ctree.c 152.9 KB
Newer Older
C
Chris Mason 已提交
1
/*
C
Chris Mason 已提交
2
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/sched.h>
20
#include <linux/slab.h>
21
#include <linux/rbtree.h>
22
#include <linux/vmalloc.h>
23 24
#include "ctree.h"
#include "disk-io.h"
25
#include "transaction.h"
26
#include "print-tree.h"
27
#include "locking.h"
28

29 30 31
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32
		      *root, struct btrfs_key *ins_key,
33
		      struct btrfs_path *path, int data_size, int extend);
34 35
static int push_node_left(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root, struct extent_buffer *dst,
36
			  struct extent_buffer *src, int empty);
37 38 39 40
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root,
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
41 42
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
43
static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44
				 struct extent_buffer *eb);
45

C
Chris Mason 已提交
46
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
47
{
C
Chris Mason 已提交
48
	struct btrfs_path *path;
J
Jeff Mahoney 已提交
49
	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
50
	return path;
C
Chris Mason 已提交
51 52
}

53 54 55 56 57 58 59 60
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 62 63 64 65 66 67
		if (!p->nodes[i] || !p->locks[i])
			continue;
		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
		if (p->locks[i] == BTRFS_READ_LOCK)
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
		else if (p->locks[i] == BTRFS_WRITE_LOCK)
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68 69 70 71 72
	}
}

/*
 * reset all the locked nodes in the patch to spinning locks.
73 74 75 76 77
 *
 * held is used to keep lockdep happy, when lockdep is enabled
 * we set held to a blocking lock before we go around and
 * retake all the spinlocks in the path.  You can safely use NULL
 * for held
78
 */
79
noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80
					struct extent_buffer *held, int held_rw)
81 82
{
	int i;
83

84 85 86 87 88 89 90
	if (held) {
		btrfs_set_lock_blocking_rw(held, held_rw);
		if (held_rw == BTRFS_WRITE_LOCK)
			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
		else if (held_rw == BTRFS_READ_LOCK)
			held_rw = BTRFS_READ_LOCK_BLOCKING;
	}
91 92 93
	btrfs_set_path_blocking(p);

	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
94 95 96 97 98 99 100
		if (p->nodes[i] && p->locks[i]) {
			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
				p->locks[i] = BTRFS_WRITE_LOCK;
			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
				p->locks[i] = BTRFS_READ_LOCK;
		}
101
	}
102 103

	if (held)
104
		btrfs_clear_lock_blocking_rw(held, held_rw);
105 106
}

C
Chris Mason 已提交
107
/* this also releases the path */
C
Chris Mason 已提交
108
void btrfs_free_path(struct btrfs_path *p)
109
{
110 111
	if (!p)
		return;
112
	btrfs_release_path(p);
C
Chris Mason 已提交
113
	kmem_cache_free(btrfs_path_cachep, p);
114 115
}

C
Chris Mason 已提交
116 117 118 119 120 121
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
122
noinline void btrfs_release_path(struct btrfs_path *p)
123 124
{
	int i;
125

C
Chris Mason 已提交
126
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
127
		p->slots[i] = 0;
128
		if (!p->nodes[i])
129 130
			continue;
		if (p->locks[i]) {
131
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
132 133
			p->locks[i] = 0;
		}
134
		free_extent_buffer(p->nodes[i]);
135
		p->nodes[i] = NULL;
136 137 138
	}
}

C
Chris Mason 已提交
139 140 141 142 143 144 145 146 147 148
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
149 150 151
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
152

153 154 155 156 157 158
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
159
		 * it was COWed but we may not get the new root node yet so do
160 161 162 163 164 165 166 167 168 169
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
170 171 172
	return eb;
}

C
Chris Mason 已提交
173 174 175 176
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
177 178 179 180
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
181
	while (1) {
182 183
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
184
		if (eb == root->node)
185 186 187 188 189 190 191
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

192 193 194 195
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
196
static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
197 198 199 200 201 202 203 204 205 206 207 208 209 210
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
211 212 213 214
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
215 216
static void add_root_to_dirty_list(struct btrfs_root *root)
{
217 218 219 220
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

221
	spin_lock(&root->fs_info->trans_lock);
222 223 224 225 226 227 228 229
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
			list_move_tail(&root->dirty_list,
				       &root->fs_info->dirty_cowonly_roots);
		else
			list_move(&root->dirty_list,
				  &root->fs_info->dirty_cowonly_roots);
230
	}
231
	spin_unlock(&root->fs_info->trans_lock);
232 233
}

C
Chris Mason 已提交
234 235 236 237 238
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
239 240 241 242 243 244 245 246
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
	struct extent_buffer *cow;
	int ret = 0;
	int level;
247
	struct btrfs_disk_key disk_key;
248

249 250 251 252
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->fs_info->running_transaction->transid);
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
253 254

	level = btrfs_header_level(buf);
255 256 257 258
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
259

260 261
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
262
	if (IS_ERR(cow))
263 264 265 266 267
		return PTR_ERR(cow);

	copy_extent_buffer(cow, buf, 0, 0, cow->len);
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
268 269 270 271 272 273 274
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
275

276
	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
Y
Yan Zheng 已提交
277 278
			    BTRFS_FSID_SIZE);

279
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
280
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281
		ret = btrfs_inc_ref(trans, root, cow, 1);
282
	else
283
		ret = btrfs_inc_ref(trans, root, cow, 0);
284

285 286 287 288 289 290 291 292
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_move {
	int dst_slot;
	int nr_items;
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
315
	u64 logical;
316
	u64 seq;
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
	struct tree_mod_move move;

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

336
static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337
{
338
	read_lock(&fs_info->tree_mod_log_lock);
339 340
}

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
{
	read_unlock(&fs_info->tree_mod_log_lock);
}

static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
{
	write_lock(&fs_info->tree_mod_log_lock);
}

static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
{
	write_unlock(&fs_info->tree_mod_log_lock);
}

356
/*
J
Josef Bacik 已提交
357
 * Pull a new tree mod seq number for our operation.
358
 */
J
Josef Bacik 已提交
359
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
360 361 362 363
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

364 365 366 367 368 369 370 371 372 373
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
374
{
375
	tree_mod_log_write_lock(fs_info);
376
	spin_lock(&fs_info->tree_mod_seq_lock);
377
	if (!elem->seq) {
J
Josef Bacik 已提交
378
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
379 380
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
381
	spin_unlock(&fs_info->tree_mod_seq_lock);
382 383
	tree_mod_log_write_unlock(fs_info);

J
Josef Bacik 已提交
384
	return elem->seq;
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
403
	elem->seq = 0;
404 405

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
406
		if (cur_elem->seq < min_seq) {
407 408 409 410 411
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
412 413
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
414 415 416 417
			}
			min_seq = cur_elem->seq;
		}
	}
418 419
	spin_unlock(&fs_info->tree_mod_seq_lock);

420 421 422 423
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
424
	tree_mod_log_write_lock(fs_info);
425 426 427 428
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
		tm = container_of(node, struct tree_mod_elem, node);
429
		if (tm->seq > min_seq)
430 431 432 433
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
434
	tree_mod_log_write_unlock(fs_info);
435 436 437 438
}

/*
 * key order of the log:
439
 *       node/leaf start address -> sequence
440
 *
441 442 443
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
444 445
 *
 * Note: must be called with write lock (tree_mod_log_write_lock).
446 447 448 449 450 451 452 453
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
454 455 456

	BUG_ON(!tm);

J
Josef Bacik 已提交
457
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
458 459 460 461 462 463

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
		cur = container_of(*new, struct tree_mod_elem, node);
		parent = *new;
464
		if (cur->logical < tm->logical)
465
			new = &((*new)->rb_left);
466
		else if (cur->logical > tm->logical)
467
			new = &((*new)->rb_right);
468
		else if (cur->seq < tm->seq)
469
			new = &((*new)->rb_left);
470
		else if (cur->seq > tm->seq)
471
			new = &((*new)->rb_right);
472 473
		else
			return -EEXIST;
474 475 476 477
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
478
	return 0;
479 480
}

481 482 483 484 485 486
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
 * call tree_mod_log_write_unlock() to release.
 */
487 488 489 490 491
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
492 493
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
494 495 496 497 498 499 500

	tree_mod_log_write_lock(fs_info);
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
		tree_mod_log_write_unlock(fs_info);
		return 1;
	}

501 502 503
	return 0;
}

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
520
{
521
	struct tree_mod_elem *tm;
522

523 524
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
525
		return NULL;
526

527
	tm->logical = eb->start;
528 529 530 531 532 533 534
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
535
	RB_CLEAR_NODE(&tm->node);
536

537
	return tm;
538 539 540
}

static noinline int
541 542 543
tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
			struct extent_buffer *eb, int slot,
			enum mod_log_op op, gfp_t flags)
544
{
545 546 547 548 549 550 551 552 553 554 555 556
	struct tree_mod_elem *tm;
	int ret;

	if (!tree_mod_need_log(fs_info, eb))
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

	if (tree_mod_dont_log(fs_info, eb)) {
		kfree(tm);
557
		return 0;
558 559 560 561 562 563
	}

	ret = __tree_mod_log_insert(fs_info, tm);
	tree_mod_log_write_unlock(fs_info);
	if (ret)
		kfree(tm);
564

565
	return ret;
566 567
}

568 569 570 571 572
static noinline int
tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
			 struct extent_buffer *eb, int dst_slot, int src_slot,
			 int nr_items, gfp_t flags)
{
573 574 575
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
576
	int i;
577
	int locked = 0;
578

579
	if (!tree_mod_need_log(fs_info, eb))
J
Jan Schmidt 已提交
580
		return 0;
581

582
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
583 584 585 586 587 588 589 590 591
	if (!tm_list)
		return -ENOMEM;

	tm = kzalloc(sizeof(*tm), flags);
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

592
	tm->logical = eb->start;
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, eb))
		goto free_tms;
	locked = 1;

611 612 613 614 615
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
616
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
617 618 619
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret)
			goto free_tms;
620 621
	}

622 623 624 625 626
	ret = __tree_mod_log_insert(fs_info, tm);
	if (ret)
		goto free_tms;
	tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);
J
Jan Schmidt 已提交
627

628 629 630 631 632 633 634 635 636 637 638
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
		tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);
	kfree(tm);
639

640
	return ret;
641 642
}

643 644 645 646
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
647
{
648
	int i, j;
649 650 651
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
652 653 654 655 656 657 658
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
659
	}
660 661

	return 0;
662 663
}

664 665 666
static noinline int
tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
			 struct extent_buffer *old_root,
667 668
			 struct extent_buffer *new_root, gfp_t flags,
			 int log_removal)
669
{
670 671 672 673 674
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
675

676
	if (!tree_mod_need_log(fs_info, NULL))
677 678
		return 0;

679 680
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
681
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
682 683 684 685 686 687 688 689 690 691 692 693 694 695
				  flags);
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
696

697
	tm = kzalloc(sizeof(*tm), flags);
698 699 700 701
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
702

703
	tm->logical = new_root->start;
704 705 706 707 708
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

	tree_mod_log_write_unlock(fs_info);
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
733 734 735 736 737 738 739 740 741 742 743
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

744
	tree_mod_log_read_lock(fs_info);
745 746 747 748
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
		cur = container_of(node, struct tree_mod_elem, node);
749
		if (cur->logical < start) {
750
			node = node->rb_left;
751
		} else if (cur->logical > start) {
752
			node = node->rb_right;
753
		} else if (cur->seq < min_seq) {
754 755 756 757
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
758
				BUG_ON(found->seq > cur->seq);
759 760
			found = cur;
			node = node->rb_left;
761
		} else if (cur->seq > min_seq) {
762 763
			/* we want the node with the smallest seq */
			if (found)
764
				BUG_ON(found->seq < cur->seq);
765 766 767 768 769 770 771
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
772
	tree_mod_log_read_unlock(fs_info);
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

800
static noinline int
801 802
tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     struct extent_buffer *src, unsigned long dst_offset,
803
		     unsigned long src_offset, int nr_items)
804
{
805 806 807
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
808
	int i;
809
	int locked = 0;
810

811 812
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
813

814
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815 816
		return 0;

817
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818 819 820
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
821

822 823
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
824
	for (i = 0; i < nr_items; i++) {
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
851
	}
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868

	tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
		tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);

	return ret;
869 870 871 872 873 874 875 876 877 878 879 880
}

static inline void
tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     int dst_offset, int src_offset, int nr_items)
{
	int ret;
	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
				       nr_items, GFP_NOFS);
	BUG_ON(ret < 0);
}

881
static noinline void
882
tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
L
Liu Bo 已提交
883
			  struct extent_buffer *eb, int slot, int atomic)
884 885 886
{
	int ret;

887
	ret = tree_mod_log_insert_key(fs_info, eb, slot,
888 889
					MOD_LOG_KEY_REPLACE,
					atomic ? GFP_ATOMIC : GFP_NOFS);
890 891 892
	BUG_ON(ret < 0);
}

893
static noinline int
894
tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895
{
896 897 898 899 900 901 902 903 904 905 906 907
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

	if (!tree_mod_need_log(fs_info, NULL))
		return 0;

	nritems = btrfs_header_nritems(eb);
908
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909 910 911 912 913 914 915 916 917 918 919 920
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

921
	if (tree_mod_dont_log(fs_info, eb))
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
		goto free_tms;

	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	tree_mod_log_write_unlock(fs_info);
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
938 939
}

940
static noinline void
941
tree_mod_log_set_root_pointer(struct btrfs_root *root,
942 943
			      struct extent_buffer *new_root_node,
			      int log_removal)
944 945 946
{
	int ret;
	ret = tree_mod_log_insert_root(root->fs_info, root->node,
947
				       new_root_node, GFP_NOFS, log_removal);
948 949 950
	BUG_ON(ret < 0);
}

951 952 953 954 955 956 957
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
958
	 * Tree blocks not in reference counted trees and tree roots
959 960 961 962
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
963
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964 965 966 967 968 969
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971 972 973 974 975 976 977 978 979
	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
		return 1;
#endif
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
980 981
				       struct extent_buffer *cow,
				       int *last_ref)
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
{
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
		ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008 1009
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
1010 1011
		if (ret)
			return ret;
1012 1013
		if (refs == 0) {
			ret = -EROFS;
1014
			btrfs_handle_fs_error(root->fs_info, ret, NULL);
1015 1016
			return ret;
		}
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034
			ret = btrfs_inc_ref(trans, root, buf, 1);
1035
			BUG_ON(ret); /* -ENOMEM */
1036 1037 1038

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
1039
				ret = btrfs_dec_ref(trans, root, buf, 0);
1040
				BUG_ON(ret); /* -ENOMEM */
1041
				ret = btrfs_inc_ref(trans, root, cow, 1);
1042
				BUG_ON(ret); /* -ENOMEM */
1043 1044 1045 1046 1047 1048
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
1049
				ret = btrfs_inc_ref(trans, root, cow, 1);
1050
			else
1051
				ret = btrfs_inc_ref(trans, root, cow, 0);
1052
			BUG_ON(ret); /* -ENOMEM */
1053 1054
		}
		if (new_flags != 0) {
1055 1056
			int level = btrfs_header_level(buf);

1057 1058 1059
			ret = btrfs_set_disk_extent_flags(trans, root,
							  buf->start,
							  buf->len,
1060
							  new_flags, level, 0);
1061 1062
			if (ret)
				return ret;
1063 1064 1065 1066 1067
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
1068
				ret = btrfs_inc_ref(trans, root, cow, 1);
1069
			else
1070
				ret = btrfs_inc_ref(trans, root, cow, 0);
1071
			BUG_ON(ret); /* -ENOMEM */
1072
			ret = btrfs_dec_ref(trans, root, buf, 1);
1073
			BUG_ON(ret); /* -ENOMEM */
1074
		}
1075
		clean_tree_block(trans, root->fs_info, buf);
1076
		*last_ref = 1;
1077 1078 1079 1080
	}
	return 0;
}

C
Chris Mason 已提交
1081
/*
C
Chris Mason 已提交
1082 1083 1084 1085
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1086 1087 1088
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1089 1090 1091
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1092
 */
C
Chris Mason 已提交
1093
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 1095 1096 1097
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1098
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1099
{
1100
	struct btrfs_disk_key disk_key;
1101
	struct extent_buffer *cow;
1102
	int level, ret;
1103
	int last_ref = 0;
1104
	int unlock_orig = 0;
1105
	u64 parent_start;
1106

1107 1108 1109
	if (*cow_ret == buf)
		unlock_orig = 1;

1110
	btrfs_assert_tree_locked(buf);
1111

1112 1113 1114 1115
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->fs_info->running_transaction->transid);
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1116

1117
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1118

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
		if (parent)
			parent_start = parent->start;
		else
			parent_start = 0;
	} else
		parent_start = 0;

1132 1133 1134
	cow = btrfs_alloc_tree_block(trans, root, parent_start,
			root->root_key.objectid, &disk_key, level,
			search_start, empty_size);
1135 1136
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1137

1138 1139
	/* cow is set to blocking by btrfs_init_new_buffer */

1140
	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141
	btrfs_set_header_bytenr(cow, cow->start);
1142
	btrfs_set_header_generation(cow, trans->transid);
1143 1144 1145 1146 1147 1148 1149
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1150

1151
	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
Y
Yan Zheng 已提交
1152 1153
			    BTRFS_FSID_SIZE);

1154
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155
	if (ret) {
1156
		btrfs_abort_transaction(trans, ret);
1157 1158
		return ret;
	}
Z
Zheng Yan 已提交
1159

1160
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162
		if (ret) {
1163
			btrfs_abort_transaction(trans, ret);
1164
			return ret;
1165
		}
1166
	}
1167

C
Chris Mason 已提交
1168
	if (buf == root->node) {
1169
		WARN_ON(parent && parent != buf);
1170 1171 1172 1173 1174
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
		else
			parent_start = 0;
1175

1176
		extent_buffer_get(cow);
1177
		tree_mod_log_set_root_pointer(root, cow, 1);
1178
		rcu_assign_pointer(root->node, cow);
1179

1180
		btrfs_free_tree_block(trans, root, buf, parent_start,
1181
				      last_ref);
1182
		free_extent_buffer(buf);
1183
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1184
	} else {
1185 1186 1187 1188 1189 1190
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
			parent_start = parent->start;
		else
			parent_start = 0;

		WARN_ON(trans->transid != btrfs_header_generation(parent));
1191
		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193
		btrfs_set_node_blockptr(parent, parent_slot,
1194
					cow->start);
1195 1196
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1197
		btrfs_mark_buffer_dirty(parent);
1198 1199 1200
		if (last_ref) {
			ret = tree_mod_log_free_eb(root->fs_info, buf);
			if (ret) {
1201
				btrfs_abort_transaction(trans, ret);
1202 1203 1204
				return ret;
			}
		}
1205
		btrfs_free_tree_block(trans, root, buf, parent_start,
1206
				      last_ref);
C
Chris Mason 已提交
1207
	}
1208 1209
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1210
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1211
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1212
	*cow_ret = cow;
C
Chris Mason 已提交
1213 1214 1215
	return 0;
}

J
Jan Schmidt 已提交
1216 1217 1218 1219 1220 1221
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
static struct tree_mod_elem *
__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222
			   struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1223 1224 1225
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1226
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1227 1228 1229
	int looped = 0;

	if (!time_seq)
1230
		return NULL;
J
Jan Schmidt 已提交
1231 1232

	/*
1233 1234 1235 1236
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1237 1238 1239 1240 1241
	 */
	while (1) {
		tm = tree_mod_log_search_oldest(fs_info, root_logical,
						time_seq);
		if (!looped && !tm)
1242
			return NULL;
J
Jan Schmidt 已提交
1243
		/*
1244 1245 1246
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1247
		 */
1248 1249
		if (!tm)
			break;
J
Jan Schmidt 已提交
1250

1251 1252 1253 1254 1255
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1256 1257 1258 1259 1260 1261 1262 1263
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1264 1265 1266 1267
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1268 1269 1270 1271 1272
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1273
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1274 1275 1276
 * time_seq).
 */
static void
1277 1278
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1288
	tree_mod_log_read_lock(fs_info);
1289
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1290 1291 1292 1293 1294 1295 1296 1297
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1298
			/* Fallthrough */
1299
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1301 1302 1303 1304
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1305
			n++;
J
Jan Schmidt 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1315
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1316 1317 1318
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1319 1320 1321
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
		tm = container_of(next, struct tree_mod_elem, node);
1340
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1341 1342
			break;
	}
1343
	tree_mod_log_read_unlock(fs_info);
J
Jan Schmidt 已提交
1344 1345 1346
	btrfs_set_header_nritems(eb, n);
}

1347
/*
1348
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1349 1350 1351 1352 1353
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1354
static struct extent_buffer *
1355 1356
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1371 1372 1373
	btrfs_set_path_blocking(path);
	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);

J
Jan Schmidt 已提交
1374 1375
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1376 1377
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
						eb->len);
1378
		if (!eb_rewin) {
1379
			btrfs_tree_read_unlock_blocking(eb);
1380 1381 1382
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1383 1384 1385 1386
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1387
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1388 1389
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1390
		if (!eb_rewin) {
1391
			btrfs_tree_read_unlock_blocking(eb);
1392 1393 1394
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1395 1396
	}

1397 1398
	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1399 1400
	free_extent_buffer(eb);

1401 1402
	extent_buffer_get(eb_rewin);
	btrfs_tree_read_lock(eb_rewin);
1403
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1404
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1405
		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
J
Jan Schmidt 已提交
1406 1407 1408 1409

	return eb_rewin;
}

1410 1411 1412 1413 1414 1415 1416
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1417 1418 1419 1420
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
1421 1422
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1423
	struct extent_buffer *old;
1424
	struct tree_mod_root *old_root = NULL;
1425
	u64 old_generation = 0;
1426
	u64 logical;
J
Jan Schmidt 已提交
1427

1428 1429
	eb_root = btrfs_read_lock_root_node(root);
	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
J
Jan Schmidt 已提交
1430
	if (!tm)
1431
		return eb_root;
J
Jan Schmidt 已提交
1432

1433 1434 1435 1436 1437
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
	} else {
1438
		logical = eb_root->start;
1439
	}
J
Jan Schmidt 已提交
1440

1441
	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1442
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1443 1444
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1445
		old = read_tree_block(root, logical, 0);
1446 1447 1448
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1449 1450
			btrfs_warn(root->fs_info,
				"failed to read tree block %llu from get_old_root", logical);
1451
		} else {
1452 1453
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1454 1455
		}
	} else if (old_root) {
1456 1457
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1458 1459
		eb = alloc_dummy_extent_buffer(root->fs_info, logical,
					root->nodesize);
1460
	} else {
1461
		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1462
		eb = btrfs_clone_extent_buffer(eb_root);
1463
		btrfs_tree_read_unlock_blocking(eb_root);
1464
		free_extent_buffer(eb_root);
1465 1466
	}

1467 1468
	if (!eb)
		return NULL;
1469
	extent_buffer_get(eb);
1470
	btrfs_tree_read_lock(eb);
1471
	if (old_root) {
J
Jan Schmidt 已提交
1472 1473
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1474
		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1475 1476
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1477
	}
1478
	if (tm)
1479
		__tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1480 1481
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1482
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
J
Jan Schmidt 已提交
1483 1484 1485 1486

	return eb;
}

J
Jan Schmidt 已提交
1487 1488 1489 1490
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1491
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1492

1493
	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
J
Jan Schmidt 已提交
1494 1495 1496
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1497
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1498
	}
1499
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1500 1501 1502 1503

	return level;
}

1504 1505 1506 1507
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1508
	if (btrfs_is_testing(root->fs_info))
1509
		return 0;
1510

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	/* ensure we can see the force_cow */
	smp_rmb();

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1521
	 *    when we create snapshot during committing the transaction,
1522 1523 1524
	 *    after we've finished coping src root, we must COW the shared
	 *    block to ensure the metadata consistency.
	 */
1525 1526 1527
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1528
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1529
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1530 1531 1532 1533
		return 0;
	return 1;
}

C
Chris Mason 已提交
1534 1535
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1536
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1537 1538
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1539
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1540 1541
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1542
		    struct extent_buffer **cow_ret)
1543 1544
{
	u64 search_start;
1545
	int ret;
C
Chris Mason 已提交
1546

J
Julia Lawall 已提交
1547 1548
	if (trans->transaction != root->fs_info->running_transaction)
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1549
		       trans->transid,
1550
		       root->fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1551 1552 1553

	if (trans->transid != root->fs_info->generation)
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1554
		       trans->transid, root->fs_info->generation);
C
Chris Mason 已提交
1555

1556
	if (!should_cow_block(trans, root, buf)) {
1557
		trans->dirty = true;
1558 1559 1560
		*cow_ret = buf;
		return 0;
	}
1561

1562
	search_start = buf->start & ~((u64)SZ_1G - 1);
1563 1564 1565 1566 1567

	if (parent)
		btrfs_set_lock_blocking(parent);
	btrfs_set_lock_blocking(buf);

1568
	ret = __btrfs_cow_block(trans, root, buf, parent,
1569
				 parent_slot, cow_ret, search_start, 0);
1570 1571 1572

	trace_btrfs_cow_block(root, buf, *cow_ret);

1573
	return ret;
1574 1575
}

C
Chris Mason 已提交
1576 1577 1578 1579
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1580
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1581
{
1582
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1583
		return 1;
1584
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1585 1586 1587 1588
		return 1;
	return 0;
}

1589 1590 1591 1592 1593 1594 1595 1596 1597
/*
 * compare two keys in a memcmp fashion
 */
static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1598
	return btrfs_comp_cpu_keys(&k1, k2);
1599 1600
}

1601 1602 1603
/*
 * same as comp_keys only with two btrfs_key's
 */
1604
int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1620

C
Chris Mason 已提交
1621 1622 1623 1624 1625
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1626
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1627
		       struct btrfs_root *root, struct extent_buffer *parent,
1628
		       int start_slot, u64 *last_ret,
1629
		       struct btrfs_key *progress)
1630
{
1631
	struct extent_buffer *cur;
1632
	u64 blocknr;
1633
	u64 gen;
1634 1635
	u64 search_start = *last_ret;
	u64 last_block = 0;
1636 1637 1638 1639 1640
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1641
	int parent_level;
1642 1643
	int uptodate;
	u32 blocksize;
1644 1645
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1646

1647 1648
	parent_level = btrfs_header_level(parent);

J
Julia Lawall 已提交
1649 1650
	WARN_ON(trans->transaction != root->fs_info->running_transaction);
	WARN_ON(trans->transid != root->fs_info->generation);
1651

1652
	parent_nritems = btrfs_header_nritems(parent);
1653
	blocksize = root->nodesize;
1654
	end_slot = parent_nritems - 1;
1655

1656
	if (parent_nritems <= 1)
1657 1658
		return 0;

1659 1660
	btrfs_set_lock_blocking(parent);

1661
	for (i = start_slot; i <= end_slot; i++) {
1662
		int close = 1;
1663

1664 1665 1666 1667 1668
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1669
		blocknr = btrfs_node_blockptr(parent, i);
1670
		gen = btrfs_node_ptr_generation(parent, i);
1671 1672
		if (last_block == 0)
			last_block = blocknr;
1673

1674
		if (i > 0) {
1675 1676
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1677
		}
1678
		if (!close && i < end_slot) {
1679 1680
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1681
		}
1682 1683
		if (close) {
			last_block = blocknr;
1684
			continue;
1685
		}
1686

1687
		cur = btrfs_find_tree_block(root->fs_info, blocknr);
1688
		if (cur)
1689
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1690 1691
		else
			uptodate = 0;
1692
		if (!cur || !uptodate) {
1693
			if (!cur) {
1694
				cur = read_tree_block(root, blocknr, gen);
1695 1696 1697
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1698
					free_extent_buffer(cur);
1699
					return -EIO;
1700
				}
1701
			} else if (!uptodate) {
1702 1703 1704 1705 1706
				err = btrfs_read_buffer(cur, gen);
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1707
			}
1708
		}
1709
		if (search_start == 0)
1710
			search_start = last_block;
1711

1712
		btrfs_tree_lock(cur);
1713
		btrfs_set_lock_blocking(cur);
1714
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1715
					&cur, search_start,
1716
					min(16 * blocksize,
1717
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1718
		if (err) {
1719
			btrfs_tree_unlock(cur);
1720
			free_extent_buffer(cur);
1721
			break;
Y
Yan 已提交
1722
		}
1723 1724
		search_start = cur->start;
		last_block = cur->start;
1725
		*last_ret = search_start;
1726 1727
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1728 1729 1730 1731
	}
	return err;
}

C
Chris Mason 已提交
1732 1733 1734 1735 1736
/*
 * The leaf data grows from end-to-front in the node.
 * this returns the address of the start of the last item,
 * which is the stop of the leaf data stack
 */
C
Chris Mason 已提交
1737
static inline unsigned int leaf_data_end(struct btrfs_root *root,
1738
					 struct extent_buffer *leaf)
1739
{
1740
	u32 nr = btrfs_header_nritems(leaf);
1741
	if (nr == 0)
C
Chris Mason 已提交
1742
		return BTRFS_LEAF_DATA_SIZE(root);
1743
	return btrfs_item_offset_nr(leaf, nr - 1);
1744 1745
}

C
Chris Mason 已提交
1746

C
Chris Mason 已提交
1747
/*
1748 1749 1750
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1751 1752 1753 1754 1755 1756
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1757 1758 1759 1760
static noinline int generic_bin_search(struct extent_buffer *eb,
				       unsigned long p,
				       int item_size, struct btrfs_key *key,
				       int max, int *slot)
1761 1762 1763 1764 1765
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1766
	struct btrfs_disk_key *tmp = NULL;
1767 1768 1769 1770 1771
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1772
	int err;
1773

1774 1775 1776 1777 1778 1779 1780 1781
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1782
	while (low < high) {
1783
		mid = (low + high) / 2;
1784 1785
		offset = p + mid * item_size;

1786
		if (!kaddr || offset < map_start ||
1787 1788
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1789 1790

			err = map_private_extent_buffer(eb, offset,
1791
						sizeof(struct btrfs_disk_key),
1792
						&kaddr, &map_start, &map_len);
1793 1794 1795 1796

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
1797
			} else if (err == 1) {
1798 1799 1800
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
1801 1802
			} else {
				return err;
1803
			}
1804 1805 1806 1807 1808

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1824 1825 1826 1827
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1828 1829
static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
		      int level, int *slot)
1830
{
1831
	if (level == 0)
1832 1833
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1834
					  sizeof(struct btrfs_item),
1835
					  key, btrfs_header_nritems(eb),
1836
					  slot);
1837
	else
1838 1839
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1840
					  sizeof(struct btrfs_key_ptr),
1841
					  key, btrfs_header_nritems(eb),
1842
					  slot);
1843 1844
}

1845 1846 1847 1848 1849 1850
int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
		     int level, int *slot)
{
	return bin_search(eb, key, level, slot);
}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1867 1868 1869
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1870
static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1871
				   struct extent_buffer *parent, int slot)
1872
{
1873
	int level = btrfs_header_level(parent);
1874 1875
	struct extent_buffer *eb;

1876 1877
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1878 1879 1880

	BUG_ON(level == 0);

1881 1882
	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
			     btrfs_node_ptr_generation(parent, slot));
1883 1884 1885
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1886 1887 1888
	}

	return eb;
1889 1890
}

C
Chris Mason 已提交
1891 1892 1893 1894 1895
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1896
static noinline int balance_level(struct btrfs_trans_handle *trans,
1897 1898
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1899
{
1900 1901 1902 1903
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1904 1905 1906 1907
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1908
	u64 orig_ptr;
1909 1910 1911 1912

	if (level == 0)
		return 0;

1913
	mid = path->nodes[level];
1914

1915 1916
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1917 1918
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1919
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1920

L
Li Zefan 已提交
1921
	if (level < BTRFS_MAX_LEVEL - 1) {
1922
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1923 1924
		pslot = path->slots[level + 1];
	}
1925

C
Chris Mason 已提交
1926 1927 1928 1929
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1930 1931
	if (!parent) {
		struct extent_buffer *child;
1932

1933
		if (btrfs_header_nritems(mid) != 1)
1934 1935 1936
			return 0;

		/* promote the child to a root */
1937
		child = read_node_slot(root, mid, 0);
1938 1939
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1940
			btrfs_handle_fs_error(root->fs_info, ret, NULL);
1941 1942 1943
			goto enospc;
		}

1944
		btrfs_tree_lock(child);
1945
		btrfs_set_lock_blocking(child);
1946
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1947 1948 1949 1950 1951
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1952

1953
		tree_mod_log_set_root_pointer(root, child, 1);
1954
		rcu_assign_pointer(root->node, child);
1955

1956
		add_root_to_dirty_list(root);
1957
		btrfs_tree_unlock(child);
1958

1959
		path->locks[level] = 0;
1960
		path->nodes[level] = NULL;
1961
		clean_tree_block(trans, root->fs_info, mid);
1962
		btrfs_tree_unlock(mid);
1963
		/* once for the path */
1964
		free_extent_buffer(mid);
1965 1966

		root_sub_used(root, mid->len);
1967
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1968
		/* once for the root ptr */
1969
		free_extent_buffer_stale(mid);
1970
		return 0;
1971
	}
1972
	if (btrfs_header_nritems(mid) >
C
Chris Mason 已提交
1973
	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1974 1975
		return 0;

1976
	left = read_node_slot(root, parent, pslot - 1);
1977 1978 1979
	if (IS_ERR(left))
		left = NULL;

1980
	if (left) {
1981
		btrfs_tree_lock(left);
1982
		btrfs_set_lock_blocking(left);
1983
		wret = btrfs_cow_block(trans, root, left,
1984
				       parent, pslot - 1, &left);
1985 1986 1987 1988
		if (wret) {
			ret = wret;
			goto enospc;
		}
1989
	}
1990

1991
	right = read_node_slot(root, parent, pslot + 1);
1992 1993 1994
	if (IS_ERR(right))
		right = NULL;

1995
	if (right) {
1996
		btrfs_tree_lock(right);
1997
		btrfs_set_lock_blocking(right);
1998
		wret = btrfs_cow_block(trans, root, right,
1999
				       parent, pslot + 1, &right);
2000 2001 2002 2003 2004 2005 2006
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
2007 2008
	if (left) {
		orig_slot += btrfs_header_nritems(left);
2009
		wret = push_node_left(trans, root, left, mid, 1);
2010 2011
		if (wret < 0)
			ret = wret;
2012
	}
2013 2014 2015 2016

	/*
	 * then try to empty the right most buffer into the middle
	 */
2017
	if (right) {
2018
		wret = push_node_left(trans, root, mid, right, 1);
2019
		if (wret < 0 && wret != -ENOSPC)
2020
			ret = wret;
2021
		if (btrfs_header_nritems(right) == 0) {
2022
			clean_tree_block(trans, root->fs_info, right);
2023
			btrfs_tree_unlock(right);
2024
			del_ptr(root, path, level + 1, pslot + 1);
2025
			root_sub_used(root, right->len);
2026
			btrfs_free_tree_block(trans, root, right, 0, 1);
2027
			free_extent_buffer_stale(right);
2028
			right = NULL;
2029
		} else {
2030 2031
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
2032
			tree_mod_log_set_node_key(root->fs_info, parent,
L
Liu Bo 已提交
2033
						  pslot + 1, 0);
2034 2035
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
2036 2037
		}
	}
2038
	if (btrfs_header_nritems(mid) == 1) {
2039 2040 2041 2042 2043 2044 2045 2046 2047
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
2048 2049
		if (!left) {
			ret = -EROFS;
2050
			btrfs_handle_fs_error(root->fs_info, ret, NULL);
2051 2052
			goto enospc;
		}
2053
		wret = balance_node_right(trans, root, mid, left);
2054
		if (wret < 0) {
2055
			ret = wret;
2056 2057
			goto enospc;
		}
2058 2059 2060 2061 2062
		if (wret == 1) {
			wret = push_node_left(trans, root, left, mid, 1);
			if (wret < 0)
				ret = wret;
		}
2063 2064
		BUG_ON(wret == 1);
	}
2065
	if (btrfs_header_nritems(mid) == 0) {
2066
		clean_tree_block(trans, root->fs_info, mid);
2067
		btrfs_tree_unlock(mid);
2068
		del_ptr(root, path, level + 1, pslot);
2069
		root_sub_used(root, mid->len);
2070
		btrfs_free_tree_block(trans, root, mid, 0, 1);
2071
		free_extent_buffer_stale(mid);
2072
		mid = NULL;
2073 2074
	} else {
		/* update the parent key to reflect our changes */
2075 2076
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
L
Liu Bo 已提交
2077
		tree_mod_log_set_node_key(root->fs_info, parent,
2078
					  pslot, 0);
2079 2080
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
2081
	}
2082

2083
	/* update the path */
2084 2085 2086
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
2087
			/* left was locked after cow */
2088
			path->nodes[level] = left;
2089 2090
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2091 2092
			if (mid) {
				btrfs_tree_unlock(mid);
2093
				free_extent_buffer(mid);
2094
			}
2095
		} else {
2096
			orig_slot -= btrfs_header_nritems(left);
2097 2098 2099
			path->slots[level] = orig_slot;
		}
	}
2100
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2101
	if (orig_ptr !=
2102
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2103
		BUG();
2104
enospc:
2105 2106
	if (right) {
		btrfs_tree_unlock(right);
2107
		free_extent_buffer(right);
2108 2109 2110 2111
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2112
		free_extent_buffer(left);
2113
	}
2114 2115 2116
	return ret;
}

C
Chris Mason 已提交
2117 2118 2119 2120
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2121
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2122 2123
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2124
{
2125 2126 2127 2128
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2129 2130 2131 2132 2133 2134 2135 2136
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2137
	mid = path->nodes[level];
2138
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2139

L
Li Zefan 已提交
2140
	if (level < BTRFS_MAX_LEVEL - 1) {
2141
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2142 2143
		pslot = path->slots[level + 1];
	}
2144

2145
	if (!parent)
2146 2147
		return 1;

2148
	left = read_node_slot(root, parent, pslot - 1);
2149 2150
	if (IS_ERR(left))
		left = NULL;
2151 2152

	/* first, try to make some room in the middle buffer */
2153
	if (left) {
2154
		u32 left_nr;
2155 2156

		btrfs_tree_lock(left);
2157 2158
		btrfs_set_lock_blocking(left);

2159
		left_nr = btrfs_header_nritems(left);
C
Chris Mason 已提交
2160 2161 2162
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
			wret = 1;
		} else {
2163
			ret = btrfs_cow_block(trans, root, left, parent,
2164
					      pslot - 1, &left);
2165 2166 2167 2168
			if (ret)
				wret = 1;
			else {
				wret = push_node_left(trans, root,
2169
						      left, mid, 0);
2170
			}
C
Chris Mason 已提交
2171
		}
2172 2173 2174
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2175
			struct btrfs_disk_key disk_key;
2176
			orig_slot += left_nr;
2177
			btrfs_node_key(mid, &disk_key, 0);
2178
			tree_mod_log_set_node_key(root->fs_info, parent,
L
Liu Bo 已提交
2179
						  pslot, 0);
2180 2181 2182 2183
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2184 2185
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2186
				btrfs_tree_unlock(mid);
2187
				free_extent_buffer(mid);
2188 2189
			} else {
				orig_slot -=
2190
					btrfs_header_nritems(left);
2191
				path->slots[level] = orig_slot;
2192
				btrfs_tree_unlock(left);
2193
				free_extent_buffer(left);
2194 2195 2196
			}
			return 0;
		}
2197
		btrfs_tree_unlock(left);
2198
		free_extent_buffer(left);
2199
	}
2200
	right = read_node_slot(root, parent, pslot + 1);
2201 2202
	if (IS_ERR(right))
		right = NULL;
2203 2204 2205 2206

	/*
	 * then try to empty the right most buffer into the middle
	 */
2207
	if (right) {
C
Chris Mason 已提交
2208
		u32 right_nr;
2209

2210
		btrfs_tree_lock(right);
2211 2212
		btrfs_set_lock_blocking(right);

2213
		right_nr = btrfs_header_nritems(right);
C
Chris Mason 已提交
2214 2215 2216
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
			wret = 1;
		} else {
2217 2218
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2219
					      &right);
2220 2221 2222 2223
			if (ret)
				wret = 1;
			else {
				wret = balance_node_right(trans, root,
2224
							  right, mid);
2225
			}
C
Chris Mason 已提交
2226
		}
2227 2228 2229
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2230 2231 2232
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2233
			tree_mod_log_set_node_key(root->fs_info, parent,
L
Liu Bo 已提交
2234
						  pslot + 1, 0);
2235 2236 2237 2238 2239
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2240 2241
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2242
					btrfs_header_nritems(mid);
2243
				btrfs_tree_unlock(mid);
2244
				free_extent_buffer(mid);
2245
			} else {
2246
				btrfs_tree_unlock(right);
2247
				free_extent_buffer(right);
2248 2249 2250
			}
			return 0;
		}
2251
		btrfs_tree_unlock(right);
2252
		free_extent_buffer(right);
2253 2254 2255 2256
	}
	return 1;
}

2257
/*
C
Chris Mason 已提交
2258 2259
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2260
 */
2261 2262 2263
static void reada_for_search(struct btrfs_root *root,
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2264
{
2265
	struct extent_buffer *node;
2266
	struct btrfs_disk_key disk_key;
2267 2268
	u32 nritems;
	u64 search;
2269
	u64 target;
2270
	u64 nread = 0;
2271
	struct extent_buffer *eb;
2272 2273 2274
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2275

2276
	if (level != 1)
2277 2278 2279
		return;

	if (!path->nodes[level])
2280 2281
		return;

2282
	node = path->nodes[level];
2283

2284
	search = btrfs_node_blockptr(node, slot);
2285
	blocksize = root->nodesize;
2286
	eb = btrfs_find_tree_block(root->fs_info, search);
2287 2288
	if (eb) {
		free_extent_buffer(eb);
2289 2290 2291
		return;
	}

2292
	target = search;
2293

2294
	nritems = btrfs_header_nritems(node);
2295
	nr = slot;
2296

C
Chris Mason 已提交
2297
	while (1) {
2298
		if (path->reada == READA_BACK) {
2299 2300 2301
			if (nr == 0)
				break;
			nr--;
2302
		} else if (path->reada == READA_FORWARD) {
2303 2304 2305
			nr++;
			if (nr >= nritems)
				break;
2306
		}
2307
		if (path->reada == READA_BACK && objectid) {
2308 2309 2310 2311
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2312
		search = btrfs_node_blockptr(node, nr);
2313 2314
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2315
			readahead_tree_block(root, search);
2316 2317 2318
			nread += blocksize;
		}
		nscan++;
2319
		if ((nread > 65536 || nscan > 32))
2320
			break;
2321 2322
	}
}
2323

J
Josef Bacik 已提交
2324 2325
static noinline void reada_for_balance(struct btrfs_root *root,
				       struct btrfs_path *path, int level)
2326 2327 2328 2329 2330 2331 2332 2333 2334
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2335
	parent = path->nodes[level + 1];
2336
	if (!parent)
J
Josef Bacik 已提交
2337
		return;
2338 2339

	nritems = btrfs_header_nritems(parent);
2340
	slot = path->slots[level + 1];
2341 2342 2343 2344

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2345
		eb = btrfs_find_tree_block(root->fs_info, block1);
2346 2347 2348 2349 2350 2351
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2352 2353 2354
			block1 = 0;
		free_extent_buffer(eb);
	}
2355
	if (slot + 1 < nritems) {
2356 2357
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2358
		eb = btrfs_find_tree_block(root->fs_info, block2);
2359
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2360 2361 2362
			block2 = 0;
		free_extent_buffer(eb);
	}
2363

J
Josef Bacik 已提交
2364
	if (block1)
2365
		readahead_tree_block(root, block1);
J
Josef Bacik 已提交
2366
	if (block2)
2367
		readahead_tree_block(root, block2);
2368 2369 2370
}


C
Chris Mason 已提交
2371
/*
C
Chris Mason 已提交
2372 2373 2374 2375
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2376
 *
C
Chris Mason 已提交
2377 2378 2379
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2380
 *
C
Chris Mason 已提交
2381 2382
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2383
 */
2384
static noinline void unlock_up(struct btrfs_path *path, int level,
2385 2386
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2387 2388 2389
{
	int i;
	int skip_level = level;
2390
	int no_skips = 0;
2391 2392 2393 2394 2395 2396 2397
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2398
		if (!no_skips && path->slots[i] == 0) {
2399 2400 2401
			skip_level = i + 1;
			continue;
		}
2402
		if (!no_skips && path->keep_locks) {
2403 2404 2405
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2406
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2407 2408 2409 2410
				skip_level = i + 1;
				continue;
			}
		}
2411 2412 2413
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2414 2415
		t = path->nodes[i];
		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2416
			btrfs_tree_unlock_rw(t, path->locks[i]);
2417
			path->locks[i] = 0;
2418 2419 2420 2421 2422
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2423 2424 2425 2426
		}
	}
}

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

J
Josef Bacik 已提交
2440
	if (path->keep_locks)
2441 2442 2443 2444
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2445
			continue;
2446
		if (!path->locks[i])
2447
			continue;
2448
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2449 2450 2451 2452
		path->locks[i] = 0;
	}
}

2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
read_block_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
		       struct extent_buffer **eb_ret, int level, int slot,
J
Jan Schmidt 已提交
2465
		       struct btrfs_key *key, u64 time_seq)
2466 2467 2468 2469 2470
{
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2471
	int ret;
2472 2473 2474 2475

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);

2476
	tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2477
	if (tmp) {
2478
		/* first we do an atomic uptodate check */
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
		ret = btrfs_read_buffer(tmp, gen);
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2497
		}
2498 2499 2500
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2501 2502 2503 2504 2505
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2506 2507 2508
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2509
	 */
2510 2511 2512
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2513
	free_extent_buffer(tmp);
2514
	if (p->reada != READA_NONE)
2515 2516
		reada_for_search(root, p, level, slot, key->objectid);

2517
	btrfs_release_path(p);
2518 2519

	ret = -EAGAIN;
2520
	tmp = read_tree_block(root, blocknr, 0);
2521
	if (!IS_ERR(tmp)) {
2522 2523 2524 2525 2526 2527
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2528
		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2529
			ret = -EIO;
2530
		free_extent_buffer(tmp);
2531 2532
	} else {
		ret = PTR_ERR(tmp);
2533 2534
	}
	return ret;
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2549 2550
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2551 2552 2553 2554 2555 2556
{
	int ret;
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
		int sret;

2557 2558 2559 2560 2561 2562
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2563
		btrfs_set_path_blocking(p);
J
Josef Bacik 已提交
2564
		reada_for_balance(root, p, level);
2565
		sret = split_node(trans, root, p, level);
2566
		btrfs_clear_path_blocking(p, NULL, 0);
2567 2568 2569 2570 2571 2572 2573 2574

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
C
Chris Mason 已提交
2575
		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2576 2577
		int sret;

2578 2579 2580 2581 2582 2583
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2584
		btrfs_set_path_blocking(p);
J
Josef Bacik 已提交
2585
		reada_for_balance(root, p, level);
2586
		sret = balance_level(trans, root, p, level);
2587
		btrfs_clear_path_blocking(p, NULL, 0);
2588 2589 2590 2591 2592 2593 2594

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2595
			btrfs_release_path(p);
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
static void key_search_validate(struct extent_buffer *b,
				struct btrfs_key *key,
				int level)
{
#ifdef CONFIG_BTRFS_ASSERT
	struct btrfs_disk_key disk_key;

	btrfs_cpu_key_to_disk(&disk_key, key);

	if (level == 0)
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_leaf, items[0].key),
		    sizeof(disk_key)));
	else
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_node, ptrs[0].key),
		    sizeof(disk_key)));
#endif
}

static int key_search(struct extent_buffer *b, struct btrfs_key *key,
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
		*prev_cmp = bin_search(b, key, level, slot);
		return *prev_cmp;
	}

	key_search_validate(b, key, level);
	*slot = 0;

	return 0;
}

2642
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2643 2644 2645 2646 2647 2648
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2649 2650

	ASSERT(path);
2651
	ASSERT(found_key);
2652 2653 2654 2655 2656 2657

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2658
	if (ret < 0)
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

C
Chris Mason 已提交
2677 2678 2679 2680 2681 2682
/*
 * look for key in the tree.  path is filled in with nodes along the way
 * if key is found, we return zero and you can find the item in the leaf
 * level of the path (level 0)
 *
 * If the key isn't found, the path points to the slot where it should
C
Chris Mason 已提交
2683 2684
 * be inserted, and 1 is returned.  If there are other errors during the
 * search a negative error number is returned.
C
Chris Mason 已提交
2685 2686 2687 2688
 *
 * if ins_len > 0, nodes and leaves will be split as we walk down the
 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
 * possible)
C
Chris Mason 已提交
2689
 */
2690 2691 2692
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_key *key, struct btrfs_path *p, int
		      ins_len, int cow)
2693
{
2694
	struct extent_buffer *b;
2695 2696
	int slot;
	int ret;
2697
	int err;
2698
	int level;
2699
	int lowest_unlock = 1;
2700 2701 2702
	int root_lock;
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2703
	u8 lowest_level = 0;
2704
	int min_write_lock_level;
2705
	int prev_cmp;
2706

2707
	lowest_level = p->lowest_level;
2708
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2709
	WARN_ON(p->nodes[0] != NULL);
2710
	BUG_ON(!cow && ins_len);
2711

2712
	if (ins_len < 0) {
2713
		lowest_unlock = 2;
2714

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2731
	if (cow && (p->keep_locks || p->lowest_level))
2732 2733
		write_lock_level = BTRFS_MAX_LEVEL;

2734 2735
	min_write_lock_level = write_lock_level;

2736
again:
2737
	prev_cmp = -1;
2738 2739 2740 2741 2742
	/*
	 * we try very hard to do read locks on the root
	 */
	root_lock = BTRFS_READ_LOCK;
	level = 0;
2743
	if (p->search_commit_root) {
2744 2745 2746 2747
		/*
		 * the commit roots are read only
		 * so we always do read locks
		 */
2748 2749
		if (p->need_commit_sem)
			down_read(&root->fs_info->commit_root_sem);
2750 2751
		b = root->commit_root;
		extent_buffer_get(b);
2752
		level = btrfs_header_level(b);
2753 2754
		if (p->need_commit_sem)
			up_read(&root->fs_info->commit_root_sem);
2755
		if (!p->skip_locking)
2756
			btrfs_tree_read_lock(b);
2757
	} else {
2758
		if (p->skip_locking) {
2759
			b = btrfs_root_node(root);
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
			level = btrfs_header_level(b);
		} else {
			/* we don't know the level of the root node
			 * until we actually have it read locked
			 */
			b = btrfs_read_lock_root_node(root);
			level = btrfs_header_level(b);
			if (level <= write_lock_level) {
				/* whoops, must trade for write lock */
				btrfs_tree_read_unlock(b);
				free_extent_buffer(b);
				b = btrfs_lock_root_node(root);
				root_lock = BTRFS_WRITE_LOCK;

				/* the level might have changed, check again */
				level = btrfs_header_level(b);
			}
		}
2778
	}
2779 2780 2781
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
2782

2783
	while (b) {
2784
		level = btrfs_header_level(b);
2785 2786 2787 2788 2789

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2790
		if (cow) {
2791 2792 2793 2794 2795
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2796 2797
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2798
				goto cow_done;
2799
			}
2800

2801 2802 2803 2804
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2805 2806 2807 2808
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2809 2810 2811 2812 2813
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2814
			btrfs_set_path_blocking(p);
2815 2816 2817 2818 2819
			err = btrfs_cow_block(trans, root, b,
					      p->nodes[level + 1],
					      p->slots[level + 1], &b);
			if (err) {
				ret = err;
2820
				goto done;
2821
			}
C
Chris Mason 已提交
2822
		}
2823
cow_done:
2824
		p->nodes[level] = b;
2825
		btrfs_clear_path_blocking(p, NULL, 0);
2826 2827 2828 2829 2830 2831 2832

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2833 2834 2835 2836
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2837
		 */
2838 2839 2840 2841 2842 2843 2844 2845
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2846

2847
		ret = key_search(b, key, level, &prev_cmp, &slot);
2848 2849
		if (ret < 0)
			goto done;
2850

2851
		if (level != 0) {
2852 2853 2854
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2855
				slot -= 1;
2856
			}
2857
			p->slots[level] = slot;
2858
			err = setup_nodes_for_search(trans, root, p, b, level,
2859
					     ins_len, &write_lock_level);
2860
			if (err == -EAGAIN)
2861
				goto again;
2862 2863
			if (err) {
				ret = err;
2864
				goto done;
2865
			}
2866 2867
			b = p->nodes[level];
			slot = p->slots[level];
2868

2869 2870 2871 2872 2873 2874
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
2875
			if (slot == 0 && ins_len &&
2876 2877 2878 2879 2880 2881
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2882 2883
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2884

2885
			if (level == lowest_level) {
2886 2887
				if (dec)
					p->slots[level]++;
2888
				goto done;
2889
			}
2890

2891
			err = read_block_for_search(trans, root, p,
J
Jan Schmidt 已提交
2892
						    &b, level, slot, key, 0);
2893
			if (err == -EAGAIN)
2894
				goto again;
2895 2896
			if (err) {
				ret = err;
2897
				goto done;
2898
			}
2899

2900
			if (!p->skip_locking) {
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_WRITE_LOCK);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
2912
					err = btrfs_tree_read_lock_atomic(b);
2913 2914 2915 2916 2917 2918 2919
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_READ_LOCK);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2920
				}
2921
				p->nodes[level] = b;
2922
			}
2923 2924
		} else {
			p->slots[level] = slot;
2925 2926
			if (ins_len > 0 &&
			    btrfs_leaf_free_space(root, b) < ins_len) {
2927 2928 2929 2930 2931 2932
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2933
				btrfs_set_path_blocking(p);
2934 2935
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2936
				btrfs_clear_path_blocking(p, NULL, 0);
2937

2938 2939 2940
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2941 2942
					goto done;
				}
C
Chris Mason 已提交
2943
			}
2944
			if (!p->search_for_split)
2945 2946
				unlock_up(p, level, lowest_unlock,
					  min_write_lock_level, &write_lock_level);
2947
			goto done;
2948 2949
		}
	}
2950 2951
	ret = 1;
done:
2952 2953 2954 2955
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2956 2957
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2958
	if (ret < 0 && !p->skip_release_on_error)
2959
		btrfs_release_path(p);
2960
	return ret;
2961 2962
}

J
Jan Schmidt 已提交
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
			  struct btrfs_path *p, u64 time_seq)
{
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2984
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;
		btrfs_clear_path_blocking(p, NULL, 0);

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

3012
		/*
3013
		 * Since we can unwind ebs we want to do a real search every
3014 3015 3016
		 * time.
		 */
		prev_cmp = -1;
3017
		ret = key_search(b, key, level, &prev_cmp, &slot);
J
Jan Schmidt 已提交
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

			err = read_block_for_search(NULL, root, p, &b, level,
						    slot, key, time_seq);
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
3044
			err = btrfs_tree_read_lock_atomic(b);
J
Jan Schmidt 已提交
3045 3046 3047 3048 3049 3050
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
				btrfs_clear_path_blocking(p, b,
							  BTRFS_READ_LOCK);
			}
3051
			b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3052 3053 3054 3055
			if (!b) {
				ret = -ENOMEM;
				goto done;
			}
J
Jan Schmidt 已提交
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
			       struct btrfs_key *key, struct btrfs_path *p,
			       int find_higher, int return_any)
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3123 3124 3125 3126 3127
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3128 3129 3130
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3131
				return 0;
3132
			}
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3144 3145 3146 3147 3148 3149
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3150 3151 3152 3153 3154 3155
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3156
 *
C
Chris Mason 已提交
3157
 */
3158 3159
static void fixup_low_keys(struct btrfs_fs_info *fs_info,
			   struct btrfs_path *path,
3160
			   struct btrfs_disk_key *key, int level)
3161 3162
{
	int i;
3163 3164
	struct extent_buffer *t;

C
Chris Mason 已提交
3165
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3166
		int tslot = path->slots[i];
3167
		if (!path->nodes[i])
3168
			break;
3169
		t = path->nodes[i];
3170
		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3171
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3172
		btrfs_mark_buffer_dirty(path->nodes[i]);
3173 3174 3175 3176 3177
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3178 3179 3180 3181 3182 3183
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3184 3185
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3186
			     struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3187 3188 3189 3190 3191 3192 3193 3194 3195
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3196
		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
Z
Zheng Yan 已提交
3197 3198 3199
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3200
		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
Z
Zheng Yan 已提交
3201 3202 3203 3204 3205 3206
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3207
		fixup_low_keys(fs_info, path, &disk_key, 1);
Z
Zheng Yan 已提交
3208 3209
}

C
Chris Mason 已提交
3210 3211
/*
 * try to push data from one node into the next node left in the
3212
 * tree.
C
Chris Mason 已提交
3213 3214 3215
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3216
 */
3217 3218
static int push_node_left(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root, struct extent_buffer *dst,
3219
			  struct extent_buffer *src, int empty)
3220 3221
{
	int push_items = 0;
3222 3223
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3224
	int ret = 0;
3225

3226 3227
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
C
Chris Mason 已提交
3228
	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3229 3230
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3231

3232
	if (!empty && src_nritems <= 8)
3233 3234
		return 1;

C
Chris Mason 已提交
3235
	if (push_items <= 0)
3236 3237
		return 1;

3238
	if (empty) {
3239
		push_items = min(src_nritems, push_items);
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3252

3253 3254 3255
	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
				   push_items);
	if (ret) {
3256
		btrfs_abort_transaction(trans, ret);
3257 3258
		return ret;
	}
3259 3260 3261
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3262
			   push_items * sizeof(struct btrfs_key_ptr));
3263

3264
	if (push_items < src_nritems) {
3265 3266 3267 3268
		/*
		 * don't call tree_mod_log_eb_move here, key removal was already
		 * fully logged by tree_mod_log_eb_copy above.
		 */
3269 3270 3271 3272 3273 3274 3275 3276 3277
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3278

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3291 3292 3293 3294
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root,
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3295 3296 3297 3298 3299 3300 3301
{
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3302 3303 3304
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3305 3306
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
C
Chris Mason 已提交
3307
	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
C
Chris Mason 已提交
3308
	if (push_items <= 0)
3309
		return 1;
3310

C
Chris Mason 已提交
3311
	if (src_nritems < 4)
3312
		return 1;
3313 3314 3315

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3316
	if (max_push >= src_nritems)
3317
		return 1;
Y
Yan 已提交
3318

3319 3320 3321
	if (max_push < push_items)
		push_items = max_push;

3322
	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3323 3324 3325 3326
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3327

3328 3329 3330
	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
				   src_nritems - push_items, push_items);
	if (ret) {
3331
		btrfs_abort_transaction(trans, ret);
3332 3333
		return ret;
	}
3334 3335 3336
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3337
			   push_items * sizeof(struct btrfs_key_ptr));
3338

3339 3340
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3341

3342 3343
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3344

C
Chris Mason 已提交
3345
	return ret;
3346 3347
}

C
Chris Mason 已提交
3348 3349 3350 3351
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3352 3353
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3354
 */
C
Chris Mason 已提交
3355
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3356
			   struct btrfs_root *root,
3357
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3358
{
3359
	u64 lower_gen;
3360 3361
	struct extent_buffer *lower;
	struct extent_buffer *c;
3362
	struct extent_buffer *old;
3363
	struct btrfs_disk_key lower_key;
C
Chris Mason 已提交
3364 3365 3366 3367

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3368 3369 3370 3371 3372 3373
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3374 3375
	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
				   &lower_key, level, root->node->start, 0);
3376 3377
	if (IS_ERR(c))
		return PTR_ERR(c);
3378

3379 3380
	root_add_used(root, root->nodesize);

3381
	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3382 3383
	btrfs_set_header_nritems(c, 1);
	btrfs_set_header_level(c, level);
3384
	btrfs_set_header_bytenr(c, c->start);
3385
	btrfs_set_header_generation(c, trans->transid);
3386
	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3387 3388
	btrfs_set_header_owner(c, root->root_key.objectid);

3389
	write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3390
			    BTRFS_FSID_SIZE);
3391 3392

	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3393
			    btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3394

3395
	btrfs_set_node_key(c, &lower_key, 0);
3396
	btrfs_set_node_blockptr(c, 0, lower->start);
3397
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3398
	WARN_ON(lower_gen != trans->transid);
3399 3400

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3401

3402
	btrfs_mark_buffer_dirty(c);
3403

3404
	old = root->node;
3405
	tree_mod_log_set_root_pointer(root, c, 0);
3406
	rcu_assign_pointer(root->node, c);
3407 3408 3409 3410

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3411
	add_root_to_dirty_list(root);
3412 3413
	extent_buffer_get(c);
	path->nodes[level] = c;
3414
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3415 3416 3417 3418
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3419 3420 3421
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3422
 *
C
Chris Mason 已提交
3423 3424 3425
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3426 3427 3428
static void insert_ptr(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *path,
		       struct btrfs_disk_key *key, u64 bytenr,
3429
		       int slot, int level)
C
Chris Mason 已提交
3430
{
3431
	struct extent_buffer *lower;
C
Chris Mason 已提交
3432
	int nritems;
3433
	int ret;
C
Chris Mason 已提交
3434 3435

	BUG_ON(!path->nodes[level]);
3436
	btrfs_assert_tree_locked(path->nodes[level]);
3437 3438
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3439
	BUG_ON(slot > nritems);
3440
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
C
Chris Mason 已提交
3441
	if (slot != nritems) {
3442
		if (level)
3443 3444
			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
					     slot, nritems - slot);
3445 3446 3447
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3448
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3449
	}
3450
	if (level) {
3451
		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3452
					      MOD_LOG_KEY_ADD, GFP_NOFS);
3453 3454
		BUG_ON(ret < 0);
	}
3455
	btrfs_set_node_key(lower, key, slot);
3456
	btrfs_set_node_blockptr(lower, slot, bytenr);
3457 3458
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3459 3460
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3461 3462
}

C
Chris Mason 已提交
3463 3464 3465 3466 3467 3468
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3469 3470
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3471
 */
3472 3473 3474
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3475
{
3476 3477 3478
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3479
	int mid;
C
Chris Mason 已提交
3480
	int ret;
3481
	u32 c_nritems;
3482

3483
	c = path->nodes[level];
3484
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3485
	if (c == root->node) {
3486
		/*
3487 3488
		 * trying to split the root, lets make a new one
		 *
3489
		 * tree mod log: We don't log_removal old root in
3490 3491 3492 3493 3494
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3495
		 */
3496
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3497 3498
		if (ret)
			return ret;
3499
	} else {
3500
		ret = push_nodes_for_insert(trans, root, path, level);
3501 3502
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3503
		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3504
			return 0;
3505 3506
		if (ret < 0)
			return ret;
3507
	}
3508

3509
	c_nritems = btrfs_header_nritems(c);
3510 3511
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3512

3513 3514
	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, level, c->start, 0);
3515 3516 3517
	if (IS_ERR(split))
		return PTR_ERR(split);

3518 3519
	root_add_used(root, root->nodesize);

3520
	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3521
	btrfs_set_header_level(split, btrfs_header_level(c));
3522
	btrfs_set_header_bytenr(split, split->start);
3523
	btrfs_set_header_generation(split, trans->transid);
3524
	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3525 3526
	btrfs_set_header_owner(split, root->root_key.objectid);
	write_extent_buffer(split, root->fs_info->fsid,
3527
			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
3528
	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3529
			    btrfs_header_chunk_tree_uuid(split),
3530
			    BTRFS_UUID_SIZE);
3531

3532 3533 3534
	ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
				   mid, c_nritems - mid);
	if (ret) {
3535
		btrfs_abort_transaction(trans, ret);
3536 3537
		return ret;
	}
3538 3539 3540 3541 3542 3543
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3544 3545
	ret = 0;

3546 3547 3548
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3549
	insert_ptr(trans, root, path, &disk_key, split->start,
3550
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3551

C
Chris Mason 已提交
3552
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3553
		path->slots[level] -= mid;
3554
		btrfs_tree_unlock(c);
3555 3556
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3557 3558
		path->slots[level + 1] += 1;
	} else {
3559
		btrfs_tree_unlock(split);
3560
		free_extent_buffer(split);
3561
	}
C
Chris Mason 已提交
3562
	return ret;
3563 3564
}

C
Chris Mason 已提交
3565 3566 3567 3568 3569
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3570
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3571
{
J
Josef Bacik 已提交
3572 3573 3574
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3575
	int data_len;
3576
	int nritems = btrfs_header_nritems(l);
3577
	int end = min(nritems, start + nr) - 1;
3578 3579 3580

	if (!nr)
		return 0;
J
Josef Bacik 已提交
3581
	btrfs_init_map_token(&token);
3582 3583
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3584 3585 3586
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3587
	data_len += sizeof(struct btrfs_item) * nr;
3588
	WARN_ON(data_len < 0);
3589 3590 3591
	return data_len;
}

3592 3593 3594 3595 3596
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
C
Chris Mason 已提交
3597
noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3598
				   struct extent_buffer *leaf)
3599
{
3600 3601 3602 3603
	int nritems = btrfs_header_nritems(leaf);
	int ret;
	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
	if (ret < 0) {
3604 3605
		btrfs_crit(root->fs_info,
			"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
J
Jens Axboe 已提交
3606
		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3607 3608 3609
		       leaf_space_used(leaf, 0, nritems), nritems);
	}
	return ret;
3610 3611
}

3612 3613 3614 3615
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3616 3617 3618 3619 3620
static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
				      struct btrfs_root *root,
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
3621 3622
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3623
{
3624
	struct extent_buffer *left = path->nodes[0];
3625
	struct extent_buffer *upper = path->nodes[1];
3626
	struct btrfs_map_token token;
3627
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3628
	int slot;
3629
	u32 i;
C
Chris Mason 已提交
3630 3631
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3632
	struct btrfs_item *item;
3633
	u32 nr;
3634
	u32 right_nritems;
3635
	u32 data_end;
3636
	u32 this_item_size;
C
Chris Mason 已提交
3637

3638 3639
	btrfs_init_map_token(&token);

3640 3641 3642
	if (empty)
		nr = 0;
	else
3643
		nr = max_t(u32, 1, min_slot);
3644

Z
Zheng Yan 已提交
3645
	if (path->slots[0] >= left_nritems)
3646
		push_space += data_size;
Z
Zheng Yan 已提交
3647

3648
	slot = path->slots[1];
3649 3650
	i = left_nritems - 1;
	while (i >= nr) {
3651
		item = btrfs_item_nr(i);
3652

Z
Zheng Yan 已提交
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
				int space = btrfs_leaf_free_space(root, left);
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3663
		if (path->slots[0] == i)
3664
			push_space += data_size;
3665 3666 3667

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3668
			break;
Z
Zheng Yan 已提交
3669

C
Chris Mason 已提交
3670
		push_items++;
3671
		push_space += this_item_size + sizeof(*item);
3672 3673 3674
		if (i == 0)
			break;
		i--;
3675
	}
3676

3677 3678
	if (push_items == 0)
		goto out_unlock;
3679

J
Julia Lawall 已提交
3680
	WARN_ON(!empty && push_items == left_nritems);
3681

C
Chris Mason 已提交
3682
	/* push left to right */
3683
	right_nritems = btrfs_header_nritems(right);
3684

3685
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
C
Chris Mason 已提交
3686
	push_space -= leaf_data_end(root, left);
3687

C
Chris Mason 已提交
3688
	/* make room in the right data area */
3689 3690 3691 3692 3693 3694
	data_end = leaf_data_end(root, right);
	memmove_extent_buffer(right,
			      btrfs_leaf_data(right) + data_end - push_space,
			      btrfs_leaf_data(right) + data_end,
			      BTRFS_LEAF_DATA_SIZE(root) - data_end);

C
Chris Mason 已提交
3695
	/* copy from the left data area */
3696
	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
C
Chris Mason 已提交
3697 3698 3699
		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
		     btrfs_leaf_data(left) + leaf_data_end(root, left),
		     push_space);
3700 3701 3702 3703 3704

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3705
	/* copy the items from left to right */
3706 3707 3708
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3709 3710

	/* update the item pointers */
3711
	right_nritems += push_items;
3712
	btrfs_set_header_nritems(right, right_nritems);
C
Chris Mason 已提交
3713
	push_space = BTRFS_LEAF_DATA_SIZE(root);
3714
	for (i = 0; i < right_nritems; i++) {
3715
		item = btrfs_item_nr(i);
3716 3717
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3718 3719
	}

3720
	left_nritems -= push_items;
3721
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3722

3723 3724
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3725
	else
3726
		clean_tree_block(trans, root->fs_info, left);
3727

3728
	btrfs_mark_buffer_dirty(right);
3729

3730 3731
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3732
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3733

C
Chris Mason 已提交
3734
	/* then fixup the leaf pointer in the path */
3735 3736
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3737
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3738
			clean_tree_block(trans, root->fs_info, path->nodes[0]);
3739
		btrfs_tree_unlock(path->nodes[0]);
3740 3741
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3742 3743
		path->slots[1] += 1;
	} else {
3744
		btrfs_tree_unlock(right);
3745
		free_extent_buffer(right);
C
Chris Mason 已提交
3746 3747
	}
	return 0;
3748 3749 3750 3751 3752

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3753
}
3754

3755 3756 3757 3758 3759 3760
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3761 3762 3763
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3764 3765
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3766 3767 3768
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
{
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

	right = read_node_slot(root, upper, slot + 1);
3789 3790 3791 3792 3793
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3794 3795
		return 1;

3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
	btrfs_tree_lock(right);
	btrfs_set_lock_blocking(right);

	free_space = btrfs_leaf_free_space(root, right);
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

	free_space = btrfs_leaf_free_space(root, right);
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
		 * no need to touch/dirty our left leaft. */
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3830 3831
	return __push_leaf_right(trans, root, path, min_data_size, empty,
				right, free_space, left_nritems, min_slot);
3832 3833 3834 3835 3836 3837
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3838 3839 3840
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3841 3842 3843 3844
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3845
 */
3846 3847 3848 3849
static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
3850 3851
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3852
{
3853 3854
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3855 3856 3857
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3858
	struct btrfs_item *item;
3859
	u32 old_left_nritems;
3860
	u32 nr;
C
Chris Mason 已提交
3861
	int ret = 0;
3862 3863
	u32 this_item_size;
	u32 old_left_item_size;
3864 3865 3866
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3867

3868
	if (empty)
3869
		nr = min(right_nritems, max_slot);
3870
	else
3871
		nr = min(right_nritems - 1, max_slot);
3872 3873

	for (i = 0; i < nr; i++) {
3874
		item = btrfs_item_nr(i);
3875

Z
Zheng Yan 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
				int space = btrfs_leaf_free_space(root, right);
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3886
		if (path->slots[0] == i)
3887
			push_space += data_size;
3888 3889 3890

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3891
			break;
3892

3893
		push_items++;
3894 3895 3896
		push_space += this_item_size + sizeof(*item);
	}

3897
	if (push_items == 0) {
3898 3899
		ret = 1;
		goto out;
3900
	}
3901
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3902

3903
	/* push data from right to left */
3904 3905 3906 3907 3908
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3909
	push_space = BTRFS_LEAF_DATA_SIZE(root) -
C
Chris Mason 已提交
3910
		     btrfs_item_offset_nr(right, push_items - 1);
3911 3912

	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
C
Chris Mason 已提交
3913 3914
		     leaf_data_end(root, left) - push_space,
		     btrfs_leaf_data(right) +
3915
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3916
		     push_space);
3917
	old_left_nritems = btrfs_header_nritems(left);
3918
	BUG_ON(old_left_nritems <= 0);
3919

3920
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3921
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3922
		u32 ioff;
3923

3924
		item = btrfs_item_nr(i);
3925

3926 3927 3928 3929
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
		      &token);
3930
	}
3931
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3932 3933

	/* fixup right node */
J
Julia Lawall 已提交
3934 3935
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3936
		       right_nritems);
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
						  leaf_data_end(root, right);
		memmove_extent_buffer(right, btrfs_leaf_data(right) +
				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
				      btrfs_leaf_data(right) +
				      leaf_data_end(root, right), push_space);

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3947 3948 3949
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3950
	}
3951 3952
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
C
Chris Mason 已提交
3953
	push_space = BTRFS_LEAF_DATA_SIZE(root);
3954
	for (i = 0; i < right_nritems; i++) {
3955
		item = btrfs_item_nr(i);
3956

3957 3958 3959
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3960
	}
3961

3962
	btrfs_mark_buffer_dirty(left);
3963 3964
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3965
	else
3966
		clean_tree_block(trans, root->fs_info, right);
3967

3968
	btrfs_item_key(right, &disk_key, 0);
3969
	fixup_low_keys(root->fs_info, path, &disk_key, 1);
3970 3971 3972 3973

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3974
		btrfs_tree_unlock(path->nodes[0]);
3975 3976
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3977 3978
		path->slots[1] -= 1;
	} else {
3979
		btrfs_tree_unlock(left);
3980
		free_extent_buffer(left);
3981 3982
		path->slots[0] -= push_items;
	}
3983
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3984
	return ret;
3985 3986 3987 3988
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3989 3990
}

3991 3992 3993
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3994 3995 3996 3997
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3998 3999
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4000 4001
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
{
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

	left = read_node_slot(root, path->nodes[1], slot - 1);
4023 4024 4025 4026 4027
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
4028 4029
		return 1;

4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
	btrfs_tree_lock(left);
	btrfs_set_lock_blocking(left);

	free_space = btrfs_leaf_free_space(root, left);
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4044 4045
		if (ret == -ENOSPC)
			ret = 1;
4046 4047 4048 4049 4050 4051 4052 4053 4054
		goto out;
	}

	free_space = btrfs_leaf_free_space(root, left);
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4055 4056 4057
	return __push_leaf_left(trans, root, path, min_data_size,
			       empty, left, free_space, right_nritems,
			       max_slot);
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4068 4069 4070 4071 4072 4073
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4074 4075 4076 4077 4078
{
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4079 4080 4081
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
		     data_copy_size, btrfs_leaf_data(l) +
		     leaf_data_end(root, l), data_copy_size);

	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
		      btrfs_item_end_nr(l, mid);

	for (i = 0; i < nritems; i++) {
4100
		struct btrfs_item *item = btrfs_item_nr(i);
4101 4102
		u32 ioff;

4103 4104 4105
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4106 4107 4108 4109
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4110
	insert_ptr(trans, root, path, &disk_key, right->start,
4111
		   path->slots[1] + 1, 1);
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4150
	int space_needed = data_size;
4151 4152

	slot = path->slots[0];
4153 4154
	if (slot < btrfs_header_nritems(path->nodes[0]))
		space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4155 4156 4157 4158 4159

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4160
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4180
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4192 4193 4194
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4195 4196
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4197
 */
4198 4199 4200 4201 4202
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_key *ins_key,
			       struct btrfs_path *path, int data_size,
			       int extend)
4203
{
4204
	struct btrfs_disk_key disk_key;
4205
	struct extent_buffer *l;
4206
	u32 nritems;
4207 4208
	int mid;
	int slot;
4209
	struct extent_buffer *right;
4210
	struct btrfs_fs_info *fs_info = root->fs_info;
4211
	int ret = 0;
C
Chris Mason 已提交
4212
	int wret;
4213
	int split;
4214
	int num_doubles = 0;
4215
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4216

4217 4218 4219 4220 4221 4222
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
		return -EOVERFLOW;

C
Chris Mason 已提交
4223
	/* first try to make some room by pushing left and right */
4224
	if (data_size && path->nodes[1]) {
4225 4226 4227 4228 4229 4230 4231
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
			space_needed -= btrfs_leaf_free_space(root, l);

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4232
		if (wret < 0)
C
Chris Mason 已提交
4233
			return wret;
4234
		if (wret) {
4235 4236
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4237 4238 4239 4240
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4241

4242
		/* did the pushes work? */
4243
		if (btrfs_leaf_free_space(root, l) >= data_size)
4244
			return 0;
4245
	}
C
Chris Mason 已提交
4246

C
Chris Mason 已提交
4247
	if (!path->nodes[1]) {
4248
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4249 4250 4251
		if (ret)
			return ret;
	}
4252
again:
4253
	split = 1;
4254
	l = path->nodes[0];
4255
	slot = path->slots[0];
4256
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4257
	mid = (nritems + 1) / 2;
4258

4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
			BTRFS_LEAF_DATA_SIZE(root)) {
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4270 4271
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
			BTRFS_LEAF_DATA_SIZE(root)) {
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4288 4289
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4290
					split = 2;
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4301 4302
	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, 0, l->start, 0);
4303
	if (IS_ERR(right))
4304
		return PTR_ERR(right);
4305

4306
	root_add_used(root, root->nodesize);
4307 4308

	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4309
	btrfs_set_header_bytenr(right, right->start);
4310
	btrfs_set_header_generation(right, trans->transid);
4311
	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4312 4313
	btrfs_set_header_owner(right, root->root_key.objectid);
	btrfs_set_header_level(right, 0);
4314
	write_extent_buffer(right, fs_info->fsid,
4315
			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
4316

4317
	write_extent_buffer(right, fs_info->chunk_tree_uuid,
4318
			    btrfs_header_chunk_tree_uuid(right),
4319
			    BTRFS_UUID_SIZE);
4320

4321 4322 4323
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4324
			insert_ptr(trans, root, path, &disk_key, right->start,
4325
				   path->slots[1] + 1, 1);
4326 4327 4328 4329 4330 4331 4332
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4333
			insert_ptr(trans, root, path, &disk_key, right->start,
4334
					  path->slots[1], 1);
4335 4336 4337 4338
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4339
			if (path->slots[1] == 0)
4340
				fixup_low_keys(fs_info, path, &disk_key, 1);
4341
		}
4342 4343
		btrfs_mark_buffer_dirty(right);
		return ret;
4344
	}
C
Chris Mason 已提交
4345

4346
	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4347

4348
	if (split == 2) {
4349 4350 4351
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4352
	}
4353

4354
	return 0;
4355 4356 4357 4358 4359 4360 4361

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
		return 0;
	goto again;
4362 4363
}

Y
Yan, Zheng 已提交
4364 4365 4366
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4367
{
Y
Yan, Zheng 已提交
4368
	struct btrfs_key key;
4369
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4370 4371 4372 4373
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4374 4375

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4376 4377 4378 4379 4380 4381 4382
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
		return 0;
4383 4384

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4385 4386 4387 4388 4389
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4390
	btrfs_release_path(path);
4391 4392

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4393 4394
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4395
	path->search_for_split = 0;
4396 4397
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4398 4399
	if (ret < 0)
		goto err;
4400

Y
Yan, Zheng 已提交
4401 4402
	ret = -EAGAIN;
	leaf = path->nodes[0];
4403 4404
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4405 4406
		goto err;

4407 4408 4409 4410
	/* the leaf has  changed, it now has room.  return now */
	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
		goto err;

Y
Yan, Zheng 已提交
4411 4412 4413 4414 4415
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4416 4417
	}

4418
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4419
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4420 4421
	if (ret)
		goto err;
4422

Y
Yan, Zheng 已提交
4423
	path->keep_locks = 0;
4424
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

static noinline int split_item(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path,
			       struct btrfs_key *new_key,
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4447 4448 4449
	leaf = path->nodes[0];
	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));

4450 4451
	btrfs_set_path_blocking(path);

4452
	item = btrfs_item_nr(path->slots[0]);
4453 4454 4455 4456
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4457 4458 4459
	if (!buf)
		return -ENOMEM;

4460 4461 4462
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4463
	slot = path->slots[0] + 1;
4464 4465 4466 4467
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4468 4469
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4470 4471 4472 4473 4474
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4475
	new_item = btrfs_item_nr(slot);
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

Y
Yan, Zheng 已提交
4497
	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4498
	kfree(buf);
Y
Yan, Zheng 已提交
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
		     struct btrfs_key *new_key,
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

	ret = split_item(trans, root, path, new_key, split_offset);
4530 4531 4532
	return ret;
}

Y
Yan, Zheng 已提交
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
			 struct btrfs_key *new_key)
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4558
	setup_items_for_insert(root, path, new_key, &item_size,
4559 4560
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4561 4562 4563 4564 4565 4566 4567 4568
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4569 4570 4571 4572 4573 4574
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4575
void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4576
			 u32 new_size, int from_end)
C
Chris Mason 已提交
4577 4578
{
	int slot;
4579 4580
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4581 4582 4583 4584 4585 4586
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4587 4588 4589
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4590

4591
	leaf = path->nodes[0];
4592 4593 4594 4595
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4596
		return;
C
Chris Mason 已提交
4597

4598
	nritems = btrfs_header_nritems(leaf);
C
Chris Mason 已提交
4599 4600
	data_end = leaf_data_end(root, leaf);

4601
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4602

C
Chris Mason 已提交
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4613
		u32 ioff;
4614
		item = btrfs_item_nr(i);
4615

4616 4617 4618
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4619
	}
4620

C
Chris Mason 已提交
4621
	/* shift the data */
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
	if (from_end) {
		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
			      data_end + size_diff, btrfs_leaf_data(leaf) +
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4645
				      (unsigned long)fi,
4646
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
			}
		}

		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
			      data_end + size_diff, btrfs_leaf_data(leaf) +
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4658
			fixup_low_keys(root->fs_info, path, &disk_key, 1);
4659
	}
4660

4661
	item = btrfs_item_nr(slot);
4662 4663
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4664

4665 4666
	if (btrfs_leaf_free_space(root, leaf) < 0) {
		btrfs_print_leaf(root, leaf);
C
Chris Mason 已提交
4667
		BUG();
4668
	}
C
Chris Mason 已提交
4669 4670
}

C
Chris Mason 已提交
4671
/*
S
Stefan Behrens 已提交
4672
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4673
 */
4674
void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4675
		       u32 data_size)
4676 4677
{
	int slot;
4678 4679
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4680 4681 4682 4683 4684
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4685 4686 4687
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4688

4689
	leaf = path->nodes[0];
4690

4691
	nritems = btrfs_header_nritems(leaf);
4692 4693
	data_end = leaf_data_end(root, leaf);

4694 4695
	if (btrfs_leaf_free_space(root, leaf) < data_size) {
		btrfs_print_leaf(root, leaf);
4696
		BUG();
4697
	}
4698
	slot = path->slots[0];
4699
	old_data = btrfs_item_end_nr(leaf, slot);
4700 4701

	BUG_ON(slot < 0);
4702 4703
	if (slot >= nritems) {
		btrfs_print_leaf(root, leaf);
4704
		btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
C
Chris Mason 已提交
4705
		       slot, nritems);
4706 4707
		BUG_ON(1);
	}
4708 4709 4710 4711 4712 4713

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4714
		u32 ioff;
4715
		item = btrfs_item_nr(i);
4716

4717 4718 4719
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4720
	}
4721

4722
	/* shift the data */
4723
	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4724 4725
		      data_end - data_size, btrfs_leaf_data(leaf) +
		      data_end, old_data - data_end);
4726

4727
	data_end = old_data;
4728
	old_size = btrfs_item_size_nr(leaf, slot);
4729
	item = btrfs_item_nr(slot);
4730 4731
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4732

4733 4734
	if (btrfs_leaf_free_space(root, leaf) < 0) {
		btrfs_print_leaf(root, leaf);
4735
		BUG();
4736
	}
4737 4738
}

C
Chris Mason 已提交
4739
/*
4740 4741 4742
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4743
 */
4744
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4745 4746
			    struct btrfs_key *cpu_key, u32 *data_size,
			    u32 total_data, u32 total_size, int nr)
4747
{
4748
	struct btrfs_item *item;
4749
	int i;
4750
	u32 nritems;
4751
	unsigned int data_end;
C
Chris Mason 已提交
4752
	struct btrfs_disk_key disk_key;
4753 4754
	struct extent_buffer *leaf;
	int slot;
4755 4756
	struct btrfs_map_token token;

4757 4758
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4759
		fixup_low_keys(root->fs_info, path, &disk_key, 1);
4760 4761 4762
	}
	btrfs_unlock_up_safe(path, 1);

4763
	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4764

4765
	leaf = path->nodes[0];
4766
	slot = path->slots[0];
C
Chris Mason 已提交
4767

4768
	nritems = btrfs_header_nritems(leaf);
C
Chris Mason 已提交
4769
	data_end = leaf_data_end(root, leaf);
4770

4771
	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4772
		btrfs_print_leaf(root, leaf);
4773
		btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4774
		       total_size, btrfs_leaf_free_space(root, leaf));
4775
		BUG();
4776
	}
4777

4778
	if (slot != nritems) {
4779
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4780

4781 4782
		if (old_data < data_end) {
			btrfs_print_leaf(root, leaf);
4783
			btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4784 4785 4786
			       slot, old_data, data_end);
			BUG_ON(1);
		}
4787 4788 4789 4790
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4791
		for (i = slot; i < nritems; i++) {
4792
			u32 ioff;
4793

4794
			item = btrfs_item_nr( i);
4795 4796 4797
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4798
		}
4799
		/* shift the items */
4800
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4801
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4802
			      (nritems - slot) * sizeof(struct btrfs_item));
4803 4804

		/* shift the data */
4805
		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4806
			      data_end - total_data, btrfs_leaf_data(leaf) +
C
Chris Mason 已提交
4807
			      data_end, old_data - data_end);
4808 4809
		data_end = old_data;
	}
4810

4811
	/* setup the item for the new data */
4812 4813 4814
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4815
		item = btrfs_item_nr(slot + i);
4816 4817
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4818
		data_end -= data_size[i];
4819
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4820
	}
4821

4822
	btrfs_set_header_nritems(leaf, nritems + nr);
4823
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4824

4825 4826
	if (btrfs_leaf_free_space(root, leaf) < 0) {
		btrfs_print_leaf(root, leaf);
4827
		BUG();
4828
	}
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
			    struct btrfs_key *cpu_key, u32 *data_size,
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4855
		return ret;
4856 4857 4858 4859

	slot = path->slots[0];
	BUG_ON(slot < 0);

4860
	setup_items_for_insert(root, path, cpu_key, data_size,
4861
			       total_data, total_size, nr);
4862
	return 0;
4863 4864 4865 4866 4867 4868
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4869 4870 4871
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_key *cpu_key, void *data, u32
		      data_size)
4872 4873
{
	int ret = 0;
C
Chris Mason 已提交
4874
	struct btrfs_path *path;
4875 4876
	struct extent_buffer *leaf;
	unsigned long ptr;
4877

C
Chris Mason 已提交
4878
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4879 4880
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4881
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4882
	if (!ret) {
4883 4884 4885 4886
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4887
	}
C
Chris Mason 已提交
4888
	btrfs_free_path(path);
C
Chris Mason 已提交
4889
	return ret;
4890 4891
}

C
Chris Mason 已提交
4892
/*
C
Chris Mason 已提交
4893
 * delete the pointer from a given node.
C
Chris Mason 已提交
4894
 *
C
Chris Mason 已提交
4895 4896
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4897
 */
4898 4899
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4900
{
4901
	struct extent_buffer *parent = path->nodes[level];
4902
	u32 nritems;
4903
	int ret;
4904

4905
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4906
	if (slot != nritems - 1) {
4907
		if (level)
4908 4909
			tree_mod_log_eb_move(root->fs_info, parent, slot,
					     slot + 1, nritems - slot - 1);
4910 4911 4912
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4913 4914
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4915 4916
	} else if (level) {
		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4917
					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4918
		BUG_ON(ret < 0);
4919
	}
4920

4921
	nritems--;
4922
	btrfs_set_header_nritems(parent, nritems);
4923
	if (nritems == 0 && parent == root->node) {
4924
		BUG_ON(btrfs_header_level(root->node) != 1);
4925
		/* just turn the root into a leaf and break */
4926
		btrfs_set_header_level(root->node, 0);
4927
	} else if (slot == 0) {
4928 4929 4930
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4931
		fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4932
	}
C
Chris Mason 已提交
4933
	btrfs_mark_buffer_dirty(parent);
4934 4935
}

4936 4937
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4938
 * path->nodes[1].
4939 4940 4941 4942 4943 4944 4945
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4946 4947 4948 4949
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4950
{
4951
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4952
	del_ptr(root, path, 1, path->slots[1]);
4953

4954 4955 4956 4957 4958 4959
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4960 4961
	root_sub_used(root, leaf->len);

4962
	extent_buffer_get(leaf);
4963
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4964
	free_extent_buffer_stale(leaf);
4965
}
C
Chris Mason 已提交
4966 4967 4968 4969
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4970 4971
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4972
{
4973 4974
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4975 4976
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4977 4978
	int ret = 0;
	int wret;
4979
	int i;
4980
	u32 nritems;
4981 4982 4983
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4984

4985
	leaf = path->nodes[0];
4986 4987 4988 4989 4990
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4991
	nritems = btrfs_header_nritems(leaf);
4992

4993
	if (slot + nr != nritems) {
C
Chris Mason 已提交
4994
		int data_end = leaf_data_end(root, leaf);
4995 4996

		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
C
Chris Mason 已提交
4997 4998
			      data_end + dsize,
			      btrfs_leaf_data(leaf) + data_end,
4999
			      last_off - data_end);
5000

5001
		for (i = slot + nr; i < nritems; i++) {
5002
			u32 ioff;
5003

5004
			item = btrfs_item_nr(i);
5005 5006 5007
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
5008
		}
5009

5010
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5011
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
5012
			      sizeof(struct btrfs_item) *
5013
			      (nritems - slot - nr));
5014
	}
5015 5016
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
5017

C
Chris Mason 已提交
5018
	/* delete the leaf if we've emptied it */
5019
	if (nritems == 0) {
5020 5021
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
5022
		} else {
5023
			btrfs_set_path_blocking(path);
5024
			clean_tree_block(trans, root->fs_info, leaf);
5025
			btrfs_del_leaf(trans, root, path, leaf);
5026
		}
5027
	} else {
5028
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
5029
		if (slot == 0) {
5030 5031 5032
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
5033
			fixup_low_keys(root->fs_info, path, &disk_key, 1);
C
Chris Mason 已提交
5034 5035
		}

C
Chris Mason 已提交
5036
		/* delete the leaf if it is mostly empty */
5037
		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5038 5039 5040 5041
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5042
			slot = path->slots[1];
5043 5044
			extent_buffer_get(leaf);

5045
			btrfs_set_path_blocking(path);
5046 5047
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5048
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5049
				ret = wret;
5050 5051 5052

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5053 5054
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5055
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5056 5057
					ret = wret;
			}
5058 5059

			if (btrfs_header_nritems(leaf) == 0) {
5060
				path->slots[1] = slot;
5061
				btrfs_del_leaf(trans, root, path, leaf);
5062
				free_extent_buffer(leaf);
5063
				ret = 0;
C
Chris Mason 已提交
5064
			} else {
5065 5066 5067 5068 5069 5070 5071
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5072
				free_extent_buffer(leaf);
5073
			}
5074
		} else {
5075
			btrfs_mark_buffer_dirty(leaf);
5076 5077
		}
	}
C
Chris Mason 已提交
5078
	return ret;
5079 5080
}

5081
/*
5082
 * search the tree again to find a leaf with lesser keys
5083 5084
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5085 5086 5087
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5088
 */
5089
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5090
{
5091 5092 5093
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5094

5095
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5096

5097
	if (key.offset > 0) {
5098
		key.offset--;
5099
	} else if (key.type > 0) {
5100
		key.type--;
5101 5102
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5103
		key.objectid--;
5104 5105 5106
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5107
		return 1;
5108
	}
5109

5110
	btrfs_release_path(path);
5111 5112 5113 5114 5115
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5127 5128
		return 0;
	return 1;
5129 5130
}

5131 5132
/*
 * A helper function to walk down the tree starting at min_key, and looking
5133 5134
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This does lock as it descends, and path->keep_locks should be set
 * to 1 by the caller.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5146 5147 5148 5149
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5150 5151 5152 5153
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5154
			 struct btrfs_path *path,
5155 5156 5157 5158 5159
			 u64 min_trans)
{
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5160
	int sret;
5161 5162 5163
	u32 nritems;
	int level;
	int ret = 1;
5164
	int keep_locks = path->keep_locks;
5165

5166
	path->keep_locks = 1;
5167
again:
5168
	cur = btrfs_read_lock_root_node(root);
5169
	level = btrfs_header_level(cur);
5170
	WARN_ON(path->nodes[level]);
5171
	path->nodes[level] = cur;
5172
	path->locks[level] = BTRFS_READ_LOCK;
5173 5174 5175 5176 5177

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5178
	while (1) {
5179 5180
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5181
		sret = bin_search(cur, min_key, level, &slot);
5182

5183 5184
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5185 5186
			if (slot >= nritems)
				goto find_next_key;
5187 5188 5189 5190 5191
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5192 5193
		if (sret && slot > 0)
			slot--;
5194
		/*
5195 5196
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5197
		 */
C
Chris Mason 已提交
5198
		while (slot < nritems) {
5199
			u64 gen;
5200

5201 5202 5203 5204 5205
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5206
			break;
5207
		}
5208
find_next_key:
5209 5210 5211 5212 5213
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5214
			path->slots[level] = slot;
5215
			btrfs_set_path_blocking(path);
5216
			sret = btrfs_find_next_key(root, path, min_key, level,
5217
						  min_trans);
5218
			if (sret == 0) {
5219
				btrfs_release_path(path);
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5232
		btrfs_set_path_blocking(path);
5233
		cur = read_node_slot(root, cur, slot);
5234 5235 5236 5237
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5238

5239
		btrfs_tree_read_lock(cur);
5240

5241
		path->locks[level - 1] = BTRFS_READ_LOCK;
5242
		path->nodes[level - 1] = cur;
5243
		unlock_up(path, level, 1, 0, NULL);
5244
		btrfs_clear_path_blocking(path, NULL, 0);
5245 5246
	}
out:
5247 5248 5249 5250
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5251
		memcpy(min_key, &found_key, sizeof(found_key));
5252
	}
5253 5254 5255
	return ret;
}

5256
static int tree_move_down(struct btrfs_root *root,
5257 5258 5259
			   struct btrfs_path *path,
			   int *level, int root_level)
{
5260 5261
	struct extent_buffer *eb;

5262
	BUG_ON(*level == 0);
5263 5264 5265 5266 5267
	eb = read_node_slot(root, path->nodes[*level], path->slots[*level]);
	if (IS_ERR(eb))
		return PTR_ERR(eb);

	path->nodes[*level - 1] = eb;
5268 5269
	path->slots[*level - 1] = 0;
	(*level)--;
5270
	return 0;
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
}

static int tree_move_next_or_upnext(struct btrfs_root *root,
				    struct btrfs_path *path,
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

5283
	while (path->slots[*level] >= nritems) {
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
static int tree_advance(struct btrfs_root *root,
			struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
			struct btrfs_key *key)
{
	int ret;

	if (*level == 0 || !allow_down) {
		ret = tree_move_next_or_upnext(root, path, level, root_level);
	} else {
5315
		ret = tree_move_down(root, path, level, root_level);
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

static int tree_compare_item(struct btrfs_root *left_root,
			     struct btrfs_path *left_path,
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

#define ADVANCE 1
#define ADVANCE_ONLY_NEXT -1

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
int btrfs_compare_trees(struct btrfs_root *left_root,
			struct btrfs_root *right_root,
			btrfs_changed_cb_t changed_cb, void *ctx)
{
	int ret;
	int cmp;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
5391 5392
	u64 left_gen;
	u64 right_gen;
5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

5405
	tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5406
	if (!tmp_buf) {
5407 5408 5409 5410 5411
		tmp_buf = vmalloc(left_root->nodesize);
		if (!tmp_buf) {
			ret = -ENOMEM;
			goto out;
		}
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

5455
	down_read(&left_root->fs_info->commit_root_sem);
5456 5457 5458 5459 5460 5461 5462 5463 5464
	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
	left_path->nodes[left_level] = left_root->commit_root;
	extent_buffer_get(left_path->nodes[left_level]);

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
	right_path->nodes[right_level] = right_root->commit_root;
	extent_buffer_get(right_path->nodes[right_level]);
5465
	up_read(&left_root->fs_info->commit_root_sem);
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
		if (advance_left && !left_end_reached) {
			ret = tree_advance(left_root, left_path, &left_level,
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
					&left_key);
5489
			if (ret == -1)
5490
				left_end_reached = ADVANCE;
5491 5492
			else if (ret < 0)
				goto out;
5493 5494 5495 5496 5497 5498 5499
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
			ret = tree_advance(right_root, right_path, &right_level,
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
					&right_key);
5500
			if (ret == -1)
5501
				right_end_reached = ADVANCE;
5502 5503
			else if (ret < 0)
				goto out;
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
5557
				enum btrfs_compare_tree_result result;
5558

5559
				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5560 5561
				ret = tree_compare_item(left_root, left_path,
						right_path, tmp_buf);
5562
				if (ret)
5563
					result = BTRFS_COMPARE_TREE_CHANGED;
5564
				else
5565
					result = BTRFS_COMPARE_TREE_SAME;
5566 5567
				ret = changed_cb(left_root, right_root,
						 left_path, right_path,
5568
						 &left_key, result, ctx);
5569 5570
				if (ret < 0)
					goto out;
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
5587 5588 5589 5590 5591 5592 5593 5594
				left_gen = btrfs_node_ptr_generation(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_gen = btrfs_node_ptr_generation(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr &&
				    left_gen == right_gen) {
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
5616
	kvfree(tmp_buf);
5617 5618 5619
	return ret;
}

5620 5621 5622
/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5623
 * tree based on the current path and the min_trans parameters.
5624 5625 5626 5627 5628 5629 5630
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5631
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5632
			struct btrfs_key *key, int level, u64 min_trans)
5633 5634 5635 5636
{
	int slot;
	struct extent_buffer *c;

5637
	WARN_ON(!path->keep_locks);
C
Chris Mason 已提交
5638
	while (level < BTRFS_MAX_LEVEL) {
5639 5640 5641 5642 5643
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5644
next:
5645
		if (slot >= btrfs_header_nritems(c)) {
5646 5647 5648 5649 5650
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5651
				return 1;
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664

			if (path->locks[level + 1]) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5665
			btrfs_release_path(path);
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5678
		}
5679

5680 5681
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5682 5683 5684 5685 5686 5687 5688
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5689
			btrfs_node_key_to_cpu(c, key, slot);
5690
		}
5691 5692 5693 5694 5695
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5696
/*
5697
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5698 5699
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5700
 */
C
Chris Mason 已提交
5701
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5702 5703 5704 5705 5706 5707
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5708 5709
{
	int slot;
5710
	int level;
5711
	struct extent_buffer *c;
5712
	struct extent_buffer *next;
5713 5714 5715
	struct btrfs_key key;
	u32 nritems;
	int ret;
5716
	int old_spinning = path->leave_spinning;
5717
	int next_rw_lock = 0;
5718 5719

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5720
	if (nritems == 0)
5721 5722
		return 1;

5723 5724 5725 5726
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5727
	next_rw_lock = 0;
5728
	btrfs_release_path(path);
5729

5730
	path->keep_locks = 1;
5731
	path->leave_spinning = 1;
5732

J
Jan Schmidt 已提交
5733 5734 5735 5736
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5737 5738 5739 5740 5741
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5742
	nritems = btrfs_header_nritems(path->nodes[0]);
5743 5744 5745 5746 5747 5748
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5749
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5750 5751
		if (ret == 0)
			path->slots[0]++;
5752
		ret = 0;
5753 5754
		goto done;
	}
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5773

C
Chris Mason 已提交
5774
	while (level < BTRFS_MAX_LEVEL) {
5775 5776 5777 5778
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5779

5780 5781
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5782
		if (slot >= btrfs_header_nritems(c)) {
5783
			level++;
5784 5785 5786 5787
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5788 5789
			continue;
		}
5790

5791
		if (next) {
5792
			btrfs_tree_unlock_rw(next, next_rw_lock);
5793
			free_extent_buffer(next);
5794
		}
5795

5796
		next = c;
5797
		next_rw_lock = path->locks[level];
5798
		ret = read_block_for_search(NULL, root, path, &next, level,
J
Jan Schmidt 已提交
5799
					    slot, &key, 0);
5800 5801
		if (ret == -EAGAIN)
			goto again;
5802

5803
		if (ret < 0) {
5804
			btrfs_release_path(path);
5805 5806 5807
			goto done;
		}

5808
		if (!path->skip_locking) {
5809
			ret = btrfs_try_tree_read_lock(next);
5810 5811 5812 5813 5814 5815 5816 5817
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5818
				free_extent_buffer(next);
5819 5820 5821 5822
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5823 5824
			if (!ret) {
				btrfs_set_path_blocking(path);
5825
				btrfs_tree_read_lock(next);
5826
				btrfs_clear_path_blocking(path, next,
5827
							  BTRFS_READ_LOCK);
5828
			}
5829
			next_rw_lock = BTRFS_READ_LOCK;
5830
		}
5831 5832 5833
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5834
	while (1) {
5835 5836
		level--;
		c = path->nodes[level];
5837
		if (path->locks[level])
5838
			btrfs_tree_unlock_rw(c, path->locks[level]);
5839

5840
		free_extent_buffer(c);
5841 5842
		path->nodes[level] = next;
		path->slots[level] = 0;
5843
		if (!path->skip_locking)
5844
			path->locks[level] = next_rw_lock;
5845 5846
		if (!level)
			break;
5847

5848
		ret = read_block_for_search(NULL, root, path, &next, level,
J
Jan Schmidt 已提交
5849
					    0, &key, 0);
5850 5851 5852
		if (ret == -EAGAIN)
			goto again;

5853
		if (ret < 0) {
5854
			btrfs_release_path(path);
5855 5856 5857
			goto done;
		}

5858
		if (!path->skip_locking) {
5859
			ret = btrfs_try_tree_read_lock(next);
5860 5861
			if (!ret) {
				btrfs_set_path_blocking(path);
5862
				btrfs_tree_read_lock(next);
5863
				btrfs_clear_path_blocking(path, next,
5864 5865
							  BTRFS_READ_LOCK);
			}
5866
			next_rw_lock = BTRFS_READ_LOCK;
5867
		}
5868
	}
5869
	ret = 0;
5870
done:
5871
	unlock_up(path, 0, 1, 0, NULL);
5872 5873 5874 5875 5876
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5877
}
5878

5879 5880 5881 5882 5883 5884
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5885 5886 5887 5888 5889 5890
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5891
	u32 nritems;
5892 5893
	int ret;

C
Chris Mason 已提交
5894
	while (1) {
5895
		if (path->slots[0] == 0) {
5896
			btrfs_set_path_blocking(path);
5897 5898 5899 5900 5901 5902 5903
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5904 5905 5906 5907 5908 5909
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5910
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5911 5912
		if (found_key.objectid < min_objectid)
			break;
5913 5914
		if (found_key.type == type)
			return 0;
5915 5916 5917
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5918 5919 5920
	}
	return 1;
}
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}