dig_port->saved_port_bits |
555
		DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
556 557 558 559
	intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);

}

560 561 562 563 564 565 566 567 568 569 570 571 572 573
static struct intel_encoder *
intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder, *ret = NULL;
	int num_encoders = 0;

	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
		ret = intel_encoder;
		num_encoders++;
	}

	if (num_encoders != 1)
574 575
		WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
		     pipe_name(intel_crtc->pipe));
576 577 578 579 580

	BUG_ON(ret == NULL);
	return ret;
}

581
struct intel_encoder *
582
intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
583
{
584 585 586
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_encoder *ret = NULL;
	struct drm_atomic_state *state;
587 588
	struct drm_connector *connector;
	struct drm_connector_state *connector_state;
589
	int num_encoders = 0;
590
	int i;
591

592 593
	state = crtc_state->base.state;

594 595
	for_each_connector_in_state(state, connector, connector_state, i) {
		if (connector_state->crtc != crtc_state->base.crtc)
596 597
			continue;

598
		ret = to_intel_encoder(connector_state->best_encoder);
599
		num_encoders++;
600 601 602 603 604 605 606 607 608
	}

	WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
	     pipe_name(crtc->pipe));

	BUG_ON(ret == NULL);
	return ret;
}

609
#define LC_FREQ 2700
610
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)
611 612 613 614 615 616 617 618 619 620 621

#define P_MIN 2
#define P_MAX 64
#define P_INC 2

/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800

622 623 624 625 626
#define abs_diff(a, b) ({			\
	typeof(a) __a = (a);			\
	typeof(b) __b = (b);			\
	(void) (&__a == &__b);			\
	__a > __b ? (__a - __b) : (__b - __a); })
627 628 629 630 631 632

struct wrpll_rnp {
	unsigned p, n2, r2;
};

static unsigned wrpll_get_budget_for_freq(int clock)
633
{
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	unsigned budget;

	switch (clock) {
	case 25175000:
	case 25200000:
	case 27000000:
	case 27027000:
	case 37762500:
	case 37800000:
	case 40500000:
	case 40541000:
	case 54000000:
	case 54054000:
	case 59341000:
	case 59400000:
	case 72000000:
	case 74176000:
	case 74250000:
	case 81000000:
	case 81081000:
	case 89012000:
	case 89100000:
	case 108000000:
	case 108108000:
	case 111264000:
	case 111375000:
	case 148352000:
	case 148500000:
	case 162000000:
	case 162162000:
	case 222525000:
	case 222750000:
	case 296703000:
	case 297000000:
		budget = 0;
		break;
	case 233500000:
	case 245250000:
	case 247750000:
	case 253250000:
	case 298000000:
		budget = 1500;
		break;
	case 169128000:
	case 169500000:
	case 179500000:
	case 202000000:
		budget = 2000;
		break;
	case 256250000:
	case 262500000:
	case 270000000:
	case 272500000:
	case 273750000:
	case 280750000:
	case 281250000:
	case 286000000:
	case 291750000:
		budget = 4000;
		break;
	case 267250000:
	case 268500000:
		budget = 5000;
		break;
	default:
		budget = 1000;
		break;
	}
702

703 704 705 706 707 708 709 710
	return budget;
}

static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
			     unsigned r2, unsigned n2, unsigned p,
			     struct wrpll_rnp *best)
{
	uint64_t a, b, c, d, diff, diff_best;
711

712 713 714 715 716 717 718
	/* No best (r,n,p) yet */
	if (best->p == 0) {
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
		return;
	}
719

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
	/*
	 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
	 * freq2k.
	 *
	 * delta = 1e6 *
	 *	   abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
	 *	   freq2k;
	 *
	 * and we would like delta <= budget.
	 *
	 * If the discrepancy is above the PPM-based budget, always prefer to
	 * improve upon the previous solution.  However, if you're within the
	 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
	 */
	a = freq2k * budget * p * r2;
	b = freq2k * budget * best->p * best->r2;
736 737 738
	diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
	diff_best = abs_diff(freq2k * best->p * best->r2,
			     LC_FREQ_2K * best->n2);
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	c = 1000000 * diff;
	d = 1000000 * diff_best;

	if (a < c && b < d) {
		/* If both are above the budget, pick the closer */
		if (best->p * best->r2 * diff < p * r2 * diff_best) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	} else if (a >= c && b < d) {
		/* If A is below the threshold but B is above it?  Update. */
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
	} else if (a >= c && b >= d) {
		/* Both are below the limit, so pick the higher n2/(r2*r2) */
		if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	}
	/* Otherwise a < c && b >= d, do nothing */
}

765 766 767 768 769 770 771 772
static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
				     int reg)
{
	int refclk = LC_FREQ;
	int n, p, r;
	u32 wrpll;

	wrpll = I915_READ(reg);
773 774 775
	switch (wrpll & WRPLL_PLL_REF_MASK) {
	case WRPLL_PLL_SSC:
	case WRPLL_PLL_NON_SSC:
776 777 778 779 780 781 782
		/*
		 * We could calculate spread here, but our checking
		 * code only cares about 5% accuracy, and spread is a max of
		 * 0.5% downspread.
		 */
		refclk = 135;
		break;
783
	case WRPLL_PLL_LCPLL:
784 785 786 787 788 789 790 791 792 793 794
		refclk = LC_FREQ;
		break;
	default:
		WARN(1, "bad wrpll refclk\n");
		return 0;
	}

	r = wrpll & WRPLL_DIVIDER_REF_MASK;
	p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
	n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;

795 796
	/* Convert to KHz, p & r have a fixed point portion */
	return (refclk * n * 100) / (p * r);
797 798
}

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
			       uint32_t dpll)
{
	uint32_t cfgcr1_reg, cfgcr2_reg;
	uint32_t cfgcr1_val, cfgcr2_val;
	uint32_t p0, p1, p2, dco_freq;

	cfgcr1_reg = GET_CFG_CR1_REG(dpll);
	cfgcr2_reg = GET_CFG_CR2_REG(dpll);

	cfgcr1_val = I915_READ(cfgcr1_reg);
	cfgcr2_val = I915_READ(cfgcr2_reg);

	p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
	p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;

	if (cfgcr2_val &  DPLL_CFGCR2_QDIV_MODE(1))
		p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
	else
		p1 = 1;


	switch (p0) {
	case DPLL_CFGCR2_PDIV_1:
		p0 = 1;
		break;
	case DPLL_CFGCR2_PDIV_2:
		p0 = 2;
		break;
	case DPLL_CFGCR2_PDIV_3:
		p0 = 3;
		break;
	case DPLL_CFGCR2_PDIV_7:
		p0 = 7;
		break;
	}

	switch (p2) {
	case DPLL_CFGCR2_KDIV_5:
		p2 = 5;
		break;
	case DPLL_CFGCR2_KDIV_2:
		p2 = 2;
		break;
	case DPLL_CFGCR2_KDIV_3:
		p2 = 3;
		break;
	case DPLL_CFGCR2_KDIV_1:
		p2 = 1;
		break;
	}

	dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;

	dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
		1000) / 0x8000;

	return dco_freq / (p0 * p1 * p2 * 5);
}


static void skl_ddi_clock_get(struct intel_encoder *encoder,
861
				struct intel_crtc_state *pipe_config)
862 863 864 865 866
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	int link_clock = 0;
	uint32_t dpll_ctl1, dpll;

867
	dpll = pipe_config->ddi_pll_sel;
868 869 870 871 872 873

	dpll_ctl1 = I915_READ(DPLL_CTRL1);

	if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
		link_clock = skl_calc_wrpll_link(dev_priv, dpll);
	} else {
874 875
		link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
		link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
876 877

		switch (link_clock) {
878
		case DPLL_CTRL1_LINK_RATE_810:
879 880
			link_clock = 81000;
			break;
881
		case DPLL_CTRL1_LINK_RATE_1080:
882 883
			link_clock = 108000;
			break;
884
		case DPLL_CTRL1_LINK_RATE_1350:
885 886
			link_clock = 135000;
			break;
887
		case DPLL_CTRL1_LINK_RATE_1620:
888 889
			link_clock = 162000;
			break;
890
		case DPLL_CTRL1_LINK_RATE_2160:
891 892
			link_clock = 216000;
			break;
893
		case DPLL_CTRL1_LINK_RATE_2700:
894 895 896 897 898 899 900 901 902 903 904 905
			link_clock = 270000;
			break;
		default:
			WARN(1, "Unsupported link rate\n");
			break;
		}
		link_clock *= 2;
	}

	pipe_config->port_clock = link_clock;

	if (pipe_config->has_dp_encoder)
906
		pipe_config->base.adjusted_mode.crtc_clock =
907 908 909
			intel_dotclock_calculate(pipe_config->port_clock,
						 &pipe_config->dp_m_n);
	else
910
		pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
911 912
}

913
static void hsw_ddi_clock_get(struct intel_encoder *encoder,
914
			      struct intel_crtc_state *pipe_config)
915 916 917 918 919
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	int link_clock = 0;
	u32 val, pll;

920
	val = pipe_config->ddi_pll_sel;
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
	switch (val & PORT_CLK_SEL_MASK) {
	case PORT_CLK_SEL_LCPLL_810:
		link_clock = 81000;
		break;
	case PORT_CLK_SEL_LCPLL_1350:
		link_clock = 135000;
		break;
	case PORT_CLK_SEL_LCPLL_2700:
		link_clock = 270000;
		break;
	case PORT_CLK_SEL_WRPLL1:
		link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
		break;
	case PORT_CLK_SEL_WRPLL2:
		link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
		break;
	case PORT_CLK_SEL_SPLL:
		pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
		if (pll == SPLL_PLL_FREQ_810MHz)
			link_clock = 81000;
		else if (pll == SPLL_PLL_FREQ_1350MHz)
			link_clock = 135000;
		else if (pll == SPLL_PLL_FREQ_2700MHz)
			link_clock = 270000;
		else {
			WARN(1, "bad spll freq\n");
			return;
		}
		break;
	default:
		WARN(1, "bad port clock sel\n");
		return;
	}

	pipe_config->port_clock = link_clock * 2;

	if (pipe_config->has_pch_encoder)
958
		pipe_config->base.adjusted_mode.crtc_clock =
959 960 961
			intel_dotclock_calculate(pipe_config->port_clock,
						 &pipe_config->fdi_m_n);
	else if (pipe_config->has_dp_encoder)
962
		pipe_config->base.adjusted_mode.crtc_clock =
963 964 965
			intel_dotclock_calculate(pipe_config->port_clock,
						 &pipe_config->dp_m_n);
	else
966
		pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
967 968
}

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
				enum intel_dpll_id dpll)
{
	/* FIXME formula not available in bspec */
	return 0;
}

static void bxt_ddi_clock_get(struct intel_encoder *encoder,
				struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	enum port port = intel_ddi_get_encoder_port(encoder);
	uint32_t dpll = port;

	pipe_config->port_clock =
		bxt_calc_pll_link(dev_priv, dpll);

	if (pipe_config->has_dp_encoder)
		pipe_config->base.adjusted_mode.crtc_clock =
			intel_dotclock_calculate(pipe_config->port_clock,
							&pipe_config->dp_m_n);
	else
		pipe_config->base.adjusted_mode.crtc_clock =
							pipe_config->port_clock;
}

995
void intel_ddi_clock_get(struct intel_encoder *encoder,
996
			 struct intel_crtc_state *pipe_config)
997
{
998 999 1000 1001
	struct drm_device *dev = encoder->base.dev;

	if (INTEL_INFO(dev)->gen <= 8)
		hsw_ddi_clock_get(encoder, pipe_config);
1002
	else if (IS_SKYLAKE(dev))
1003
		skl_ddi_clock_get(encoder, pipe_config);
1004 1005
	else if (IS_BROXTON(dev))
		bxt_ddi_clock_get(encoder, pipe_config);
1006 1007
}

1008
static void
1009 1010
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
			unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
{
	uint64_t freq2k;
	unsigned p, n2, r2;
	struct wrpll_rnp best = { 0, 0, 0 };
	unsigned budget;

	freq2k = clock / 100;

	budget = wrpll_get_budget_for_freq(clock);

	/* Special case handling for 540 pixel clock: bypass WR PLL entirely
	 * and directly pass the LC PLL to it. */
	if (freq2k == 5400000) {
		*n2_out = 2;
		*p_out = 1;
		*r2_out = 2;
		return;
	}

	/*
	 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
	 * the WR PLL.
	 *
	 * We want R so that REF_MIN <= Ref <= REF_MAX.
	 * Injecting R2 = 2 * R gives:
	 *   REF_MAX * r2 > LC_FREQ * 2 and
	 *   REF_MIN * r2 < LC_FREQ * 2
	 *
	 * Which means the desired boundaries for r2 are:
	 *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
	 *
	 */
	for (r2 = LC_FREQ * 2 / REF_MAX + 1;
	     r2 <= LC_FREQ * 2 / REF_MIN;
	     r2++) {

		/*
		 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
		 *
		 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
		 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
		 *   VCO_MAX * r2 > n2 * LC_FREQ and
		 *   VCO_MIN * r2 < n2 * LC_FREQ)
		 *
		 * Which means the desired boundaries for n2 are:
		 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
		 */
		for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
		     n2 <= VCO_MAX * r2 / LC_FREQ;
		     n2++) {

			for (p = P_MIN; p <= P_MAX; p += P_INC)
				wrpll_update_rnp(freq2k, budget,
						 r2, n2, p, &best);
		}
	}
1067

1068 1069 1070
	*n2_out = best.n2;
	*p_out = best.p;
	*r2_out = best.r2;
1071 1072
}

1073
static bool
1074
hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
1075
		   struct intel_crtc_state *crtc_state,
1076 1077
		   struct intel_encoder *intel_encoder,
		   int clock)
1078
{
1079
	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1080
		struct intel_shared_dpll *pll;
1081
		uint32_t val;
1082
		unsigned p, n2, r2;
1083

1084
		hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
P
Paulo Zanoni 已提交
1085

1086
		val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
P
Paulo Zanoni 已提交
1087 1088 1089
		      WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
		      WRPLL_DIVIDER_POST(p);

1090 1091 1092
		memset(&crtc_state->dpll_hw_state, 0,
		       sizeof(crtc_state->dpll_hw_state));

1093
		crtc_state->dpll_hw_state.wrpll = val;
1094

1095
		pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1096 1097 1098 1099
		if (pll == NULL) {
			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
					 pipe_name(intel_crtc->pipe));
			return false;
P
Paulo Zanoni 已提交
1100
		}
1101

1102
		crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
1103 1104 1105 1106 1107
	}

	return true;
}

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
struct skl_wrpll_params {
	uint32_t        dco_fraction;
	uint32_t        dco_integer;
	uint32_t        qdiv_ratio;
	uint32_t        qdiv_mode;
	uint32_t        kdiv;
	uint32_t        pdiv;
	uint32_t        central_freq;
};

static void
skl_ddi_calculate_wrpll(int clock /* in Hz */,
			struct skl_wrpll_params *wrpll_params)
{
	uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
1123 1124 1125
	uint64_t dco_central_freq[3] = {8400000000ULL,
					9000000000ULL,
					9600000000ULL};
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	uint32_t min_dco_deviation = 400;
	uint32_t min_dco_index = 3;
	uint32_t P0[4] = {1, 2, 3, 7};
	uint32_t P2[4] = {1, 2, 3, 5};
	bool found = false;
	uint32_t candidate_p = 0;
	uint32_t candidate_p0[3] = {0}, candidate_p1[3] = {0};
	uint32_t candidate_p2[3] = {0};
	uint32_t dco_central_freq_deviation[3];
	uint32_t i, P1, k, dco_count;
	bool retry_with_odd = false;
	uint64_t dco_freq;

	/* Determine P0, P1 or P2 */
	for (dco_count = 0; dco_count < 3; dco_count++) {
		found = false;
		candidate_p =
			div64_u64(dco_central_freq[dco_count], afe_clock);
		if (retry_with_odd == false)
			candidate_p = (candidate_p % 2 == 0 ?
				candidate_p : candidate_p + 1);

		for (P1 = 1; P1 < candidate_p; P1++) {
			for (i = 0; i < 4; i++) {
				if (!(P0[i] != 1 || P1 == 1))
					continue;

				for (k = 0; k < 4; k++) {
					if (P1 != 1 && P2[k] != 2)
						continue;

					if (candidate_p == P0[i] * P1 * P2[k]) {
						/* Found possible P0, P1, P2 */
						found = true;
						candidate_p0[dco_count] = P0[i];
						candidate_p1[dco_count] = P1;
						candidate_p2[dco_count] = P2[k];
						goto found;
					}

				}
			}
		}

found:
		if (found) {
			dco_central_freq_deviation[dco_count] =
				div64_u64(10000 *
					  abs_diff((candidate_p * afe_clock),
						   dco_central_freq[dco_count]),
					  dco_central_freq[dco_count]);

			if (dco_central_freq_deviation[dco_count] <
				min_dco_deviation) {
				min_dco_deviation =
					dco_central_freq_deviation[dco_count];
				min_dco_index = dco_count;
			}
		}

		if (min_dco_index > 2 && dco_count == 2) {
1187 1188 1189 1190
                        /* oh well, we tried... */
                        if (retry_with_odd)
                                break;

1191 1192 1193 1194 1195 1196 1197 1198
			retry_with_odd = true;
			dco_count = 0;
		}
	}

	if (min_dco_index > 2) {
		WARN(1, "No valid values found for the given pixel clock\n");
	} else {
1199
		wrpll_params->central_freq = dco_central_freq[min_dco_index];
1200

1201 1202
		switch (dco_central_freq[min_dco_index]) {
		case 9600000000ULL:
1203 1204
			wrpll_params->central_freq = 0;
			break;
1205
		case 9000000000ULL:
1206 1207
			wrpll_params->central_freq = 1;
			break;
1208
		case 8400000000ULL:
1209
			wrpll_params->central_freq = 3;
1210
		}
1211

1212 1213
		switch (candidate_p0[min_dco_index]) {
		case 1:
1214 1215
			wrpll_params->pdiv = 0;
			break;
1216
		case 2:
1217 1218
			wrpll_params->pdiv = 1;
			break;
1219
		case 3:
1220 1221
			wrpll_params->pdiv = 2;
			break;
1222
		case 7:
1223 1224
			wrpll_params->pdiv = 4;
			break;
1225
		default:
1226
			WARN(1, "Incorrect PDiv\n");
1227
		}
1228

1229 1230
		switch (candidate_p2[min_dco_index]) {
		case 5:
1231 1232
			wrpll_params->kdiv = 0;
			break;
1233
		case 2:
1234 1235
			wrpll_params->kdiv = 1;
			break;
1236
		case 3:
1237 1238
			wrpll_params->kdiv = 2;
			break;
1239
		case 1:
1240 1241
			wrpll_params->kdiv = 3;
			break;
1242
		default:
1243
			WARN(1, "Incorrect KDiv\n");
1244
		}
1245

1246 1247
		wrpll_params->qdiv_ratio = candidate_p1[min_dco_index];
		wrpll_params->qdiv_mode =
1248 1249
			(wrpll_params->qdiv_ratio == 1) ? 0 : 1;

1250 1251 1252
		dco_freq = candidate_p0[min_dco_index] *
			candidate_p1[min_dco_index] *
			candidate_p2[min_dco_index] * afe_clock;
1253 1254

		/*
1255 1256 1257 1258 1259 1260 1261
		 * Intermediate values are in Hz.
		 * Divide by MHz to match bsepc
		 */
		wrpll_params->dco_integer = div_u64(dco_freq, (24 * MHz(1)));
		wrpll_params->dco_fraction =
			div_u64(((div_u64(dco_freq, 24) -
				  wrpll_params->dco_integer * MHz(1)) * 0x8000), MHz(1));
1262 1263 1264 1265 1266 1267 1268

	}
}


static bool
skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1269
		   struct intel_crtc_state *crtc_state,
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		   struct intel_encoder *intel_encoder,
		   int clock)
{
	struct intel_shared_dpll *pll;
	uint32_t ctrl1, cfgcr1, cfgcr2;

	/*
	 * See comment in intel_dpll_hw_state to understand why we always use 0
	 * as the DPLL id in this function.
	 */

	ctrl1 = DPLL_CTRL1_OVERRIDE(0);

	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
		struct skl_wrpll_params wrpll_params = { 0, };

		ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);

		skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params);

		cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
			 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
			 wrpll_params.dco_integer;

		cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
			 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
			 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
			 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
			 wrpll_params.central_freq;
	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
		struct drm_encoder *encoder = &intel_encoder->base;
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

		switch (intel_dp->link_bw) {
		case DP_LINK_BW_1_62:
1305
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
1306 1307
			break;
		case DP_LINK_BW_2_7:
1308
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
1309 1310
			break;
		case DP_LINK_BW_5_4:
1311
			ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
1312 1313 1314 1315 1316 1317 1318
			break;
		}

		cfgcr1 = cfgcr2 = 0;
	} else /* eDP */
		return true;

1319 1320 1321
	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

1322 1323 1324
	crtc_state->dpll_hw_state.ctrl1 = ctrl1;
	crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
	crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1325

1326
	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1327 1328 1329 1330 1331 1332 1333
	if (pll == NULL) {
		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
				 pipe_name(intel_crtc->pipe));
		return false;
	}

	/* shared DPLL id 0 is DPLL 1 */
1334
	crtc_state->ddi_pll_sel = pll->id + 1;
1335 1336 1337

	return true;
}
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
/* bxt clock parameters */
struct bxt_clk_div {
	uint32_t p1;
	uint32_t p2;
	uint32_t m2_int;
	uint32_t m2_frac;
	bool m2_frac_en;
	uint32_t n;
};

/* pre-calculated values for DP linkrates */
static struct bxt_clk_div bxt_dp_clk_val[7] = {
1351 1352 1353 1354 1355 1356 1357
	/* 162 */ {4, 2, 32, 1677722, 1, 1},
	/* 270 */ {4, 1, 27,       0, 0, 1},
	/* 540 */ {2, 1, 27,       0, 0, 1},
	/* 216 */ {3, 2, 32, 1677722, 1, 1},
	/* 243 */ {4, 1, 24, 1258291, 1, 1},
	/* 324 */ {4, 1, 32, 1677722, 1, 1},
	/* 432 */ {3, 1, 32, 1677722, 1, 1}
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
};

static bool
bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
		   struct intel_crtc_state *crtc_state,
		   struct intel_encoder *intel_encoder,
		   int clock)
{
	struct intel_shared_dpll *pll;
	struct bxt_clk_div clk_div = {0};
1368 1369
	int vco = 0;
	uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
1370
	uint32_t dcoampovr_en_h, dco_amp, lanestagger;
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393

	if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
		intel_clock_t best_clock;

		/* Calculate HDMI div */
		/*
		 * FIXME: tie the following calculation into
		 * i9xx_crtc_compute_clock
		 */
		if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
			DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
					 clock, pipe_name(intel_crtc->pipe));
			return false;
		}

		clk_div.p1 = best_clock.p1;
		clk_div.p2 = best_clock.p2;
		WARN_ON(best_clock.m1 != 2);
		clk_div.n = best_clock.n;
		clk_div.m2_int = best_clock.m2 >> 22;
		clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
		clk_div.m2_frac_en = clk_div.m2_frac != 0;

1394
		vco = best_clock.vco;
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	} else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
			intel_encoder->type == INTEL_OUTPUT_EDP) {
		struct drm_encoder *encoder = &intel_encoder->base;
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

		switch (intel_dp->link_bw) {
		case DP_LINK_BW_1_62:
			clk_div = bxt_dp_clk_val[0];
			break;
		case DP_LINK_BW_2_7:
			clk_div = bxt_dp_clk_val[1];
			break;
		case DP_LINK_BW_5_4:
			clk_div = bxt_dp_clk_val[2];
			break;
		default:
			clk_div = bxt_dp_clk_val[0];
			DRM_ERROR("Unknown link rate\n");
		}
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
		vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
	}

	dco_amp = 15;
	dcoampovr_en_h = 0;
	if (vco >= 6200000 && vco <= 6480000) {
		prop_coef = 4;
		int_coef = 9;
		gain_ctl = 3;
		targ_cnt = 8;
	} else if ((vco > 5400000 && vco < 6200000) ||
			(vco >= 4800000 && vco < 5400000)) {
		prop_coef = 5;
		int_coef = 11;
		gain_ctl = 3;
		targ_cnt = 9;
		if (vco >= 4800000 && vco < 5400000)
			dcoampovr_en_h = 1;
	} else if (vco == 5400000) {
		prop_coef = 3;
		int_coef = 8;
		gain_ctl = 1;
		targ_cnt = 9;
	} else {
		DRM_ERROR("Invalid VCO\n");
		return false;
1440 1441
	}

1442 1443 1444
	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	if (clock > 270000)
		lanestagger = 0x18;
	else if (clock > 135000)
		lanestagger = 0x0d;
	else if (clock > 67000)
		lanestagger = 0x07;
	else if (clock > 33000)
		lanestagger = 0x04;
	else
		lanestagger = 0x02;

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	crtc_state->dpll_hw_state.ebb0 =
		PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
	crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
	crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
	crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;

	if (clk_div.m2_frac_en)
		crtc_state->dpll_hw_state.pll3 =
			PORT_PLL_M2_FRAC_ENABLE;

	crtc_state->dpll_hw_state.pll6 =
1467
		prop_coef | PORT_PLL_INT_COEFF(int_coef);
1468
	crtc_state->dpll_hw_state.pll6 |=
1469 1470 1471
		PORT_PLL_GAIN_CTL(gain_ctl);

	crtc_state->dpll_hw_state.pll8 = targ_cnt;
1472

1473 1474 1475 1476
	if (dcoampovr_en_h)
		crtc_state->dpll_hw_state.pll10 = PORT_PLL_DCO_AMP_OVR_EN_H;

	crtc_state->dpll_hw_state.pll10 |= PORT_PLL_DCO_AMP(dco_amp);
1477 1478

	crtc_state->dpll_hw_state.pcsdw12 =
1479
		LANESTAGGER_STRAP_OVRD | lanestagger;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	pll = intel_get_shared_dpll(intel_crtc, crtc_state);
	if (pll == NULL) {
		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
			pipe_name(intel_crtc->pipe));
		return false;
	}

	/* shared DPLL id 0 is DPLL A */
	crtc_state->ddi_pll_sel = pll->id;

	return true;
}

1494 1495 1496 1497 1498 1499 1500
/*
 * Tries to find a *shared* PLL for the CRTC and store it in
 * intel_crtc->ddi_pll_sel.
 *
 * For private DPLLs, compute_config() should do the selection for us. This
 * function should be folded into compute_config() eventually.
 */
1501 1502
bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
			  struct intel_crtc_state *crtc_state)
1503
{
1504
	struct drm_device *dev = intel_crtc->base.dev;
1505
	struct intel_encoder *intel_encoder =
1506
		intel_ddi_get_crtc_new_encoder(crtc_state);
1507
	int clock = crtc_state->port_clock;
1508

1509
	if (IS_SKYLAKE(dev))
1510 1511
		return skl_ddi_pll_select(intel_crtc, crtc_state,
					  intel_encoder, clock);
1512 1513 1514
	else if (IS_BROXTON(dev))
		return bxt_ddi_pll_select(intel_crtc, crtc_state,
					  intel_encoder, clock);
1515
	else
1516 1517
		return hsw_ddi_pll_select(intel_crtc, crtc_state,
					  intel_encoder, clock);
1518 1519
}

1520 1521 1522 1523 1524
void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1525
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1526 1527 1528
	int type = intel_encoder->type;
	uint32_t temp;

1529
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1530
		temp = TRANS_MSA_SYNC_CLK;
1531
		switch (intel_crtc->config->pipe_bpp) {
1532
		case 18:
1533
			temp |= TRANS_MSA_6_BPC;
1534 1535
			break;
		case 24:
1536
			temp |= TRANS_MSA_8_BPC;
1537 1538
			break;
		case 30:
1539
			temp |= TRANS_MSA_10_BPC;
1540 1541
			break;
		case 36:
1542
			temp |= TRANS_MSA_12_BPC;
1543 1544
			break;
		default:
1545
			BUG();
1546
		}
1547
		I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1548 1549 1550
	}
}

1551 1552 1553 1554 1555
void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1556
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1557 1558 1559 1560 1561 1562 1563 1564 1565
	uint32_t temp;
	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (state == true)
		temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	else
		temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}

1566
void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1567 1568 1569
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1570
	struct drm_encoder *encoder = &intel_encoder->base;
1571 1572
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1573
	enum pipe pipe = intel_crtc->pipe;
1574
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1575
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1576
	int type = intel_encoder->type;
1577 1578
	uint32_t temp;

1579 1580
	/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
	temp = TRANS_DDI_FUNC_ENABLE;
1581
	temp |= TRANS_DDI_SELECT_PORT(port);
1582

1583
	switch (intel_crtc->config->pipe_bpp) {
1584
	case 18:
1585
		temp |= TRANS_DDI_BPC_6;
1586 1587
		break;
	case 24:
1588
		temp |= TRANS_DDI_BPC_8;
1589 1590
		break;
	case 30:
1591
		temp |= TRANS_DDI_BPC_10;
1592 1593
		break;
	case 36:
1594
		temp |= TRANS_DDI_BPC_12;
1595 1596
		break;
	default:
1597
		BUG();
1598
	}
1599

1600
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1601
		temp |= TRANS_DDI_PVSYNC;
1602
	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1603
		temp |= TRANS_DDI_PHSYNC;
1604

1605 1606 1607
	if (cpu_transcoder == TRANSCODER_EDP) {
		switch (pipe) {
		case PIPE_A:
1608 1609 1610 1611
			/* On Haswell, can only use the always-on power well for
			 * eDP when not using the panel fitter, and when not
			 * using motion blur mitigation (which we don't
			 * support). */
1612
			if (IS_HASWELL(dev) &&
1613 1614
			    (intel_crtc->config->pch_pfit.enabled ||
			     intel_crtc->config->pch_pfit.force_thru))
1615 1616 1617
				temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
			else
				temp |= TRANS_DDI_EDP_INPUT_A_ON;
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
			break;
		case PIPE_B:
			temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
			break;
		case PIPE_C:
			temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
			break;
		default:
			BUG();
			break;
		}
	}

1631
	if (type == INTEL_OUTPUT_HDMI) {
1632
		if (intel_crtc->config->has_hdmi_sink)
1633
			temp |= TRANS_DDI_MODE_SELECT_HDMI;
1634
		else
1635
			temp |= TRANS_DDI_MODE_SELECT_DVI;
1636

1637
	} else if (type == INTEL_OUTPUT_ANALOG) {
1638
		temp |= TRANS_DDI_MODE_SELECT_FDI;
1639
		temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1640 1641 1642 1643 1644

	} else if (type == INTEL_OUTPUT_DISPLAYPORT ||
		   type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;

		temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
	} else if (type == INTEL_OUTPUT_DP_MST) {
		struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;

		if (intel_dp->is_mst) {
			temp |= TRANS_DDI_MODE_SELECT_DP_MST;
		} else
			temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1658

1659
		temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
1660
	} else {
1661 1662
		WARN(1, "Invalid encoder type %d for pipe %c\n",
		     intel_encoder->type, pipe_name(pipe));
1663 1664
	}

1665
	I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1666
}
1667

1668 1669
void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
				       enum transcoder cpu_transcoder)
1670
{
1671
	uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1672 1673
	uint32_t val = I915_READ(reg);

1674
	val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1675
	val |= TRANS_DDI_PORT_NONE;
1676
	I915_WRITE(reg, val);
1677 1678
}

1679 1680 1681 1682 1683 1684 1685 1686 1687
bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
{
	struct drm_device *dev = intel_connector->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_encoder *intel_encoder = intel_connector->encoder;
	int type = intel_connector->base.connector_type;
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	enum pipe pipe = 0;
	enum transcoder cpu_transcoder;
1688
	enum intel_display_power_domain power_domain;
1689 1690
	uint32_t tmp;

1691
	power_domain = intel_display_port_power_domain(intel_encoder);
1692
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1693 1694
		return false;

1695 1696 1697 1698 1699 1700
	if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
		return false;

	if (port == PORT_A)
		cpu_transcoder = TRANSCODER_EDP;
	else
D
Daniel Vetter 已提交
1701
		cpu_transcoder = (enum transcoder) pipe;
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713

	tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));

	switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
	case TRANS_DDI_MODE_SELECT_DVI:
		return (type == DRM_MODE_CONNECTOR_HDMIA);

	case TRANS_DDI_MODE_SELECT_DP_SST:
		if (type == DRM_MODE_CONNECTOR_eDP)
			return true;
		return (type == DRM_MODE_CONNECTOR_DisplayPort);
1714 1715 1716 1717
	case TRANS_DDI_MODE_SELECT_DP_MST:
		/* if the transcoder is in MST state then
		 * connector isn't connected */
		return false;
1718 1719 1720 1721 1722 1723 1724 1725 1726

	case TRANS_DDI_MODE_SELECT_FDI:
		return (type == DRM_MODE_CONNECTOR_VGA);

	default:
		return false;
	}
}

1727 1728 1729 1730 1731
bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
			    enum pipe *pipe)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1732
	enum port port = intel_ddi_get_encoder_port(encoder);
1733
	enum intel_display_power_domain power_domain;
1734 1735 1736
	u32 tmp;
	int i;

1737
	power_domain = intel_display_port_power_domain(encoder);
1738
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
1739 1740
		return false;

1741
	tmp = I915_READ(DDI_BUF_CTL(port));
1742 1743 1744 1745

	if (!(tmp & DDI_BUF_CTL_ENABLE))
		return false;

1746 1747
	if (port == PORT_A) {
		tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
1748

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
		case TRANS_DDI_EDP_INPUT_A_ON:
		case TRANS_DDI_EDP_INPUT_A_ONOFF:
			*pipe = PIPE_A;
			break;
		case TRANS_DDI_EDP_INPUT_B_ONOFF:
			*pipe = PIPE_B;
			break;
		case TRANS_DDI_EDP_INPUT_C_ONOFF:
			*pipe = PIPE_C;
			break;
		}

		return true;
	} else {
		for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
			tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));

			if ((tmp & TRANS_DDI_PORT_MASK)
			    == TRANS_DDI_SELECT_PORT(port)) {
1769 1770 1771
				if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
					return false;

1772 1773 1774
				*pipe = i;
				return true;
			}
1775 1776 1777
		}
	}

1778
	DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
1779

1780
	return false;
1781 1782
}

1783 1784 1785 1786 1787 1788
void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1789
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1790

1791 1792 1793
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_PORT(port));
1794 1795 1796 1797 1798
}

void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
{
	struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1799
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1800

1801 1802 1803
	if (cpu_transcoder != TRANSCODER_EDP)
		I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
			   TRANS_CLK_SEL_DISABLED);
1804 1805
}

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
			     enum port port, int type)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct bxt_ddi_buf_trans *ddi_translations;
	u32 n_entries, i;
	uint32_t val;

	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
		n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
		ddi_translations = bxt_ddi_translations_dp;
	} else if (type == INTEL_OUTPUT_HDMI) {
		n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
		ddi_translations = bxt_ddi_translations_hdmi;
	} else {
		DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
				type);
		return;
	}

	/* Check if default value has to be used */
	if (level >= n_entries ||
	    (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
		for (i = 0; i < n_entries; i++) {
			if (ddi_translations[i].default_index) {
				level = i;
				break;
			}
		}
	}

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
	val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
	       ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
	I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
	val &= ~UNIQE_TRANGE_EN_METHOD;
	if (ddi_translations[level].enable)
		val |= UNIQE_TRANGE_EN_METHOD;
	I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);

	val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
	val &= ~DE_EMPHASIS;
	val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
	I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);

	val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
	I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
}

P
Paulo Zanoni 已提交
1867
static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
1868
{
1869
	struct drm_encoder *encoder = &intel_encoder->base;
1870 1871
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1872
	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
1873
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1874
	int type = intel_encoder->type;
1875
	int hdmi_level;
1876

1877 1878
	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1879
		intel_edp_panel_on(intel_dp);
1880
	}
1881

1882
	if (IS_SKYLAKE(dev)) {
1883
		uint32_t dpll = crtc->config->ddi_pll_sel;
1884 1885
		uint32_t val;

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		/*
		 * DPLL0 is used for eDP and is the only "private" DPLL (as
		 * opposed to shared) on SKL
		 */
		if (type == INTEL_OUTPUT_EDP) {
			WARN_ON(dpll != SKL_DPLL0);

			val = I915_READ(DPLL_CTRL1);

			val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
				 DPLL_CTRL1_SSC(dpll) |
1897
				 DPLL_CTRL1_LINK_RATE_MASK(dpll));
1898
			val |= crtc->config->dpll_hw_state.ctrl1 << (dpll * 6);
1899 1900 1901 1902 1903 1904

			I915_WRITE(DPLL_CTRL1, val);
			POSTING_READ(DPLL_CTRL1);
		}

		/* DDI -> PLL mapping  */
1905 1906 1907 1908 1909 1910 1911 1912
		val = I915_READ(DPLL_CTRL2);

		val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
			DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
		val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
			DPLL_CTRL2_DDI_SEL_OVERRIDE(port));

		I915_WRITE(DPLL_CTRL2, val);
1913

1914
	} else if (INTEL_INFO(dev)->gen < 9) {
1915 1916
		WARN_ON(crtc->config->ddi_pll_sel == PORT_CLK_SEL_NONE);
		I915_WRITE(PORT_CLK_SEL(port), crtc->config->ddi_pll_sel);
1917
	}
1918

1919
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1920
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1921

1922
		intel_ddi_init_dp_buf_reg(intel_encoder);
1923 1924 1925 1926

		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
		intel_dp_start_link_train(intel_dp);
		intel_dp_complete_link_train(intel_dp);
1927
		if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
1928
			intel_dp_stop_link_train(intel_dp);
1929 1930 1931
	} else if (type == INTEL_OUTPUT_HDMI) {
		struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);

1932 1933 1934 1935 1936 1937
		if (IS_BROXTON(dev)) {
			hdmi_level = dev_priv->vbt.
				ddi_port_info[port].hdmi_level_shift;
			bxt_ddi_vswing_sequence(dev, hdmi_level, port,
					INTEL_OUTPUT_HDMI);
		}
1938
		intel_hdmi->set_infoframes(encoder,
1939 1940
					   crtc->config->has_hdmi_sink,
					   &crtc->config->base.adjusted_mode);
1941
	}
1942 1943
}

P
Paulo Zanoni 已提交
1944
static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
1945 1946
{
	struct drm_encoder *encoder = &intel_encoder->base;
1947 1948
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1949
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
1950
	int type = intel_encoder->type;
1951
	uint32_t val;
1952
	bool wait = false;
1953 1954 1955 1956 1957

	val = I915_READ(DDI_BUF_CTL(port));
	if (val & DDI_BUF_CTL_ENABLE) {
		val &= ~DDI_BUF_CTL_ENABLE;
		I915_WRITE(DDI_BUF_CTL(port), val);
1958
		wait = true;
1959
	}
1960

1961 1962 1963 1964 1965 1966 1967 1968
	val = I915_READ(DP_TP_CTL(port));
	val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
	val |= DP_TP_CTL_LINK_TRAIN_PAT1;
	I915_WRITE(DP_TP_CTL(port), val);

	if (wait)
		intel_wait_ddi_buf_idle(dev_priv, port);

1969
	if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1970
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1971
		intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1972
		intel_edp_panel_vdd_on(intel_dp);
1973
		intel_edp_panel_off(intel_dp);
1974 1975
	}

1976 1977 1978
	if (IS_SKYLAKE(dev))
		I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
					DPLL_CTRL2_DDI_CLK_OFF(port)));
1979
	else if (INTEL_INFO(dev)->gen < 9)
1980
		I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
1981 1982
}

P
Paulo Zanoni 已提交
1983
static void intel_enable_ddi(struct intel_encoder *intel_encoder)
1984
{
1985
	struct drm_encoder *encoder = &intel_encoder->base;
1986 1987
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1988
	struct drm_device *dev = encoder->dev;
1989
	struct drm_i915_private *dev_priv = dev->dev_private;
1990 1991
	enum port port = intel_ddi_get_encoder_port(intel_encoder);
	int type = intel_encoder->type;
1992

1993
	if (type == INTEL_OUTPUT_HDMI) {
1994 1995 1996
		struct intel_digital_port *intel_dig_port =
			enc_to_dig_port(encoder);

1997 1998 1999 2000
		/* In HDMI/DVI mode, the port width, and swing/emphasis values
		 * are ignored so nothing special needs to be done besides
		 * enabling the port.
		 */
2001
		I915_WRITE(DDI_BUF_CTL(port),
2002 2003
			   intel_dig_port->saved_port_bits |
			   DDI_BUF_CTL_ENABLE);
2004 2005 2006
	} else if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

2007
		if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
2008 2009
			intel_dp_stop_link_train(intel_dp);

2010
		intel_edp_backlight_on(intel_dp);
R
Rodrigo Vivi 已提交
2011
		intel_psr_enable(intel_dp);
V
Vandana Kannan 已提交
2012
		intel_edp_drrs_enable(intel_dp);
2013
	}
2014

2015
	if (intel_crtc->config->has_audio) {
2016
		intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
2017
		intel_audio_codec_enable(intel_encoder);
2018
	}
2019 2020
}

P
Paulo Zanoni 已提交
2021
static void intel_disable_ddi(struct intel_encoder *intel_encoder)
2022
{
2023
	struct drm_encoder *encoder = &intel_encoder->base;
2024 2025
	struct drm_crtc *crtc = encoder->crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2026
	int type = intel_encoder->type;
2027 2028
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2029

2030
	if (intel_crtc->config->has_audio) {
2031
		intel_audio_codec_disable(intel_encoder);
2032 2033
		intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
	}
2034

2035 2036 2037
	if (type == INTEL_OUTPUT_EDP) {
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);

V
Vandana Kannan 已提交
2038
		intel_edp_drrs_disable(intel_dp);
R
Rodrigo Vivi 已提交
2039
		intel_psr_disable(intel_dp);
2040
		intel_edp_backlight_off(intel_dp);
2041
	}
2042
}
P
Paulo Zanoni 已提交
2043

2044 2045 2046
static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
2047
	I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
2048 2049 2050 2051
	POSTING_READ(WRPLL_CTL(pll->id));
	udelay(20);
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	uint32_t val;

	val = I915_READ(WRPLL_CTL(pll->id));
	I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
	POSTING_READ(WRPLL_CTL(pll->id));
}

2062 2063 2064 2065 2066 2067
static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
				     struct intel_shared_dpll *pll,
				     struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

2068
	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
2069 2070 2071 2072 2073 2074 2075 2076
		return false;

	val = I915_READ(WRPLL_CTL(pll->id));
	hw_state->wrpll = val;

	return val & WRPLL_PLL_ENABLE;
}

2077
static const char * const hsw_ddi_pll_names[] = {
2078 2079 2080 2081
	"WRPLL 1",
	"WRPLL 2",
};

2082
static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
P
Paulo Zanoni 已提交
2083
{
2084 2085
	int i;

2086
	dev_priv->num_shared_dpll = 2;
2087

2088
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2089 2090
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
2091
		dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
2092
		dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
2093 2094
		dev_priv->shared_dplls[i].get_hw_state =
			hsw_ddi_pll_get_hw_state;
2095
	}
2096 2097
}

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
static const char * const skl_ddi_pll_names[] = {
	"DPLL 1",
	"DPLL 2",
	"DPLL 3",
};

struct skl_dpll_regs {
	u32 ctl, cfgcr1, cfgcr2;
};

/* this array is indexed by the *shared* pll id */
static const struct skl_dpll_regs skl_dpll_regs[3] = {
	{
		/* DPLL 1 */
		.ctl = LCPLL2_CTL,
		.cfgcr1 = DPLL1_CFGCR1,
		.cfgcr2 = DPLL1_CFGCR2,
	},
	{
		/* DPLL 2 */
		.ctl = WRPLL_CTL1,
		.cfgcr1 = DPLL2_CFGCR1,
		.cfgcr2 = DPLL2_CFGCR2,
	},
	{
		/* DPLL 3 */
		.ctl = WRPLL_CTL2,
		.cfgcr1 = DPLL3_CFGCR1,
		.cfgcr2 = DPLL3_CFGCR2,
	},
};

static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(DPLL_CTRL1);

	val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
2143
		 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	val |= pll->config.hw_state.ctrl1 << (dpll * 6);

	I915_WRITE(DPLL_CTRL1, val);
	POSTING_READ(DPLL_CTRL1);

	I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
	I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
	POSTING_READ(regs[pll->id].cfgcr1);
	POSTING_READ(regs[pll->id].cfgcr2);

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);

	if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
		DRM_ERROR("DPLL %d not locked\n", dpll);
}

static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
	POSTING_READ(regs[pll->id].ctl);
}

static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
				     struct intel_shared_dpll *pll,
				     struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;
	unsigned int dpll;
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	/* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
	dpll = pll->id + 1;

	val = I915_READ(regs[pll->id].ctl);
	if (!(val & LCPLL_PLL_ENABLE))
		return false;

	val = I915_READ(DPLL_CTRL1);
	hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;

	/* avoid reading back stale values if HDMI mode is not enabled */
	if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
		hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
		hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
	}

	return true;
}

static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
{
	int i;

	dev_priv->num_shared_dpll = 3;

	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
		dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
		dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
		dev_priv->shared_dplls[i].get_hw_state =
			skl_ddi_pll_get_hw_state;
	}
}

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
static void broxton_phy_init(struct drm_i915_private *dev_priv,
			     enum dpio_phy phy)
{
	enum port port;
	uint32_t val;

	val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
	val |= GT_DISPLAY_POWER_ON(phy);
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);

	/* Considering 10ms timeout until BSpec is updated */
	if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
		DRM_ERROR("timeout during PHY%d power on\n", phy);

	for (port =  (phy == DPIO_PHY0 ? PORT_B : PORT_A);
	     port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
		int lane;

		for (lane = 0; lane < 4; lane++) {
			val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
			/*
			 * Note that on CHV this flag is called UPAR, but has
			 * the same function.
			 */
			val &= ~LATENCY_OPTIM;
			if (lane != 1)
				val |= LATENCY_OPTIM;

			I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
		}
	}

	/* Program PLL Rcomp code offset */
	val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
	val &= ~IREF0RC_OFFSET_MASK;
	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);

	val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
	val &= ~IREF1RC_OFFSET_MASK;
	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
	I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);

	/* Program power gating */
	val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
		SUS_CLK_CONFIG;
	I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);

	if (phy == DPIO_PHY0) {
		val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
		I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
	}

	val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
	val &= ~OCL2_LDOFUSE_PWR_DIS;
	/*
	 * On PHY1 disable power on the second channel, since no port is
	 * connected there. On PHY0 both channels have a port, so leave it
	 * enabled.
	 * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
	 * power down the second channel on PHY0 as well.
	 */
	if (phy == DPIO_PHY1)
		val |= OCL2_LDOFUSE_PWR_DIS;
	I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);

	if (phy == DPIO_PHY0) {
		uint32_t grc_code;
		/*
		 * PHY0 isn't connected to an RCOMP resistor so copy over
		 * the corresponding calibrated value from PHY1, and disable
		 * the automatic calibration on PHY0.
		 */
		if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
			     10))
			DRM_ERROR("timeout waiting for PHY1 GRC\n");

		val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
		val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
		grc_code = val << GRC_CODE_FAST_SHIFT |
			   val << GRC_CODE_SLOW_SHIFT |
			   val;
		I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);

		val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
		val |= GRC_DIS | GRC_RDY_OVRD;
		I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
	}

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val |= COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}

void broxton_ddi_phy_init(struct drm_device *dev)
{
	/* Enable PHY1 first since it provides Rcomp for PHY0 */
	broxton_phy_init(dev->dev_private, DPIO_PHY1);
	broxton_phy_init(dev->dev_private, DPIO_PHY0);
}

static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
			       enum dpio_phy phy)
{
	uint32_t val;

	val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
	val &= ~COMMON_RESET_DIS;
	I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
}

void broxton_ddi_phy_uninit(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	broxton_phy_uninit(dev_priv, DPIO_PHY1);
	broxton_phy_uninit(dev_priv, DPIO_PHY0);

	/* FIXME: do this in broxton_phy_uninit per phy */
	I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
}

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
static const char * const bxt_ddi_pll_names[] = {
	"PORT PLL A",
	"PORT PLL B",
	"PORT PLL C",
};

static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	uint32_t temp;
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_REF_SEL;
	/* Non-SSC reference */
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);

	/* Disable 10 bit clock */
	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);

	/* Write P1 & P2 */
	temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
	temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
	temp |= pll->config.hw_state.ebb0;
	I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);

	/* Write M2 integer */
	temp = I915_READ(BXT_PORT_PLL(port, 0));
	temp &= ~PORT_PLL_M2_MASK;
	temp |= pll->config.hw_state.pll0;
	I915_WRITE(BXT_PORT_PLL(port, 0), temp);

	/* Write N */
	temp = I915_READ(BXT_PORT_PLL(port, 1));
	temp &= ~PORT_PLL_N_MASK;
	temp |= pll->config.hw_state.pll1;
	I915_WRITE(BXT_PORT_PLL(port, 1), temp);

	/* Write M2 fraction */
	temp = I915_READ(BXT_PORT_PLL(port, 2));
	temp &= ~PORT_PLL_M2_FRAC_MASK;
	temp |= pll->config.hw_state.pll2;
	I915_WRITE(BXT_PORT_PLL(port, 2), temp);

	/* Write M2 fraction enable */
	temp = I915_READ(BXT_PORT_PLL(port, 3));
	temp &= ~PORT_PLL_M2_FRAC_ENABLE;
	temp |= pll->config.hw_state.pll3;
	I915_WRITE(BXT_PORT_PLL(port, 3), temp);

	/* Write coeff */
	temp = I915_READ(BXT_PORT_PLL(port, 6));
	temp &= ~PORT_PLL_PROP_COEFF_MASK;
	temp &= ~PORT_PLL_INT_COEFF_MASK;
	temp &= ~PORT_PLL_GAIN_CTL_MASK;
	temp |= pll->config.hw_state.pll6;
	I915_WRITE(BXT_PORT_PLL(port, 6), temp);

	/* Write calibration val */
	temp = I915_READ(BXT_PORT_PLL(port, 8));
	temp &= ~PORT_PLL_TARGET_CNT_MASK;
	temp |= pll->config.hw_state.pll8;
	I915_WRITE(BXT_PORT_PLL(port, 8), temp);

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	temp = I915_READ(BXT_PORT_PLL(port, 9));
	temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
	temp |= (5 << 1);
	I915_WRITE(BXT_PORT_PLL(port, 9), temp);

	temp = I915_READ(BXT_PORT_PLL(port, 10));
	temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
	temp &= ~PORT_PLL_DCO_AMP_MASK;
	temp |= pll->config.hw_state.pll10;
	I915_WRITE(BXT_PORT_PLL(port, 10), temp);
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481

	/* Recalibrate with new settings */
	temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
	temp |= PORT_PLL_RECALIBRATE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
	/* Enable 10 bit clock */
	temp |= PORT_PLL_10BIT_CLK_ENABLE;
	I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);

	/* Enable PLL */
	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp |= PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));

	if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
			PORT_PLL_LOCK), 200))
		DRM_ERROR("PLL %d not locked\n", port);

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
	temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
	temp &= ~LANE_STAGGER_MASK;
	temp &= ~LANESTAGGER_STRAP_OVRD;
	temp |= pll->config.hw_state.pcsdw12;
	I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
}

static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t temp;

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));
}

static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll,
					struct intel_dpll_hw_state *hw_state)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t val;

	if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(BXT_PORT_PLL_ENABLE(port));
	if (!(val & PORT_PLL_ENABLE))
		return false;

	hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
	hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
	hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
	hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
	hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
	hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
	hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
2482
	hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers. We configure all lanes the same way, so
	 * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
	 */
	hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
	if (I915_READ(BXT_PORT_PCS_DW12_LN23(port) != hw_state->pcsdw12))
		DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
				 hw_state->pcsdw12,
				 I915_READ(BXT_PORT_PCS_DW12_LN23(port)));

	return true;
}

static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
{
	int i;

	dev_priv->num_shared_dpll = 3;

	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		dev_priv->shared_dplls[i].id = i;
		dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
		dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
		dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
		dev_priv->shared_dplls[i].get_hw_state =
			bxt_ddi_pll_get_hw_state;
	}
}

2513 2514 2515 2516
void intel_ddi_pll_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t val = I915_READ(LCPLL_CTL);
2517
	int cdclk_freq;
2518

2519 2520
	if (IS_SKYLAKE(dev))
		skl_shared_dplls_init(dev_priv);
2521 2522
	else if (IS_BROXTON(dev))
		bxt_shared_dplls_init(dev_priv);
2523 2524
	else
		hsw_shared_dplls_init(dev_priv);
P
Paulo Zanoni 已提交
2525

2526 2527
	cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
	DRM_DEBUG_KMS("CDCLK running at %dKHz\n", cdclk_freq);
P
Paulo Zanoni 已提交
2528

2529
	if (IS_SKYLAKE(dev)) {
2530
		dev_priv->skl_boot_cdclk = cdclk_freq;
2531 2532
		if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
			DRM_ERROR("LCPLL1 is disabled\n");
2533 2534
		else
			intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
2535 2536
	} else if (IS_BROXTON(dev)) {
		broxton_init_cdclk(dev);
2537
		broxton_ddi_phy_init(dev);
2538 2539 2540 2541 2542 2543 2544 2545 2546
	} else {
		/*
		 * The LCPLL register should be turned on by the BIOS. For now
		 * let's just check its state and print errors in case
		 * something is wrong.  Don't even try to turn it on.
		 */

		if (val & LCPLL_CD_SOURCE_FCLK)
			DRM_ERROR("CDCLK source is not LCPLL\n");
P
Paulo Zanoni 已提交
2547

2548 2549 2550
		if (val & LCPLL_PLL_DISABLE)
			DRM_ERROR("LCPLL is disabled\n");
	}
P
Paulo Zanoni 已提交
2551
}
2552 2553 2554

void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
{
2555 2556
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
2557
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
2558
	enum port port = intel_dig_port->port;
2559
	uint32_t val;
2560
	bool wait = false;
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579

	if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
		val = I915_READ(DDI_BUF_CTL(port));
		if (val & DDI_BUF_CTL_ENABLE) {
			val &= ~DDI_BUF_CTL_ENABLE;
			I915_WRITE(DDI_BUF_CTL(port), val);
			wait = true;
		}

		val = I915_READ(DP_TP_CTL(port));
		val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
		val |= DP_TP_CTL_LINK_TRAIN_PAT1;
		I915_WRITE(DP_TP_CTL(port), val);
		POSTING_READ(DP_TP_CTL(port));

		if (wait)
			intel_wait_ddi_buf_idle(dev_priv, port);
	}

2580
	val = DP_TP_CTL_ENABLE |
2581
	      DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
2582 2583 2584 2585 2586 2587 2588
	if (intel_dp->is_mst)
		val |= DP_TP_CTL_MODE_MST;
	else {
		val |= DP_TP_CTL_MODE_SST;
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
	}
2589 2590 2591 2592 2593 2594 2595 2596 2597
	I915_WRITE(DP_TP_CTL(port), val);
	POSTING_READ(DP_TP_CTL(port));

	intel_dp->DP |= DDI_BUF_CTL_ENABLE;
	I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
	POSTING_READ(DDI_BUF_CTL(port));

	udelay(600);
}
P
Paulo Zanoni 已提交
2598

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
void intel_ddi_fdi_disable(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
	struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
	uint32_t val;

	intel_ddi_post_disable(intel_encoder);

	val = I915_READ(_FDI_RXA_CTL);
	val &= ~FDI_RX_ENABLE;
	I915_WRITE(_FDI_RXA_CTL, val);

	val = I915_READ(_FDI_RXA_MISC);
	val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
	val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
	I915_WRITE(_FDI_RXA_MISC, val);

	val = I915_READ(_FDI_RXA_CTL);
	val &= ~FDI_PCDCLK;
	I915_WRITE(_FDI_RXA_CTL, val);

	val = I915_READ(_FDI_RXA_CTL);
	val &= ~FDI_RX_PLL_ENABLE;
	I915_WRITE(_FDI_RXA_CTL, val);
}

2625
void intel_ddi_get_config(struct intel_encoder *encoder,
2626
			  struct intel_crtc_state *pipe_config)
2627 2628 2629
{
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2630
	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
2631
	struct intel_hdmi *intel_hdmi;
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
	u32 temp, flags = 0;

	temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
	if (temp & TRANS_DDI_PHSYNC)
		flags |= DRM_MODE_FLAG_PHSYNC;
	else
		flags |= DRM_MODE_FLAG_NHSYNC;
	if (temp & TRANS_DDI_PVSYNC)
		flags |= DRM_MODE_FLAG_PVSYNC;
	else
		flags |= DRM_MODE_FLAG_NVSYNC;

2644
	pipe_config->base.adjusted_mode.flags |= flags;
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661

	switch (temp & TRANS_DDI_BPC_MASK) {
	case TRANS_DDI_BPC_6:
		pipe_config->pipe_bpp = 18;
		break;
	case TRANS_DDI_BPC_8:
		pipe_config->pipe_bpp = 24;
		break;
	case TRANS_DDI_BPC_10:
		pipe_config->pipe_bpp = 30;
		break;
	case TRANS_DDI_BPC_12:
		pipe_config->pipe_bpp = 36;
		break;
	default:
		break;
	}
2662 2663 2664

	switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
	case TRANS_DDI_MODE_SELECT_HDMI:
2665
		pipe_config->has_hdmi_sink = true;
2666 2667 2668 2669
		intel_hdmi = enc_to_intel_hdmi(&encoder->base);

		if (intel_hdmi->infoframe_enabled(&encoder->base))
			pipe_config->has_infoframe = true;
2670
		break;
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
	case TRANS_DDI_MODE_SELECT_DVI:
	case TRANS_DDI_MODE_SELECT_FDI:
		break;
	case TRANS_DDI_MODE_SELECT_DP_SST:
	case TRANS_DDI_MODE_SELECT_DP_MST:
		pipe_config->has_dp_encoder = true;
		intel_dp_get_m_n(intel_crtc, pipe_config);
		break;
	default:
		break;
	}
2682

2683
	if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
2684
		temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
2685
		if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
2686 2687
			pipe_config->has_audio = true;
	}
2688

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
	if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
	}
2708

2709
	intel_ddi_clock_get(encoder, pipe_config);
2710 2711
}

P
Paulo Zanoni 已提交
2712 2713 2714 2715 2716 2717
static void intel_ddi_destroy(struct drm_encoder *encoder)
{
	/* HDMI has nothing special to destroy, so we can go with this. */
	intel_dp_encoder_destroy(encoder);
}

2718
static bool intel_ddi_compute_config(struct intel_encoder *encoder,
2719
				     struct intel_crtc_state *pipe_config)
P
Paulo Zanoni 已提交
2720
{
2721
	int type = encoder->type;
2722
	int port = intel_ddi_get_encoder_port(encoder);
P
Paulo Zanoni 已提交
2723

2724
	WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
P
Paulo Zanoni 已提交
2725

2726 2727 2728
	if (port == PORT_A)
		pipe_config->cpu_transcoder = TRANSCODER_EDP;

P
Paulo Zanoni 已提交
2729
	if (type == INTEL_OUTPUT_HDMI)
2730
		return intel_hdmi_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
2731
	else
2732
		return intel_dp_compute_config(encoder, pipe_config);
P
Paulo Zanoni 已提交
2733 2734 2735 2736 2737 2738
}

static const struct drm_encoder_funcs intel_ddi_funcs = {
	.destroy = intel_ddi_destroy,
};

2739 2740 2741 2742 2743 2744
static struct intel_connector *
intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

2745
	connector = intel_connector_alloc();
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
	if (!connector)
		return NULL;

	intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
	if (!intel_dp_init_connector(intel_dig_port, connector)) {
		kfree(connector);
		return NULL;
	}

	return connector;
}

static struct intel_connector *
intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
{
	struct intel_connector *connector;
	enum port port = intel_dig_port->port;

2764
	connector = intel_connector_alloc();
2765 2766 2767 2768 2769 2770 2771 2772 2773
	if (!connector)
		return NULL;

	intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
	intel_hdmi_init_connector(intel_dig_port, connector);

	return connector;
}

P
Paulo Zanoni 已提交
2774 2775
void intel_ddi_init(struct drm_device *dev, enum port port)
{
2776
	struct drm_i915_private *dev_priv = dev->dev_private;
P
Paulo Zanoni 已提交
2777 2778 2779
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
2780 2781 2782 2783 2784 2785
	bool init_hdmi, init_dp;

	init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
		     dev_priv->vbt.ddi_port_info[port].supports_hdmi);
	init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
	if (!init_dp && !init_hdmi) {
2786
		DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
2787 2788 2789 2790
			      port_name(port));
		init_hdmi = true;
		init_dp = true;
	}
P
Paulo Zanoni 已提交
2791

2792
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
P
Paulo Zanoni 已提交
2793 2794 2795 2796 2797 2798 2799 2800 2801
	if (!intel_dig_port)
		return;

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

	drm_encoder_init(dev, encoder, &intel_ddi_funcs,
			 DRM_MODE_ENCODER_TMDS);

2802
	intel_encoder->compute_config = intel_ddi_compute_config;
P
Paulo Zanoni 已提交
2803 2804 2805 2806 2807
	intel_encoder->enable = intel_enable_ddi;
	intel_encoder->pre_enable = intel_ddi_pre_enable;
	intel_encoder->disable = intel_disable_ddi;
	intel_encoder->post_disable = intel_ddi_post_disable;
	intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2808
	intel_encoder->get_config = intel_ddi_get_config;
P
Paulo Zanoni 已提交
2809 2810

	intel_dig_port->port = port;
2811 2812 2813
	intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
					  (DDI_BUF_PORT_REVERSAL |
					   DDI_A_4_LANES);
P
Paulo Zanoni 已提交
2814 2815

	intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
2816
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2817
	intel_encoder->cloneable = 0;
P
Paulo Zanoni 已提交
2818

2819 2820 2821
	if (init_dp) {
		if (!intel_ddi_init_dp_connector(intel_dig_port))
			goto err;
2822

2823
		intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
2824
		dev_priv->hotplug.irq_port[port] = intel_dig_port;
2825
	}
2826

2827 2828
	/* In theory we don't need the encoder->type check, but leave it just in
	 * case we have some really bad VBTs... */
2829 2830 2831
	if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
		if (!intel_ddi_init_hdmi_connector(intel_dig_port))
			goto err;
2832
	}
2833 2834 2835 2836 2837 2838

	return;

err:
	drm_encoder_cleanup(encoder);
	kfree(intel_dig_port);
P
Paulo Zanoni 已提交
2839
}