ich8lan.c 112.3 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
30
 * 82562G 10/100 Network Connection
31 32 33 34 35 36 37 38 39 40 41
 * 82562G-2 10/100 Network Connection
 * 82562GT 10/100 Network Connection
 * 82562GT-2 10/100 Network Connection
 * 82562V 10/100 Network Connection
 * 82562V-2 10/100 Network Connection
 * 82566DC-2 Gigabit Network Connection
 * 82566DC Gigabit Network Connection
 * 82566DM-2 Gigabit Network Connection
 * 82566DM Gigabit Network Connection
 * 82566MC Gigabit Network Connection
 * 82566MM Gigabit Network Connection
42 43
 * 82567LM Gigabit Network Connection
 * 82567LF Gigabit Network Connection
44
 * 82567V Gigabit Network Connection
45 46 47
 * 82567LM-2 Gigabit Network Connection
 * 82567LF-2 Gigabit Network Connection
 * 82567V-2 Gigabit Network Connection
48 49
 * 82567LF-3 Gigabit Network Connection
 * 82567LM-3 Gigabit Network Connection
50
 * 82567LM-4 Gigabit Network Connection
51 52 53 54
 * 82577LM Gigabit Network Connection
 * 82577LC Gigabit Network Connection
 * 82578DM Gigabit Network Connection
 * 82578DC Gigabit Network Connection
55 56
 * 82579LM Gigabit Network Connection
 * 82579V Gigabit Network Connection
57 58 59 60 61 62 63 64 65
 */

#include "e1000.h"

#define ICH_FLASH_GFPREG		0x0000
#define ICH_FLASH_HSFSTS		0x0004
#define ICH_FLASH_HSFCTL		0x0006
#define ICH_FLASH_FADDR			0x0008
#define ICH_FLASH_FDATA0		0x0010
66
#define ICH_FLASH_PR0			0x0074
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
#define ICH_FLASH_CYCLE_REPEAT_COUNT	10

#define ICH_CYCLE_READ			0
#define ICH_CYCLE_WRITE			2
#define ICH_CYCLE_ERASE			3

#define FLASH_GFPREG_BASE_MASK		0x1FFF
#define FLASH_SECTOR_ADDR_SHIFT		12

#define ICH_FLASH_SEG_SIZE_256		256
#define ICH_FLASH_SEG_SIZE_4K		4096
#define ICH_FLASH_SEG_SIZE_8K		8192
#define ICH_FLASH_SEG_SIZE_64K		65536


#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
88 89
/* FW established a valid mode */
#define E1000_ICH_FWSM_FW_VALID		0x00008000
90 91 92 93 94 95 96 97 98 99

#define E1000_ICH_MNG_IAMT_MODE		0x2

#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
				 (ID_LED_DEF1_OFF2 <<  8) | \
				 (ID_LED_DEF1_ON2  <<  4) | \
				 (ID_LED_DEF1_DEF2))

#define E1000_ICH_NVM_SIG_WORD		0x13
#define E1000_ICH_NVM_SIG_MASK		0xC000
100 101
#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
#define E1000_ICH_NVM_SIG_VALUE         0x80
102 103 104 105 106 107

#define E1000_ICH8_LAN_INIT_TIMEOUT	1500

#define E1000_FEXTNVM_SW_CONFIG		1
#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */

108 109 110 111
#define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
#define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
#define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3

112 113 114 115 116 117 118 119 120 121 122 123 124 125
#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL

#define E1000_ICH_RAR_ENTRIES		7

#define PHY_PAGE_SHIFT 5
#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
			   ((reg) & MAX_PHY_REG_ADDRESS))
#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */

#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200

126 127
#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */

128 129
#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */

130 131
/* SMBus Address Phy Register */
#define HV_SMB_ADDR            PHY_REG(768, 26)
132
#define HV_SMB_ADDR_MASK       0x007F
133 134 135
#define HV_SMB_ADDR_PEC_EN     0x0200
#define HV_SMB_ADDR_VALID      0x0080

136 137 138
/* PHY Power Management Control */
#define HV_PM_CTRL		PHY_REG(770, 17)

139
/* PHY Low Power Idle Control */
140 141 142
#define I82579_LPI_CTRL				PHY_REG(772, 20)
#define I82579_LPI_CTRL_ENABLE_MASK		0x6000
#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
143

144 145 146 147
/* EMI Registers */
#define I82579_EMI_ADDR         0x10
#define I82579_EMI_DATA         0x11
#define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
148 149
#define I82579_MSE_THRESHOLD    0x084F	/* Mean Square Error Threshold */
#define I82579_MSE_LINK_DOWN    0x2411	/* MSE count before dropping link */
150

151 152 153 154 155
/* Strapping Option Register - RO */
#define E1000_STRAP                     0x0000C
#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17

156 157 158
/* OEM Bits Phy Register */
#define HV_OEM_BITS            PHY_REG(768, 25)
#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
159
#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
160 161
#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */

162 163 164
#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */

165 166 167 168
/* KMRN Mode Control */
#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
#define HV_KMRN_MDIO_SLOW      0x0400

169 170 171 172 173
/* KMRN FIFO Control and Status */
#define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
/* Offset 04h HSFSTS */
union ich8_hws_flash_status {
	struct ich8_hsfsts {
		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
		u16 dael       :1; /* bit 2 Direct Access error Log */
		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
		u16 reserved1  :2; /* bit 13:6 Reserved */
		u16 reserved2  :6; /* bit 13:6 Reserved */
		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
	} hsf_status;
	u16 regval;
};

/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
/* Offset 06h FLCTL */
union ich8_hws_flash_ctrl {
	struct ich8_hsflctl {
		u16 flcgo      :1;   /* 0 Flash Cycle Go */
		u16 flcycle    :2;   /* 2:1 Flash Cycle */
		u16 reserved   :5;   /* 7:3 Reserved  */
		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
		u16 flockdn    :6;   /* 15:10 Reserved */
	} hsf_ctrl;
	u16 regval;
};

/* ICH Flash Region Access Permissions */
union ich8_hws_flash_regacc {
	struct ich8_flracc {
		u32 grra      :8; /* 0:7 GbE region Read Access */
		u32 grwa      :8; /* 8:15 GbE region Write Access */
		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
	} hsf_flregacc;
	u16 regval;
};

215 216 217 218 219 220 221 222 223 224 225 226 227
/* ICH Flash Protected Region */
union ich8_flash_protected_range {
	struct ich8_pr {
		u32 base:13;     /* 0:12 Protected Range Base */
		u32 reserved1:2; /* 13:14 Reserved */
		u32 rpe:1;       /* 15 Read Protection Enable */
		u32 limit:13;    /* 16:28 Protected Range Limit */
		u32 reserved2:2; /* 29:30 Reserved */
		u32 wpe:1;       /* 31 Write Protection Enable */
	} range;
	u32 regval;
};

228 229 230 231 232 233
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte);
234 235
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data);
236 237 238 239 240 241
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data);
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data);
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
242
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
243 244 245 246 247 248 249 250
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
251
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
252
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
253
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
254
static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
255
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
256 257
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
258
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
259
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
{
	return readw(hw->flash_address + reg);
}

static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
{
	return readl(hw->flash_address + reg);
}

static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
{
	writew(val, hw->flash_address + reg);
}

static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
{
	writel(val, hw->flash_address + reg);
}

#define er16flash(reg)		__er16flash(hw, (reg))
#define er32flash(reg)		__er32flash(hw, (reg))
283 284
#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
285

286 287 288 289 290 291 292 293
static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
{
	u32 ctrl;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
	ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
	ew32(CTRL, ctrl);
294
	e1e_flush();
295 296 297 298 299
	udelay(10);
	ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
	ew32(CTRL, ctrl);
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313
/**
 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;

	phy->addr                     = 1;
	phy->reset_delay_us           = 100;

314
	phy->ops.set_page             = e1000_set_page_igp;
315 316
	phy->ops.read_reg             = e1000_read_phy_reg_hv;
	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
317
	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
318 319
	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
320 321
	phy->ops.write_reg            = e1000_write_phy_reg_hv;
	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
322
	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
323 324
	phy->ops.power_up             = e1000_power_up_phy_copper;
	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
325 326
	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;

327
	if (!hw->phy.ops.check_reset_block(hw)) {
328 329 330 331 332 333 334
		u32 fwsm = er32(FWSM);

		/*
		 * The MAC-PHY interconnect may still be in SMBus mode after
		 * Sx->S0.  If resetting the PHY is not blocked, toggle the
		 * LANPHYPC Value bit to force the interconnect to PCIe mode.
		 */
335
		e1000_toggle_lanphypc_value_ich8lan(hw);
336
		msleep(50);
337 338 339 340 341

		/*
		 * Gate automatic PHY configuration by hardware on
		 * non-managed 82579
		 */
342 343
		if ((hw->mac.type == e1000_pch2lan) &&
		    !(fwsm & E1000_ICH_FWSM_FW_VALID))
344
			e1000_gate_hw_phy_config_ich8lan(hw, true);
345

346 347 348 349 350 351 352 353
		/*
		 * Reset the PHY before any access to it.  Doing so, ensures
		 * that the PHY is in a known good state before we read/write
		 * PHY registers.  The generic reset is sufficient here,
		 * because we haven't determined the PHY type yet.
		 */
		ret_val = e1000e_phy_hw_reset_generic(hw);
		if (ret_val)
354
			return ret_val;
355

356 357 358 359 360 361
		/* Ungate automatic PHY configuration on non-managed 82579 */
		if ((hw->mac.type == e1000_pch2lan) &&
		    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
			usleep_range(10000, 20000);
			e1000_gate_hw_phy_config_ich8lan(hw, false);
		}
362 363
	}

364
	phy->id = e1000_phy_unknown;
365 366 367 368
	switch (hw->mac.type) {
	default:
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
369
			return ret_val;
370 371 372 373
		if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
			break;
		/* fall-through */
	case e1000_pch2lan:
374
		/*
375
		 * In case the PHY needs to be in mdio slow mode,
376 377 378 379
		 * set slow mode and try to get the PHY id again.
		 */
		ret_val = e1000_set_mdio_slow_mode_hv(hw);
		if (ret_val)
380
			return ret_val;
381 382
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
383
			return ret_val;
384
		break;
385
	}
386 387
	phy->type = e1000e_get_phy_type_from_id(phy->id);

388 389
	switch (phy->type) {
	case e1000_phy_82577:
390
	case e1000_phy_82579:
391 392
		phy->ops.check_polarity = e1000_check_polarity_82577;
		phy->ops.force_speed_duplex =
393
		    e1000_phy_force_speed_duplex_82577;
394
		phy->ops.get_cable_length = e1000_get_cable_length_82577;
395 396
		phy->ops.get_info = e1000_get_phy_info_82577;
		phy->ops.commit = e1000e_phy_sw_reset;
397
		break;
398 399 400 401 402 403 404 405 406
	case e1000_phy_82578:
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
		phy->ops.get_info = e1000e_get_phy_info_m88;
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		break;
407 408 409 410 411
	}

	return ret_val;
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
/**
 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 i = 0;

	phy->addr			= 1;
	phy->reset_delay_us		= 100;

427 428 429
	phy->ops.power_up               = e1000_power_up_phy_copper;
	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;

430 431 432 433 434 435
	/*
	 * We may need to do this twice - once for IGP and if that fails,
	 * we'll set BM func pointers and try again
	 */
	ret_val = e1000e_determine_phy_address(hw);
	if (ret_val) {
436 437
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
438
		ret_val = e1000e_determine_phy_address(hw);
B
Bruce Allan 已提交
439 440
		if (ret_val) {
			e_dbg("Cannot determine PHY addr. Erroring out\n");
441
			return ret_val;
B
Bruce Allan 已提交
442
		}
443 444
	}

445 446 447
	phy->id = 0;
	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
	       (i++ < 100)) {
448
		usleep_range(1000, 2000);
449 450 451 452 453 454 455 456 457 458
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
			return ret_val;
	}

	/* Verify phy id */
	switch (phy->id) {
	case IGP03E1000_E_PHY_ID:
		phy->type = e1000_phy_igp_3;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
459 460
		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
461 462 463
		phy->ops.get_info = e1000e_get_phy_info_igp;
		phy->ops.check_polarity = e1000_check_polarity_igp;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
464 465 466 467 468 469
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		phy->type = e1000_phy_ife;
		phy->autoneg_mask = E1000_ALL_NOT_GIG;
470 471 472
		phy->ops.get_info = e1000_get_phy_info_ife;
		phy->ops.check_polarity = e1000_check_polarity_ife;
		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
473
		break;
474 475 476
	case BME1000_E_PHY_ID:
		phy->type = e1000_phy_bm;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
477 478 479
		phy->ops.read_reg = e1000e_read_phy_reg_bm;
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.commit = e1000e_phy_sw_reset;
480 481 482
		phy->ops.get_info = e1000e_get_phy_info_m88;
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
483
		break;
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific NVM parameters and function
 *  pointers.
 **/
static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
503
	u32 gfpreg, sector_base_addr, sector_end_addr;
504 505
	u16 i;

506
	/* Can't read flash registers if the register set isn't mapped. */
507
	if (!hw->flash_address) {
508
		e_dbg("ERROR: Flash registers not mapped\n");
509 510 511 512 513 514 515
		return -E1000_ERR_CONFIG;
	}

	nvm->type = e1000_nvm_flash_sw;

	gfpreg = er32flash(ICH_FLASH_GFPREG);

516 517
	/*
	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
518
	 * Add 1 to sector_end_addr since this sector is included in
519 520
	 * the overall size.
	 */
521 522 523 524 525 526
	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;

	/* flash_base_addr is byte-aligned */
	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;

527 528 529 530
	/*
	 * find total size of the NVM, then cut in half since the total
	 * size represents two separate NVM banks.
	 */
531 532 533 534 535 536 537 538 539 540
	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
				<< FLASH_SECTOR_ADDR_SHIFT;
	nvm->flash_bank_size /= 2;
	/* Adjust to word count */
	nvm->flash_bank_size /= sizeof(u16);

	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;

	/* Clear shadow ram */
	for (i = 0; i < nvm->word_size; i++) {
541
		dev_spec->shadow_ram[i].modified = false;
542 543 544 545 546 547 548 549 550 551 552 553 554
		dev_spec->shadow_ram[i].value    = 0xFFFF;
	}

	return 0;
}

/**
 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific MAC parameters and function
 *  pointers.
 **/
555
static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
556 557 558 559
{
	struct e1000_mac_info *mac = &hw->mac;

	/* Set media type function pointer */
560
	hw->phy.media_type = e1000_media_type_copper;
561 562 563 564 565 566 567

	/* Set mta register count */
	mac->mta_reg_count = 32;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
	if (mac->type == e1000_ich8lan)
		mac->rar_entry_count--;
568 569 570 571
	/* FWSM register */
	mac->has_fwsm = true;
	/* ARC subsystem not supported */
	mac->arc_subsystem_valid = false;
572 573
	/* Adaptive IFS supported */
	mac->adaptive_ifs = true;
574

575 576 577 578 579
	/* LED operations */
	switch (mac->type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
580 581
		/* check management mode */
		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
582
		/* ID LED init */
583
		mac->ops.id_led_init = e1000e_id_led_init_generic;
584 585
		/* blink LED */
		mac->ops.blink_led = e1000e_blink_led_generic;
586 587 588 589 590 591 592 593 594
		/* setup LED */
		mac->ops.setup_led = e1000e_setup_led_generic;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_ich8lan;
		mac->ops.led_off = e1000_led_off_ich8lan;
		break;
	case e1000_pchlan:
595
	case e1000_pch2lan:
596 597
		/* check management mode */
		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
598 599 600 601 602 603 604 605 606 607 608 609 610 611
		/* ID LED init */
		mac->ops.id_led_init = e1000_id_led_init_pchlan;
		/* setup LED */
		mac->ops.setup_led = e1000_setup_led_pchlan;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_pchlan;
		mac->ops.led_off = e1000_led_off_pchlan;
		break;
	default:
		break;
	}

612 613
	/* Enable PCS Lock-loss workaround for ICH8 */
	if (mac->type == e1000_ich8lan)
614
		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
615

616 617 618 619
	/* Gate automatic PHY configuration by hardware on managed 82579 */
	if ((mac->type == e1000_pch2lan) &&
	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		e1000_gate_hw_phy_config_ich8lan(hw, true);
620

621 622 623
	return 0;
}

624 625 626 627 628 629 630 631 632 633 634 635 636
/**
 *  e1000_set_eee_pchlan - Enable/disable EEE support
 *  @hw: pointer to the HW structure
 *
 *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
 *  the LPI Control register will remain set only if/when link is up.
 **/
static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 phy_reg;

	if (hw->phy.type != e1000_phy_82579)
637
		return 0;
638 639 640

	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
	if (ret_val)
641
		return ret_val;
642 643 644 645 646 647

	if (hw->dev_spec.ich8lan.eee_disable)
		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
	else
		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;

648
	return e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
649 650
}

651 652 653 654 655 656 657 658 659 660 661 662 663
/**
 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 *  @hw: pointer to the HW structure
 *
 *  Checks to see of the link status of the hardware has changed.  If a
 *  change in link status has been detected, then we read the PHY registers
 *  to get the current speed/duplex if link exists.
 **/
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	bool link;
664
	u16 phy_reg;
665 666 667 668 669 670 671

	/*
	 * We only want to go out to the PHY registers to see if Auto-Neg
	 * has completed and/or if our link status has changed.  The
	 * get_link_status flag is set upon receiving a Link Status
	 * Change or Rx Sequence Error interrupt.
	 */
672 673
	if (!mac->get_link_status)
		return 0;
674 675 676 677 678 679 680 681

	/*
	 * First we want to see if the MII Status Register reports
	 * link.  If so, then we want to get the current speed/duplex
	 * of the PHY.
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
682
		return ret_val;
683

684 685 686
	if (hw->mac.type == e1000_pchlan) {
		ret_val = e1000_k1_gig_workaround_hv(hw, link);
		if (ret_val)
687
			return ret_val;
688 689
	}

690
	if (!link)
691
		return 0; /* No link detected */
692 693 694

	mac->get_link_status = false;

695 696
	switch (hw->mac.type) {
	case e1000_pch2lan:
697 698
		ret_val = e1000_k1_workaround_lv(hw);
		if (ret_val)
699
			return ret_val;
700 701 702 703 704
		/* fall-thru */
	case e1000_pchlan:
		if (hw->phy.type == e1000_phy_82578) {
			ret_val = e1000_link_stall_workaround_hv(hw);
			if (ret_val)
705
				return ret_val;
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
		}

		/*
		 * Workaround for PCHx parts in half-duplex:
		 * Set the number of preambles removed from the packet
		 * when it is passed from the PHY to the MAC to prevent
		 * the MAC from misinterpreting the packet type.
		 */
		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;

		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);

		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
		break;
	default:
		break;
724 725
	}

726 727 728 729 730 731
	/*
	 * Check if there was DownShift, must be checked
	 * immediately after link-up
	 */
	e1000e_check_downshift(hw);

732 733 734
	/* Enable/Disable EEE after link up */
	ret_val = e1000_set_eee_pchlan(hw);
	if (ret_val)
735
		return ret_val;
736

737 738 739 740
	/*
	 * If we are forcing speed/duplex, then we simply return since
	 * we have already determined whether we have link or not.
	 */
741 742
	if (!mac->autoneg)
		return -E1000_ERR_CONFIG;
743 744 745 746 747 748

	/*
	 * Auto-Neg is enabled.  Auto Speed Detection takes care
	 * of MAC speed/duplex configuration.  So we only need to
	 * configure Collision Distance in the MAC.
	 */
749
	mac->ops.config_collision_dist(hw);
750 751 752 753 754 755 756 757 758

	/*
	 * Configure Flow Control now that Auto-Neg has completed.
	 * First, we need to restore the desired flow control
	 * settings because we may have had to re-autoneg with a
	 * different link partner.
	 */
	ret_val = e1000e_config_fc_after_link_up(hw);
	if (ret_val)
759
		e_dbg("Error configuring flow control\n");
760 761 762 763

	return ret_val;
}

J
Jeff Kirsher 已提交
764
static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
765 766 767 768
{
	struct e1000_hw *hw = &adapter->hw;
	s32 rc;

769
	rc = e1000_init_mac_params_ich8lan(hw);
770 771 772 773 774 775 776
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_ich8lan(hw);
	if (rc)
		return rc;

777 778 779 780
	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
781
		rc = e1000_init_phy_params_ich8lan(hw);
782 783 784 785 786 787 788 789
		break;
	case e1000_pchlan:
	case e1000_pch2lan:
		rc = e1000_init_phy_params_pchlan(hw);
		break;
	default:
		break;
	}
790 791 792
	if (rc)
		return rc;

793 794 795 796 797 798 799
	/*
	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
	 */
	if ((adapter->hw.phy.type == e1000_phy_ife) ||
	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
800 801
		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
802 803

		hw->mac.ops.blink_led = NULL;
804 805
	}

806
	if ((adapter->hw.mac.type == e1000_ich8lan) &&
807
	    (adapter->hw.phy.type != e1000_phy_ife))
808 809
		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;

810 811 812 813 814
	/* Enable workaround for 82579 w/ ME enabled */
	if ((adapter->hw.mac.type == e1000_pch2lan) &&
	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;

815 816 817 818
	/* Disable EEE by default until IEEE802.3az spec is finalized */
	if (adapter->flags2 & FLAG2_HAS_EEE)
		adapter->hw.dev_spec.ich8lan.eee_disable = true;

819 820 821
	return 0;
}

822 823
static DEFINE_MUTEX(nvm_mutex);

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
/**
 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Acquires the mutex for performing NVM operations.
 **/
static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
{
	mutex_lock(&nvm_mutex);

	return 0;
}

/**
 *  e1000_release_nvm_ich8lan - Release NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Releases the mutex used while performing NVM operations.
 **/
static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
{
	mutex_unlock(&nvm_mutex);
}

848 849 850 851
/**
 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
 *  @hw: pointer to the HW structure
 *
852 853
 *  Acquires the software control flag for performing PHY and select
 *  MAC CSR accesses.
854 855 856
 **/
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
{
857 858
	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = 0;
859

860 861
	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
			     &hw->adapter->state)) {
862
		e_dbg("contention for Phy access\n");
863 864
		return -E1000_ERR_PHY;
	}
865

866 867
	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
868 869
		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
			break;
870

871 872 873 874 875
		mdelay(1);
		timeout--;
	}

	if (!timeout) {
876
		e_dbg("SW has already locked the resource.\n");
877 878 879 880
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

881
	timeout = SW_FLAG_TIMEOUT;
882 883 884 885 886 887 888 889

	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
	ew32(EXTCNF_CTRL, extcnf_ctrl);

	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
			break;
890

891 892 893 894 895
		mdelay(1);
		timeout--;
	}

	if (!timeout) {
896
		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
897
		      er32(FWSM), extcnf_ctrl);
898 899
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
900 901
		ret_val = -E1000_ERR_CONFIG;
		goto out;
902 903
	}

904 905
out:
	if (ret_val)
906
		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
907 908

	return ret_val;
909 910 911 912 913 914
}

/**
 *  e1000_release_swflag_ich8lan - Release software control flag
 *  @hw: pointer to the HW structure
 *
915 916
 *  Releases the software control flag for performing PHY and select
 *  MAC CSR accesses.
917 918 919 920 921 922
 **/
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;

	extcnf_ctrl = er32(EXTCNF_CTRL);
923 924 925 926 927 928 929

	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
	} else {
		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
	}
930

931
	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
932 933
}

934 935 936 937
/**
 *  e1000_check_mng_mode_ich8lan - Checks management mode
 *  @hw: pointer to the HW structure
 *
938
 *  This checks if the adapter has any manageability enabled.
939 940 941 942 943
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
{
944 945 946
	u32 fwsm;

	fwsm = er32(FWSM);
947 948 949 950
	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
	       ((fwsm & E1000_FWSM_MODE_MASK) ==
		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
}
951

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
/**
 *  e1000_check_mng_mode_pchlan - Checks management mode
 *  @hw: pointer to the HW structure
 *
 *  This checks if the adapter has iAMT enabled.
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);
	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
967 968
}

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
/**
 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Checks if firmware is blocking the reset of the PHY.
 *  This is a function pointer entry point only called by
 *  reset routines.
 **/
static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);

	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
}

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
/**
 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
 *  @hw: pointer to the HW structure
 *
 *  Assumes semaphore already acquired.
 *
 **/
static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
{
	u16 phy_data;
	u32 strap = er32(STRAP);
	s32 ret_val = 0;

	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;

	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
	if (ret_val)
1003
		return ret_val;
1004 1005 1006 1007 1008

	phy_data &= ~HV_SMB_ADDR_MASK;
	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;

1009
	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1010 1011
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
/**
 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
 *  @hw:   pointer to the HW structure
 *
 *  SW should configure the LCD from the NVM extended configuration region
 *  as a workaround for certain parts.
 **/
static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1023
	s32 ret_val = 0;
1024 1025 1026 1027 1028 1029 1030 1031 1032
	u16 word_addr, reg_data, reg_addr, phy_page = 0;

	/*
	 * Initialize the PHY from the NVM on ICH platforms.  This
	 * is needed due to an issue where the NVM configuration is
	 * not properly autoloaded after power transitions.
	 * Therefore, after each PHY reset, we will load the
	 * configuration data out of the NVM manually.
	 */
1033 1034 1035 1036 1037
	switch (hw->mac.type) {
	case e1000_ich8lan:
		if (phy->type != e1000_phy_igp_3)
			return ret_val;

B
Bruce Allan 已提交
1038 1039
		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1040 1041 1042 1043 1044
			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
			break;
		}
		/* Fall-thru */
	case e1000_pchlan:
1045
	case e1000_pch2lan:
1046
		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1047 1048 1049 1050 1051 1052 1053 1054
		break;
	default:
		return ret_val;
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;
1055 1056 1057

	data = er32(FEXTNVM);
	if (!(data & sw_cfg_mask))
1058
		goto release;
1059

1060 1061 1062 1063 1064
	/*
	 * Make sure HW does not configure LCD from PHY
	 * extended configuration before SW configuration
	 */
	data = er32(EXTCNF_CTRL);
1065 1066
	if (!(hw->mac.type == e1000_pch2lan)) {
		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1067
			goto release;
1068
	}
1069 1070 1071 1072 1073

	cnf_size = er32(EXTCNF_SIZE);
	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
	if (!cnf_size)
1074
		goto release;
1075 1076 1077 1078

	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;

1079 1080 1081
	if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
	    (hw->mac.type == e1000_pchlan)) ||
	     (hw->mac.type == e1000_pch2lan)) {
1082
		/*
1083 1084 1085 1086
		 * HW configures the SMBus address and LEDs when the
		 * OEM and LCD Write Enable bits are set in the NVM.
		 * When both NVM bits are cleared, SW will configure
		 * them instead.
1087
		 */
1088
		ret_val = e1000_write_smbus_addr(hw);
1089
		if (ret_val)
1090
			goto release;
1091

1092 1093 1094 1095
		data = er32(LEDCTL);
		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
							(u16)data);
		if (ret_val)
1096
			goto release;
1097
	}
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107
	/* Configure LCD from extended configuration region. */

	/* cnf_base_addr is in DWORD */
	word_addr = (u16)(cnf_base_addr << 1);

	for (i = 0; i < cnf_size; i++) {
		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
					 &reg_data);
		if (ret_val)
1108
			goto release;
1109 1110 1111 1112

		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
					 1, &reg_addr);
		if (ret_val)
1113
			goto release;
1114 1115 1116 1117 1118

		/* Save off the PHY page for future writes. */
		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
			phy_page = reg_data;
			continue;
1119
		}
1120 1121 1122 1123 1124 1125 1126

		reg_addr &= PHY_REG_MASK;
		reg_addr |= phy_page;

		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
						    reg_data);
		if (ret_val)
1127
			goto release;
1128 1129
	}

1130
release:
1131
	hw->phy.ops.release(hw);
1132 1133 1134
	return ret_val;
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
/**
 *  e1000_k1_gig_workaround_hv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *  @link: link up bool flag
 *
 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
 *  If link is down, the function will restore the default K1 setting located
 *  in the NVM.
 **/
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
{
	s32 ret_val = 0;
	u16 status_reg = 0;
	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;

	if (hw->mac.type != e1000_pchlan)
1152
		return 0;
1153 1154

	/* Wrap the whole flow with the sw flag */
1155
	ret_val = hw->phy.ops.acquire(hw);
1156
	if (ret_val)
1157
		return ret_val;
1158 1159 1160 1161

	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
	if (link) {
		if (hw->phy.type == e1000_phy_82578) {
1162
			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
			                                          &status_reg);
			if (ret_val)
				goto release;

			status_reg &= BM_CS_STATUS_LINK_UP |
			              BM_CS_STATUS_RESOLVED |
			              BM_CS_STATUS_SPEED_MASK;

			if (status_reg == (BM_CS_STATUS_LINK_UP |
			                   BM_CS_STATUS_RESOLVED |
			                   BM_CS_STATUS_SPEED_1000))
				k1_enable = false;
		}

		if (hw->phy.type == e1000_phy_82577) {
1178
			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
			                                          &status_reg);
			if (ret_val)
				goto release;

			status_reg &= HV_M_STATUS_LINK_UP |
			              HV_M_STATUS_AUTONEG_COMPLETE |
			              HV_M_STATUS_SPEED_MASK;

			if (status_reg == (HV_M_STATUS_LINK_UP |
			                   HV_M_STATUS_AUTONEG_COMPLETE |
			                   HV_M_STATUS_SPEED_1000))
				k1_enable = false;
		}

		/* Link stall fix for link up */
1194
		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1195 1196 1197 1198 1199 1200
		                                           0x0100);
		if (ret_val)
			goto release;

	} else {
		/* Link stall fix for link down */
1201
		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1202 1203 1204 1205 1206 1207 1208 1209
		                                           0x4100);
		if (ret_val)
			goto release;
	}

	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);

release:
1210
	hw->phy.ops.release(hw);
1211

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	return ret_val;
}

/**
 *  e1000_configure_k1_ich8lan - Configure K1 power state
 *  @hw: pointer to the HW structure
 *  @enable: K1 state to configure
 *
 *  Configure the K1 power state based on the provided parameter.
 *  Assumes semaphore already acquired.
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 **/
1225
s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1226 1227 1228 1229 1230 1231 1232
{
	s32 ret_val = 0;
	u32 ctrl_reg = 0;
	u32 ctrl_ext = 0;
	u32 reg = 0;
	u16 kmrn_reg = 0;

1233 1234
	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
					      &kmrn_reg);
1235
	if (ret_val)
1236
		return ret_val;
1237 1238 1239 1240 1241 1242

	if (k1_enable)
		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
	else
		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;

1243 1244
	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
					       kmrn_reg);
1245
	if (ret_val)
1246
		return ret_val;
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

	udelay(20);
	ctrl_ext = er32(CTRL_EXT);
	ctrl_reg = er32(CTRL);

	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
	reg |= E1000_CTRL_FRCSPD;
	ew32(CTRL, reg);

	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1257
	e1e_flush();
1258 1259 1260
	udelay(20);
	ew32(CTRL, ctrl_reg);
	ew32(CTRL_EXT, ctrl_ext);
1261
	e1e_flush();
1262 1263
	udelay(20);

1264
	return 0;
1265 1266
}

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
/**
 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
 *  @hw:       pointer to the HW structure
 *  @d0_state: boolean if entering d0 or d3 device state
 *
 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
 **/
static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
{
	s32 ret_val = 0;
	u32 mac_reg;
	u16 oem_reg;

1282
	if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1283 1284
		return ret_val;

1285
	ret_val = hw->phy.ops.acquire(hw);
1286 1287 1288
	if (ret_val)
		return ret_val;

1289 1290 1291
	if (!(hw->mac.type == e1000_pch2lan)) {
		mac_reg = er32(EXTCNF_CTRL);
		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1292
			goto release;
1293
	}
1294 1295 1296

	mac_reg = er32(FEXTNVM);
	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1297
		goto release;
1298 1299 1300

	mac_reg = er32(PHY_CTRL);

1301
	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1302
	if (ret_val)
1303
		goto release;
1304 1305 1306 1307 1308 1309 1310 1311 1312

	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);

	if (d0_state) {
		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
			oem_reg |= HV_OEM_BITS_GBE_DIS;

		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
			oem_reg |= HV_OEM_BITS_LPLU;
B
Bruce Allan 已提交
1313 1314

		/* Set Restart auto-neg to activate the bits */
1315
		if (!hw->phy.ops.check_reset_block(hw))
B
Bruce Allan 已提交
1316
			oem_reg |= HV_OEM_BITS_RESTART_AN;
1317
	} else {
B
Bruce Allan 已提交
1318 1319
		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1320 1321
			oem_reg |= HV_OEM_BITS_GBE_DIS;

B
Bruce Allan 已提交
1322 1323
		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
			       E1000_PHY_CTRL_NOND0A_LPLU))
1324 1325
			oem_reg |= HV_OEM_BITS_LPLU;
	}
B
Bruce Allan 已提交
1326

1327
	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1328

1329
release:
1330
	hw->phy.ops.release(hw);
1331 1332 1333 1334 1335

	return ret_val;
}


1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
/**
 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
 *  @hw:   pointer to the HW structure
 **/
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
	if (ret_val)
		return ret_val;

	data |= HV_KMRN_MDIO_SLOW;

	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);

	return ret_val;
}

1356 1357 1358 1359 1360 1361 1362
/**
 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
1363
	u16 phy_data;
1364 1365

	if (hw->mac.type != e1000_pchlan)
1366
		return 0;
1367

1368 1369 1370 1371
	/* Set MDIO slow mode before any other MDIO access */
	if (hw->phy.type == e1000_phy_82577) {
		ret_val = e1000_set_mdio_slow_mode_hv(hw);
		if (ret_val)
1372
			return ret_val;
1373 1374
	}

1375 1376 1377 1378 1379 1380 1381 1382 1383
	if (((hw->phy.type == e1000_phy_82577) &&
	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
		/* Disable generation of early preamble */
		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
		if (ret_val)
			return ret_val;

		/* Preamble tuning for SSC */
1384
		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
		if (ret_val)
			return ret_val;
	}

	if (hw->phy.type == e1000_phy_82578) {
		/*
		 * Return registers to default by doing a soft reset then
		 * writing 0x3140 to the control register.
		 */
		if (hw->phy.revision < 2) {
			e1000e_phy_sw_reset(hw);
			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
		}
	}

	/* Select page 0 */
1401
	ret_val = hw->phy.ops.acquire(hw);
1402 1403
	if (ret_val)
		return ret_val;
1404

1405
	hw->phy.addr = 1;
1406
	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1407
	hw->phy.ops.release(hw);
1408
	if (ret_val)
1409
		return ret_val;
1410

1411 1412 1413 1414 1415
	/*
	 * Configure the K1 Si workaround during phy reset assuming there is
	 * link so that it disables K1 if link is in 1Gbps.
	 */
	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1416
	if (ret_val)
1417
		return ret_val;
1418

1419 1420 1421
	/* Workaround for link disconnects on a busy hub in half duplex */
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
1422
		return ret_val;
1423
	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1424 1425
	if (ret_val)
		goto release;
1426 1427
	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
					       phy_data & 0x00FF);
1428 1429
release:
	hw->phy.ops.release(hw);
1430

1431 1432 1433
	return ret_val;
}

1434 1435 1436 1437 1438 1439 1440
/**
 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
 *  @hw:   pointer to the HW structure
 **/
void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
{
	u32 mac_reg;
1441 1442 1443 1444 1445 1446 1447 1448 1449
	u16 i, phy_reg = 0;
	s32 ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;
	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
	if (ret_val)
		goto release;
1450 1451 1452 1453

	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
		mac_reg = er32(RAL(i));
1454 1455 1456 1457 1458
		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
					   (u16)((mac_reg >> 16) & 0xFFFF));

1459
		mac_reg = er32(RAH(i));
1460 1461 1462 1463 1464
		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
					   (u16)((mac_reg & E1000_RAH_AV)
						 >> 16));
1465
	}
1466 1467 1468 1469 1470

	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);

release:
	hw->phy.ops.release(hw);
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
}

/**
 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
 *  with 82579 PHY
 *  @hw: pointer to the HW structure
 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
 **/
s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
{
	s32 ret_val = 0;
	u16 phy_reg, data;
	u32 mac_reg;
	u16 i;

	if (hw->mac.type != e1000_pch2lan)
1487
		return 0;
1488 1489 1490 1491 1492

	/* disable Rx path while enabling/disabling workaround */
	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
	if (ret_val)
1493
		return ret_val;
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

	if (enable) {
		/*
		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
		 * SHRAL/H) and initial CRC values to the MAC
		 */
		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
			u8 mac_addr[ETH_ALEN] = {0};
			u32 addr_high, addr_low;

			addr_high = er32(RAH(i));
			if (!(addr_high & E1000_RAH_AV))
				continue;
			addr_low = er32(RAL(i));
			mac_addr[0] = (addr_low & 0xFF);
			mac_addr[1] = ((addr_low >> 8) & 0xFF);
			mac_addr[2] = ((addr_low >> 16) & 0xFF);
			mac_addr[3] = ((addr_low >> 24) & 0xFF);
			mac_addr[4] = (addr_high & 0xFF);
			mac_addr[5] = ((addr_high >> 8) & 0xFF);

1515
			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		}

		/* Write Rx addresses to the PHY */
		e1000_copy_rx_addrs_to_phy_ich8lan(hw);

		/* Enable jumbo frame workaround in the MAC */
		mac_reg = er32(FFLT_DBG);
		mac_reg &= ~(1 << 14);
		mac_reg |= (7 << 15);
		ew32(FFLT_DBG, mac_reg);

		mac_reg = er32(RCTL);
		mac_reg |= E1000_RCTL_SECRC;
		ew32(RCTL, mac_reg);

		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						&data);
		if (ret_val)
1535
			return ret_val;
1536 1537 1538 1539
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						data | (1 << 0));
		if (ret_val)
1540
			return ret_val;
1541 1542 1543 1544
		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						&data);
		if (ret_val)
1545
			return ret_val;
1546 1547 1548 1549 1550 1551
		data &= ~(0xF << 8);
		data |= (0xB << 8);
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						data);
		if (ret_val)
1552
			return ret_val;
1553 1554 1555 1556 1557 1558 1559

		/* Enable jumbo frame workaround in the PHY */
		e1e_rphy(hw, PHY_REG(769, 23), &data);
		data &= ~(0x7F << 5);
		data |= (0x37 << 5);
		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
		if (ret_val)
1560
			return ret_val;
1561 1562 1563 1564
		e1e_rphy(hw, PHY_REG(769, 16), &data);
		data &= ~(1 << 13);
		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
		if (ret_val)
1565
			return ret_val;
1566 1567 1568 1569 1570
		e1e_rphy(hw, PHY_REG(776, 20), &data);
		data &= ~(0x3FF << 2);
		data |= (0x1A << 2);
		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
		if (ret_val)
1571
			return ret_val;
1572
		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1573
		if (ret_val)
1574
			return ret_val;
1575 1576 1577
		e1e_rphy(hw, HV_PM_CTRL, &data);
		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
		if (ret_val)
1578
			return ret_val;
1579 1580 1581 1582 1583 1584 1585 1586
	} else {
		/* Write MAC register values back to h/w defaults */
		mac_reg = er32(FFLT_DBG);
		mac_reg &= ~(0xF << 14);
		ew32(FFLT_DBG, mac_reg);

		mac_reg = er32(RCTL);
		mac_reg &= ~E1000_RCTL_SECRC;
1587
		ew32(RCTL, mac_reg);
1588 1589 1590 1591 1592

		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						&data);
		if (ret_val)
1593
			return ret_val;
1594 1595 1596 1597
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						data & ~(1 << 0));
		if (ret_val)
1598
			return ret_val;
1599 1600 1601 1602
		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						&data);
		if (ret_val)
1603
			return ret_val;
1604 1605 1606 1607 1608 1609
		data &= ~(0xF << 8);
		data |= (0xB << 8);
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						data);
		if (ret_val)
1610
			return ret_val;
1611 1612 1613 1614 1615 1616

		/* Write PHY register values back to h/w defaults */
		e1e_rphy(hw, PHY_REG(769, 23), &data);
		data &= ~(0x7F << 5);
		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
		if (ret_val)
1617
			return ret_val;
1618 1619 1620 1621
		e1e_rphy(hw, PHY_REG(769, 16), &data);
		data |= (1 << 13);
		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
		if (ret_val)
1622
			return ret_val;
1623 1624 1625 1626 1627
		e1e_rphy(hw, PHY_REG(776, 20), &data);
		data &= ~(0x3FF << 2);
		data |= (0x8 << 2);
		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
		if (ret_val)
1628
			return ret_val;
1629 1630
		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
		if (ret_val)
1631
			return ret_val;
1632 1633 1634
		e1e_rphy(hw, HV_PM_CTRL, &data);
		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
		if (ret_val)
1635
			return ret_val;
1636 1637 1638
	}

	/* re-enable Rx path after enabling/disabling workaround */
1639
	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
}

/**
 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	if (hw->mac.type != e1000_pch2lan)
1651
		return 0;
1652 1653 1654 1655

	/* Set MDIO slow mode before any other MDIO access */
	ret_val = e1000_set_mdio_slow_mode_hv(hw);

1656 1657
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
1658
		return ret_val;
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
					       I82579_MSE_THRESHOLD);
	if (ret_val)
		goto release;
	/* set MSE higher to enable link to stay up when noise is high */
	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0034);
	if (ret_val)
		goto release;
	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
					       I82579_MSE_LINK_DOWN);
	if (ret_val)
		goto release;
	/* drop link after 5 times MSE threshold was reached */
	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0005);
release:
	hw->phy.ops.release(hw);

1676 1677 1678
	return ret_val;
}

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
/**
 *  e1000_k1_gig_workaround_lv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *
 *  Workaround to set the K1 beacon duration for 82579 parts
 **/
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 status_reg = 0;
	u32 mac_reg;
1690
	u16 phy_reg;
1691 1692

	if (hw->mac.type != e1000_pch2lan)
1693
		return 0;
1694 1695 1696 1697

	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
	if (ret_val)
1698
		return ret_val;
1699 1700 1701 1702 1703 1704

	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
		mac_reg = er32(FEXTNVM4);
		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;

1705 1706
		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
		if (ret_val)
1707
			return ret_val;
1708 1709

		if (status_reg & HV_M_STATUS_SPEED_1000) {
1710
			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1711 1712
			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
		} else {
1713
			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1714 1715
			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
		}
1716
		ew32(FEXTNVM4, mac_reg);
1717
		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1718 1719 1720 1721 1722
	}

	return ret_val;
}

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
/**
 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
 *  @hw:   pointer to the HW structure
 *  @gate: boolean set to true to gate, false to ungate
 *
 *  Gate/ungate the automatic PHY configuration via hardware; perform
 *  the configuration via software instead.
 **/
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
{
	u32 extcnf_ctrl;

	if (hw->mac.type != e1000_pch2lan)
		return;

	extcnf_ctrl = er32(EXTCNF_CTRL);

	if (gate)
		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
	else
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;

	ew32(EXTCNF_CTRL, extcnf_ctrl);
}

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
/**
 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
 *  @hw: pointer to the HW structure
 *
 *  Check the appropriate indication the MAC has finished configuring the
 *  PHY after a software reset.
 **/
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
{
	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;

	/* Wait for basic configuration completes before proceeding */
	do {
		data = er32(STATUS);
		data &= E1000_STATUS_LAN_INIT_DONE;
		udelay(100);
	} while ((!data) && --loop);

	/*
	 * If basic configuration is incomplete before the above loop
	 * count reaches 0, loading the configuration from NVM will
	 * leave the PHY in a bad state possibly resulting in no link.
	 */
	if (loop == 0)
1772
		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1773 1774 1775 1776 1777 1778 1779

	/* Clear the Init Done bit for the next init event */
	data = er32(STATUS);
	data &= ~E1000_STATUS_LAN_INIT_DONE;
	ew32(STATUS, data);
}

1780
/**
1781
 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1782 1783
 *  @hw: pointer to the HW structure
 **/
1784
static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1785
{
1786 1787
	s32 ret_val = 0;
	u16 reg;
1788

1789
	if (hw->phy.ops.check_reset_block(hw))
1790
		return 0;
1791

B
Bruce Allan 已提交
1792
	/* Allow time for h/w to get to quiescent state after reset */
1793
	usleep_range(10000, 20000);
B
Bruce Allan 已提交
1794

1795
	/* Perform any necessary post-reset workarounds */
1796 1797
	switch (hw->mac.type) {
	case e1000_pchlan:
1798 1799
		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
		if (ret_val)
1800
			return ret_val;
1801
		break;
1802 1803 1804
	case e1000_pch2lan:
		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
		if (ret_val)
1805
			return ret_val;
1806
		break;
1807 1808
	default:
		break;
1809 1810
	}

1811 1812 1813 1814 1815 1816
	/* Clear the host wakeup bit after lcd reset */
	if (hw->mac.type >= e1000_pchlan) {
		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
		reg &= ~BM_WUC_HOST_WU_BIT;
		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
	}
1817

1818 1819 1820
	/* Configure the LCD with the extended configuration region in NVM */
	ret_val = e1000_sw_lcd_config_ich8lan(hw);
	if (ret_val)
1821
		return ret_val;
1822

1823
	/* Configure the LCD with the OEM bits in NVM */
1824
	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1825

1826 1827 1828
	if (hw->mac.type == e1000_pch2lan) {
		/* Ungate automatic PHY configuration on non-managed 82579 */
		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1829
			usleep_range(10000, 20000);
1830 1831 1832 1833 1834 1835
			e1000_gate_hw_phy_config_ich8lan(hw, false);
		}

		/* Set EEE LPI Update Timer to 200usec */
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
1836
			return ret_val;
1837 1838
		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
						       I82579_LPI_UPDATE_TIMER);
1839 1840 1841 1842
		if (!ret_val)
			ret_val = hw->phy.ops.write_reg_locked(hw,
							       I82579_EMI_DATA,
							       0x1387);
1843
		hw->phy.ops.release(hw);
1844 1845
	}

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	return ret_val;
}

/**
 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Resets the PHY
 *  This is a function pointer entry point called by drivers
 *  or other shared routines.
 **/
static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

1861 1862 1863 1864 1865
	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
	if ((hw->mac.type == e1000_pch2lan) &&
	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		e1000_gate_hw_phy_config_ich8lan(hw, true);

1866 1867
	ret_val = e1000e_phy_hw_reset_generic(hw);
	if (ret_val)
1868
		return ret_val;
1869

1870
	return e1000_post_phy_reset_ich8lan(hw);
1871 1872
}

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
/**
 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
 *  the phy speed. This function will manually set the LPLU bit and restart
 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
 *  since it configures the same bit.
 **/
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
{
	s32 ret_val = 0;
	u16 oem_reg;

	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
	if (ret_val)
1891
		return ret_val;
1892 1893 1894 1895 1896 1897

	if (active)
		oem_reg |= HV_OEM_BITS_LPLU;
	else
		oem_reg &= ~HV_OEM_BITS_LPLU;

1898
	if (!hw->phy.ops.check_reset_block(hw))
1899 1900
		oem_reg |= HV_OEM_BITS_RESTART_AN;

1901
	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1902 1903
}

1904 1905 1906
/**
 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
1907
 *  @active: true to enable LPLU, false to disable
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val = 0;
	u16 data;

1924
	if (phy->type == e1000_phy_ife)
B
Bruce Allan 已提交
1925
		return 0;
1926 1927 1928 1929 1930 1931 1932

	phy_ctrl = er32(PHY_CTRL);

	if (active) {
		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

1933 1934 1935
		if (phy->type != e1000_phy_igp_3)
			return 0;

1936 1937 1938 1939
		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
1940
		if (hw->mac.type == e1000_ich8lan)
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

1953 1954 1955
		if (phy->type != e1000_phy_igp_3)
			return 0;

1956 1957
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1958 1959
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
1960 1961
		 * SmartSpeed, so performance is maintained.
		 */
1962 1963
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1964
					   &data);
1965 1966 1967 1968 1969
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1970
					   data);
1971 1972 1973 1974
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1975
					   &data);
1976 1977 1978 1979 1980
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1981
					   data);
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
 *  @hw: pointer to the HW structure
1993
 *  @active: true to enable LPLU, false to disable
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
 *
 *  Sets the LPLU D3 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
2007
	s32 ret_val = 0;
2008 2009 2010 2011 2012 2013 2014
	u16 data;

	phy_ctrl = er32(PHY_CTRL);

	if (!active) {
		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);
2015 2016 2017 2018

		if (phy->type != e1000_phy_igp_3)
			return 0;

2019 2020
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2021 2022
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
2023 2024
		 * SmartSpeed, so performance is maintained.
		 */
2025
		if (phy->smart_speed == e1000_smart_speed_on) {
2026 2027
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
2028 2029 2030 2031
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
2032 2033
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
2034 2035 2036
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
2037 2038
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
2039 2040 2041 2042
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2043 2044
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
2045 2046 2047 2048 2049 2050 2051 2052 2053
			if (ret_val)
				return ret_val;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

2054 2055 2056
		if (phy->type != e1000_phy_igp_3)
			return 0;

2057 2058 2059 2060
		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
2061
		if (hw->mac.type == e1000_ich8lan)
2062 2063 2064
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
2065
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2066 2067 2068 2069
		if (ret_val)
			return ret_val;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2070
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2071 2072
	}

2073
	return ret_val;
2074 2075
}

2076 2077 2078 2079 2080 2081
/**
 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
 *  @hw: pointer to the HW structure
 *  @bank:  pointer to the variable that returns the active bank
 *
 *  Reads signature byte from the NVM using the flash access registers.
2082
 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2083 2084 2085
 **/
static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
{
2086
	u32 eecd;
2087 2088 2089
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2090
	u8 sig_byte = 0;
2091
	s32 ret_val;
2092

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
		eecd = er32(EECD);
		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
		    E1000_EECD_SEC1VAL_VALID_MASK) {
			if (eecd & E1000_EECD_SEC1VAL)
				*bank = 1;
			else
				*bank = 0;

			return 0;
		}
2106
		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
		/* fall-thru */
	default:
		/* set bank to 0 in case flash read fails */
		*bank = 0;

		/* Check bank 0 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
2119
			*bank = 0;
2120 2121
			return 0;
		}
2122

2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
		/* Check bank 1 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
		                                        bank1_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
			*bank = 1;
			return 0;
2133
		}
2134

2135
		e_dbg("ERROR: No valid NVM bank present\n");
2136
		return -E1000_ERR_NVM;
2137 2138 2139
	}
}

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
/**
 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to read.
 *  @words: Size of data to read in words
 *  @data: Pointer to the word(s) to read at offset.
 *
 *  Reads a word(s) from the NVM using the flash access registers.
 **/
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				  u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 act_offset;
2155
	s32 ret_val = 0;
2156
	u32 bank = 0;
2157 2158 2159 2160
	u16 i, word;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
2161
		e_dbg("nvm parameter(s) out of bounds\n");
2162 2163
		ret_val = -E1000_ERR_NVM;
		goto out;
2164 2165
	}

2166
	nvm->ops.acquire(hw);
2167

2168
	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2169
	if (ret_val) {
2170
		e_dbg("Could not detect valid bank, assuming bank 0\n");
2171 2172
		bank = 0;
	}
2173 2174

	act_offset = (bank) ? nvm->flash_bank_size : 0;
2175 2176
	act_offset += offset;

2177
	ret_val = 0;
2178
	for (i = 0; i < words; i++) {
2179
		if (dev_spec->shadow_ram[offset+i].modified) {
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
			data[i] = dev_spec->shadow_ram[offset+i].value;
		} else {
			ret_val = e1000_read_flash_word_ich8lan(hw,
								act_offset + i,
								&word);
			if (ret_val)
				break;
			data[i] = word;
		}
	}

2191
	nvm->ops.release(hw);
2192

2193 2194
out:
	if (ret_val)
2195
		e_dbg("NVM read error: %d\n", ret_val);
2196

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	return ret_val;
}

/**
 *  e1000_flash_cycle_init_ich8lan - Initialize flash
 *  @hw: pointer to the HW structure
 *
 *  This function does initial flash setup so that a new read/write/erase cycle
 *  can be started.
 **/
static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
{
	union ich8_hws_flash_status hsfsts;
	s32 ret_val = -E1000_ERR_NVM;

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

	/* Check if the flash descriptor is valid */
	if (hsfsts.hsf_status.fldesvalid == 0) {
2216
		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2217 2218 2219 2220 2221 2222 2223 2224 2225
		return -E1000_ERR_NVM;
	}

	/* Clear FCERR and DAEL in hw status by writing 1 */
	hsfsts.hsf_status.flcerr = 1;
	hsfsts.hsf_status.dael = 1;

	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);

2226 2227
	/*
	 * Either we should have a hardware SPI cycle in progress
2228 2229
	 * bit to check against, in order to start a new cycle or
	 * FDONE bit should be changed in the hardware so that it
2230
	 * is 1 after hardware reset, which can then be used as an
2231 2232 2233 2234 2235
	 * indication whether a cycle is in progress or has been
	 * completed.
	 */

	if (hsfsts.hsf_status.flcinprog == 0) {
2236 2237
		/*
		 * There is no cycle running at present,
B
Bruce Allan 已提交
2238
		 * so we can start a cycle.
2239 2240
		 * Begin by setting Flash Cycle Done.
		 */
2241 2242 2243 2244
		hsfsts.hsf_status.flcdone = 1;
		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		ret_val = 0;
	} else {
2245
		s32 i;
2246

2247
		/*
B
Bruce Allan 已提交
2248
		 * Otherwise poll for sometime so the current
2249 2250
		 * cycle has a chance to end before giving up.
		 */
2251
		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2252
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2253 2254 2255 2256 2257 2258
			if (hsfsts.hsf_status.flcinprog == 0) {
				ret_val = 0;
				break;
			}
			udelay(1);
		}
2259
		if (!ret_val) {
2260 2261 2262 2263
			/*
			 * Successful in waiting for previous cycle to timeout,
			 * now set the Flash Cycle Done.
			 */
2264 2265 2266
			hsfsts.hsf_status.flcdone = 1;
			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		} else {
J
Joe Perches 已提交
2267
			e_dbg("Flash controller busy, cannot get access\n");
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
		}
	}

	return ret_val;
}

/**
 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
 *  @hw: pointer to the HW structure
 *  @timeout: maximum time to wait for completion
 *
 *  This function starts a flash cycle and waits for its completion.
 **/
static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
{
	union ich8_hws_flash_ctrl hsflctl;
	union ich8_hws_flash_status hsfsts;
	u32 i = 0;

	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
	hsflctl.hsf_ctrl.flcgo = 1;
	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

	/* wait till FDONE bit is set to 1 */
	do {
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
		if (hsfsts.hsf_status.flcdone == 1)
			break;
		udelay(1);
	} while (i++ < timeout);

	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
		return 0;

2303
	return -E1000_ERR_NVM;
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
}

/**
 *  e1000_read_flash_word_ich8lan - Read word from flash
 *  @hw: pointer to the HW structure
 *  @offset: offset to data location
 *  @data: pointer to the location for storing the data
 *
 *  Reads the flash word at offset into data.  Offset is converted
 *  to bytes before read.
 **/
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data)
{
	/* Must convert offset into bytes. */
	offset <<= 1;

	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
}

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
/**
 *  e1000_read_flash_byte_ich8lan - Read byte from flash
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to read.
 *  @data: Pointer to a byte to store the value read.
 *
 *  Reads a single byte from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data)
{
	s32 ret_val;
	u16 word = 0;

	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
	if (ret_val)
		return ret_val;

	*data = (u8)word;

	return 0;
}

2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
/**
 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte or word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: Pointer to the word to store the value read.
 *
 *  Reads a byte or word from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val = -E1000_ERR_NVM;
	u8 count = 0;

	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2376
		if (ret_val)
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size - 1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		ret_val = e1000_flash_cycle_ich8lan(hw,
						ICH_FLASH_READ_COMMAND_TIMEOUT);

2390 2391
		/*
		 * Check if FCERR is set to 1, if set to 1, clear it
2392 2393
		 * and try the whole sequence a few more times, else
		 * read in (shift in) the Flash Data0, the order is
2394 2395
		 * least significant byte first msb to lsb
		 */
2396
		if (!ret_val) {
2397
			flash_data = er32flash(ICH_FLASH_FDATA0);
B
Bruce Allan 已提交
2398
			if (size == 1)
2399
				*data = (u8)(flash_data & 0x000000FF);
B
Bruce Allan 已提交
2400
			else if (size == 2)
2401 2402 2403
				*data = (u16)(flash_data & 0x0000FFFF);
			break;
		} else {
2404 2405
			/*
			 * If we've gotten here, then things are probably
2406 2407 2408 2409 2410 2411 2412 2413 2414
			 * completely hosed, but if the error condition is
			 * detected, it won't hurt to give it another try...
			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
			 */
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcerr == 1) {
				/* Repeat for some time before giving up. */
				continue;
			} else if (hsfsts.hsf_status.flcdone == 0) {
2415
				e_dbg("Timeout error - flash cycle did not complete.\n");
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
				break;
			}
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to write.
 *  @words: Size of data to write in words
 *  @data: Pointer to the word(s) to write at offset.
 *
 *  Writes a byte or word to the NVM using the flash access registers.
 **/
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				   u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u16 i;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
2442
		e_dbg("nvm parameter(s) out of bounds\n");
2443 2444 2445
		return -E1000_ERR_NVM;
	}

2446
	nvm->ops.acquire(hw);
2447

2448
	for (i = 0; i < words; i++) {
2449
		dev_spec->shadow_ram[offset+i].modified = true;
2450 2451 2452
		dev_spec->shadow_ram[offset+i].value = data[i];
	}

2453
	nvm->ops.release(hw);
2454

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
	return 0;
}

/**
 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
 *  @hw: pointer to the HW structure
 *
 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
 *  which writes the checksum to the shadow ram.  The changes in the shadow
 *  ram are then committed to the EEPROM by processing each bank at a time
 *  checking for the modified bit and writing only the pending changes.
2466
 *  After a successful commit, the shadow ram is cleared and is ready for
2467 2468 2469 2470 2471 2472
 *  future writes.
 **/
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2473
	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2474 2475 2476 2477 2478
	s32 ret_val;
	u16 data;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
2479
		goto out;
2480 2481

	if (nvm->type != e1000_nvm_flash_sw)
2482
		goto out;
2483

2484
	nvm->ops.acquire(hw);
2485

2486 2487
	/*
	 * We're writing to the opposite bank so if we're on bank 1,
2488
	 * write to bank 0 etc.  We also need to erase the segment that
2489 2490
	 * is going to be written
	 */
2491
	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2492
	if (ret_val) {
2493
		e_dbg("Could not detect valid bank, assuming bank 0\n");
2494
		bank = 0;
2495
	}
2496 2497

	if (bank == 0) {
2498 2499
		new_bank_offset = nvm->flash_bank_size;
		old_bank_offset = 0;
2500
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2501 2502
		if (ret_val)
			goto release;
2503 2504 2505
	} else {
		old_bank_offset = nvm->flash_bank_size;
		new_bank_offset = 0;
2506
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2507 2508
		if (ret_val)
			goto release;
2509 2510 2511
	}

	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2512 2513
		/*
		 * Determine whether to write the value stored
2514
		 * in the other NVM bank or a modified value stored
2515 2516
		 * in the shadow RAM
		 */
2517 2518 2519
		if (dev_spec->shadow_ram[i].modified) {
			data = dev_spec->shadow_ram[i].value;
		} else {
2520 2521 2522 2523 2524
			ret_val = e1000_read_flash_word_ich8lan(hw, i +
			                                        old_bank_offset,
			                                        &data);
			if (ret_val)
				break;
2525 2526
		}

2527 2528
		/*
		 * If the word is 0x13, then make sure the signature bits
2529 2530 2531 2532
		 * (15:14) are 11b until the commit has completed.
		 * This will allow us to write 10b which indicates the
		 * signature is valid.  We want to do this after the write
		 * has completed so that we don't mark the segment valid
2533 2534
		 * while the write is still in progress
		 */
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
		if (i == E1000_ICH_NVM_SIG_WORD)
			data |= E1000_ICH_NVM_SIG_MASK;

		/* Convert offset to bytes. */
		act_offset = (i + new_bank_offset) << 1;

		udelay(100);
		/* Write the bytes to the new bank. */
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							       act_offset,
							       (u8)data);
		if (ret_val)
			break;

		udelay(100);
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							  act_offset + 1,
							  (u8)(data >> 8));
		if (ret_val)
			break;
	}

2557 2558 2559 2560
	/*
	 * Don't bother writing the segment valid bits if sector
	 * programming failed.
	 */
2561
	if (ret_val) {
2562
		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2563
		e_dbg("Flash commit failed.\n");
2564
		goto release;
2565 2566
	}

2567 2568
	/*
	 * Finally validate the new segment by setting bit 15:14
2569 2570
	 * to 10b in word 0x13 , this can be done without an
	 * erase as well since these bits are 11 to start with
2571 2572
	 * and we need to change bit 14 to 0b
	 */
2573
	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2574
	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2575 2576 2577
	if (ret_val)
		goto release;

2578 2579 2580 2581
	data &= 0xBFFF;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
						       act_offset * 2 + 1,
						       (u8)(data >> 8));
2582 2583
	if (ret_val)
		goto release;
2584

2585 2586
	/*
	 * And invalidate the previously valid segment by setting
2587 2588
	 * its signature word (0x13) high_byte to 0b. This can be
	 * done without an erase because flash erase sets all bits
2589 2590
	 * to 1's. We can write 1's to 0's without an erase
	 */
2591 2592
	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2593 2594
	if (ret_val)
		goto release;
2595 2596 2597

	/* Great!  Everything worked, we can now clear the cached entries. */
	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2598
		dev_spec->shadow_ram[i].modified = false;
2599 2600 2601
		dev_spec->shadow_ram[i].value = 0xFFFF;
	}

2602
release:
2603
	nvm->ops.release(hw);
2604

2605 2606
	/*
	 * Reload the EEPROM, or else modifications will not appear
2607 2608
	 * until after the next adapter reset.
	 */
2609
	if (!ret_val) {
2610
		nvm->ops.reload(hw);
2611
		usleep_range(10000, 20000);
2612
	}
2613

2614 2615
out:
	if (ret_val)
2616
		e_dbg("NVM update error: %d\n", ret_val);
2617

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	return ret_val;
}

/**
 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
 *  calculated, in which case we need to calculate the checksum and set bit 6.
 **/
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

2634 2635
	/*
	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
	 * needs to be fixed.  This bit is an indication that the NVM
	 * was prepared by OEM software and did not calculate the
	 * checksum...a likely scenario.
	 */
	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
	if (ret_val)
		return ret_val;

	if ((data & 0x40) == 0) {
		data |= 0x40;
		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
		if (ret_val)
			return ret_val;
		ret_val = e1000e_update_nvm_checksum(hw);
		if (ret_val)
			return ret_val;
	}

	return e1000e_validate_nvm_checksum_generic(hw);
}

2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
/**
 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
 *  @hw: pointer to the HW structure
 *
 *  To prevent malicious write/erase of the NVM, set it to be read-only
 *  so that the hardware ignores all write/erase cycles of the NVM via
 *  the flash control registers.  The shadow-ram copy of the NVM will
 *  still be updated, however any updates to this copy will not stick
 *  across driver reloads.
 **/
void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
{
2669
	struct e1000_nvm_info *nvm = &hw->nvm;
2670 2671 2672 2673
	union ich8_flash_protected_range pr0;
	union ich8_hws_flash_status hsfsts;
	u32 gfpreg;

2674
	nvm->ops.acquire(hw);
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694

	gfpreg = er32flash(ICH_FLASH_GFPREG);

	/* Write-protect GbE Sector of NVM */
	pr0.regval = er32flash(ICH_FLASH_PR0);
	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
	pr0.range.wpe = true;
	ew32flash(ICH_FLASH_PR0, pr0.regval);

	/*
	 * Lock down a subset of GbE Flash Control Registers, e.g.
	 * PR0 to prevent the write-protection from being lifted.
	 * Once FLOCKDN is set, the registers protected by it cannot
	 * be written until FLOCKDN is cleared by a hardware reset.
	 */
	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
	hsfsts.hsf_status.flockdn = true;
	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);

2695
	nvm->ops.release(hw);
2696 2697
}

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
/**
 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte/word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: The byte(s) to write to the NVM.
 *
 *  Writes one/two bytes to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 size, u16 data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val;
	u8 count = 0;

	if (size < 1 || size > 2 || data > size * 0xff ||
	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val)
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size -1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		if (size == 1)
			flash_data = (u32)data & 0x00FF;
		else
			flash_data = (u32)data;

		ew32flash(ICH_FLASH_FDATA0, flash_data);

2746 2747 2748 2749
		/*
		 * check if FCERR is set to 1 , if set to 1, clear it
		 * and try the whole sequence a few more times else done
		 */
2750 2751 2752 2753 2754
		ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
		if (!ret_val)
			break;

2755 2756
		/*
		 * If we're here, then things are most likely
2757 2758 2759 2760 2761 2762 2763 2764 2765
		 * completely hosed, but if the error condition
		 * is detected, it won't hurt to give it another
		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
		 */
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
		if (hsfsts.hsf_status.flcerr == 1)
			/* Repeat for some time before giving up. */
			continue;
		if (hsfsts.hsf_status.flcdone == 0) {
2766
			e_dbg("Timeout error - flash cycle did not complete.\n");
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
			break;
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The index of the byte to read.
 *  @data: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 data)
{
	u16 word = (u16)data;

	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
}

/**
 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to write.
 *  @byte: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 *  Goes through a retry algorithm before giving up.
 **/
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte)
{
	s32 ret_val;
	u16 program_retries;

	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
	if (!ret_val)
		return ret_val;

	for (program_retries = 0; program_retries < 100; program_retries++) {
2810
		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
		udelay(100);
		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
		if (!ret_val)
			break;
	}
	if (program_retries == 100)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
 *  @hw: pointer to the HW structure
 *  @bank: 0 for first bank, 1 for second bank, etc.
 *
 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
 *  bank N is 4096 * N + flash_reg_addr.
 **/
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	/* bank size is in 16bit words - adjust to bytes */
	u32 flash_bank_size = nvm->flash_bank_size * 2;
	s32 ret_val;
	s32 count = 0;
2840
	s32 j, iteration, sector_size;
2841 2842 2843

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

2844 2845 2846 2847
	/*
	 * Determine HW Sector size: Read BERASE bits of hw flash status
	 * register
	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
	 *     consecutive sectors.  The start index for the nth Hw sector
	 *     can be calculated as = bank * 4096 + n * 256
	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
	 *     The start index for the nth Hw sector can be calculated
	 *     as = bank * 4096
	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
	 *     (ich9 only, otherwise error condition)
	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
	 */
	switch (hsfsts.hsf_status.berasesz) {
	case 0:
		/* Hw sector size 256 */
		sector_size = ICH_FLASH_SEG_SIZE_256;
		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
		break;
	case 1:
		sector_size = ICH_FLASH_SEG_SIZE_4K;
2865
		iteration = 1;
2866 2867
		break;
	case 2:
2868 2869
		sector_size = ICH_FLASH_SEG_SIZE_8K;
		iteration = 1;
2870 2871 2872
		break;
	case 3:
		sector_size = ICH_FLASH_SEG_SIZE_64K;
2873
		iteration = 1;
2874 2875 2876 2877 2878 2879 2880
		break;
	default:
		return -E1000_ERR_NVM;
	}

	/* Start with the base address, then add the sector offset. */
	flash_linear_addr = hw->nvm.flash_base_addr;
2881
	flash_linear_addr += (bank) ? flash_bank_size : 0;
2882 2883 2884 2885 2886 2887 2888 2889

	for (j = 0; j < iteration ; j++) {
		do {
			/* Steps */
			ret_val = e1000_flash_cycle_init_ich8lan(hw);
			if (ret_val)
				return ret_val;

2890 2891 2892 2893
			/*
			 * Write a value 11 (block Erase) in Flash
			 * Cycle field in hw flash control
			 */
2894 2895 2896 2897
			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

2898 2899
			/*
			 * Write the last 24 bits of an index within the
2900 2901 2902 2903 2904 2905 2906 2907
			 * block into Flash Linear address field in Flash
			 * Address.
			 */
			flash_linear_addr += (j * sector_size);
			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

			ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2908
			if (!ret_val)
2909 2910
				break;

2911 2912
			/*
			 * Check if FCERR is set to 1.  If 1,
2913
			 * clear it and try the whole sequence
2914 2915
			 * a few more times else Done
			 */
2916 2917
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcerr == 1)
2918
				/* repeat for some time before giving up */
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
				continue;
			else if (hsfsts.hsf_status.flcdone == 0)
				return ret_val;
		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
	}

	return 0;
}

/**
 *  e1000_valid_led_default_ich8lan - Set the default LED settings
 *  @hw: pointer to the HW structure
 *  @data: Pointer to the LED settings
 *
 *  Reads the LED default settings from the NVM to data.  If the NVM LED
 *  settings is all 0's or F's, set the LED default to a valid LED default
 *  setting.
 **/
static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
2943
		e_dbg("NVM Read Error\n");
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
		return ret_val;
	}

	if (*data == ID_LED_RESERVED_0000 ||
	    *data == ID_LED_RESERVED_FFFF)
		*data = ID_LED_DEFAULT_ICH8LAN;

	return 0;
}

2954 2955 2956 2957 2958 2959 2960 2961 2962
/**
 *  e1000_id_led_init_pchlan - store LED configurations
 *  @hw: pointer to the HW structure
 *
 *  PCH does not control LEDs via the LEDCTL register, rather it uses
 *  the PHY LED configuration register.
 *
 *  PCH also does not have an "always on" or "always off" mode which
 *  complicates the ID feature.  Instead of using the "on" mode to indicate
2963
 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
 *  use "link_up" mode.  The LEDs will still ID on request if there is no
 *  link based on logic in e1000_led_[on|off]_pchlan().
 **/
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
	u16 data, i, temp, shift;

	/* Get default ID LED modes */
	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
	if (ret_val)
2978
		return ret_val;
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022

	mac->ledctl_default = er32(LEDCTL);
	mac->ledctl_mode1 = mac->ledctl_default;
	mac->ledctl_mode2 = mac->ledctl_default;

	for (i = 0; i < 4; i++) {
		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
		shift = (i * 5);
		switch (temp) {
		case ID_LED_ON1_DEF2:
		case ID_LED_ON1_ON2:
		case ID_LED_ON1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_on << shift);
			break;
		case ID_LED_OFF1_DEF2:
		case ID_LED_OFF1_ON2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
		switch (temp) {
		case ID_LED_DEF1_ON2:
		case ID_LED_ON1_ON2:
		case ID_LED_OFF1_ON2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_on << shift);
			break;
		case ID_LED_DEF1_OFF2:
		case ID_LED_ON1_OFF2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
	}

3023
	return 0;
3024 3025
}

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
/**
 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
 *  @hw: pointer to the HW structure
 *
 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
 *  register, so the the bus width is hard coded.
 **/
static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;
	s32 ret_val;

	ret_val = e1000e_get_bus_info_pcie(hw);

3040 3041
	/*
	 * ICH devices are "PCI Express"-ish.  They have
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
	 * a configuration space, but do not contain
	 * PCI Express Capability registers, so bus width
	 * must be hardcoded.
	 */
	if (bus->width == e1000_bus_width_unknown)
		bus->width = e1000_bus_width_pcie_x1;

	return ret_val;
}

/**
 *  e1000_reset_hw_ich8lan - Reset the hardware
 *  @hw: pointer to the HW structure
 *
 *  Does a full reset of the hardware which includes a reset of the PHY and
 *  MAC.
 **/
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
{
3061
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3062
	u16 reg;
3063
	u32 ctrl, kab;
3064 3065
	s32 ret_val;

3066 3067
	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3068 3069 3070
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
3071
	if (ret_val)
3072
		e_dbg("PCI-E Master disable polling has failed.\n");
3073

3074
	e_dbg("Masking off all interrupts\n");
3075 3076
	ew32(IMC, 0xffffffff);

3077 3078
	/*
	 * Disable the Transmit and Receive units.  Then delay to allow
3079 3080 3081 3082 3083 3084 3085
	 * any pending transactions to complete before we hit the MAC
	 * with the global reset.
	 */
	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

3086
	usleep_range(10000, 20000);
3087 3088 3089 3090 3091 3092 3093 3094 3095

	/* Workaround for ICH8 bit corruption issue in FIFO memory */
	if (hw->mac.type == e1000_ich8lan) {
		/* Set Tx and Rx buffer allocation to 8k apiece. */
		ew32(PBA, E1000_PBA_8K);
		/* Set Packet Buffer Size to 16k. */
		ew32(PBS, E1000_PBS_16K);
	}

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
	if (hw->mac.type == e1000_pchlan) {
		/* Save the NVM K1 bit setting*/
		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
		if (ret_val)
			return ret_val;

		if (reg & E1000_NVM_K1_ENABLE)
			dev_spec->nvm_k1_enabled = true;
		else
			dev_spec->nvm_k1_enabled = false;
	}

3108 3109
	ctrl = er32(CTRL);

3110
	if (!hw->phy.ops.check_reset_block(hw)) {
3111
		/*
3112
		 * Full-chip reset requires MAC and PHY reset at the same
3113 3114 3115 3116
		 * time to make sure the interface between MAC and the
		 * external PHY is reset.
		 */
		ctrl |= E1000_CTRL_PHY_RST;
3117 3118 3119 3120 3121 3122 3123 3124

		/*
		 * Gate automatic PHY configuration by hardware on
		 * non-managed 82579
		 */
		if ((hw->mac.type == e1000_pch2lan) &&
		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
			e1000_gate_hw_phy_config_ich8lan(hw, true);
3125 3126
	}
	ret_val = e1000_acquire_swflag_ich8lan(hw);
3127
	e_dbg("Issuing a global reset to ich8lan\n");
3128
	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3129
	/* cannot issue a flush here because it hangs the hardware */
3130 3131
	msleep(20);

3132
	if (!ret_val)
3133
		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3134

3135
	if (ctrl & E1000_CTRL_PHY_RST) {
3136
		ret_val = hw->phy.ops.get_cfg_done(hw);
3137
		if (ret_val)
3138
			return ret_val;
3139

3140
		ret_val = e1000_post_phy_reset_ich8lan(hw);
3141
		if (ret_val)
3142
			return ret_val;
3143
	}
3144

3145 3146 3147 3148 3149 3150 3151 3152
	/*
	 * For PCH, this write will make sure that any noise
	 * will be detected as a CRC error and be dropped rather than show up
	 * as a bad packet to the DMA engine.
	 */
	if (hw->mac.type == e1000_pchlan)
		ew32(CRC_OFFSET, 0x65656565);

3153
	ew32(IMC, 0xffffffff);
3154
	er32(ICR);
3155 3156 3157 3158 3159

	kab = er32(KABGTXD);
	kab |= E1000_KABGTXD_BGSQLBIAS;
	ew32(KABGTXD, kab);

3160
	return 0;
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
}

/**
 *  e1000_init_hw_ich8lan - Initialize the hardware
 *  @hw: pointer to the HW structure
 *
 *  Prepares the hardware for transmit and receive by doing the following:
 *   - initialize hardware bits
 *   - initialize LED identification
 *   - setup receive address registers
 *   - setup flow control
3172
 *   - setup transmit descriptors
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
 *   - clear statistics
 **/
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl_ext, txdctl, snoop;
	s32 ret_val;
	u16 i;

	e1000_initialize_hw_bits_ich8lan(hw);

	/* Initialize identification LED */
3185
	ret_val = mac->ops.id_led_init(hw);
3186
	if (ret_val)
3187
		e_dbg("Error initializing identification LED\n");
3188
		/* This is not fatal and we should not stop init due to this */
3189 3190 3191 3192 3193

	/* Setup the receive address. */
	e1000e_init_rx_addrs(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
3194
	e_dbg("Zeroing the MTA\n");
3195 3196 3197
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

3198 3199
	/*
	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3200
	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3201 3202 3203
	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
	 */
	if (hw->phy.type == e1000_phy_82578) {
3204 3205 3206
		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
		i &= ~BM_WUC_HOST_WU_BIT;
		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3207 3208 3209 3210 3211
		ret_val = e1000_phy_hw_reset_ich8lan(hw);
		if (ret_val)
			return ret_val;
	}

3212
	/* Setup link and flow control */
3213
	ret_val = mac->ops.setup_link(hw);
3214 3215

	/* Set the transmit descriptor write-back policy for both queues */
3216
	txdctl = er32(TXDCTL(0));
3217 3218 3219 3220
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3221 3222
	ew32(TXDCTL(0), txdctl);
	txdctl = er32(TXDCTL(1));
3223 3224 3225 3226
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3227
	ew32(TXDCTL(1), txdctl);
3228

3229 3230 3231 3232
	/*
	 * ICH8 has opposite polarity of no_snoop bits.
	 * By default, we should use snoop behavior.
	 */
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
	if (mac->type == e1000_ich8lan)
		snoop = PCIE_ICH8_SNOOP_ALL;
	else
		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
	e1000e_set_pcie_no_snoop(hw, snoop);

	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
	ew32(CTRL_EXT, ctrl_ext);

3243 3244
	/*
	 * Clear all of the statistics registers (clear on read).  It is
3245 3246 3247 3248 3249 3250
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_ich8lan(hw);

3251
	return ret_val;
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
}
/**
 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
 *  @hw: pointer to the HW structure
 *
 *  Sets/Clears required hardware bits necessary for correctly setting up the
 *  hardware for transmit and receive.
 **/
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
{
	u32 reg;

	/* Extended Device Control */
	reg = er32(CTRL_EXT);
	reg |= (1 << 22);
3267 3268 3269
	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
	if (hw->mac.type >= e1000_pchlan)
		reg |= E1000_CTRL_EXT_PHYPDEN;
3270 3271 3272
	ew32(CTRL_EXT, reg);

	/* Transmit Descriptor Control 0 */
3273
	reg = er32(TXDCTL(0));
3274
	reg |= (1 << 22);
3275
	ew32(TXDCTL(0), reg);
3276 3277

	/* Transmit Descriptor Control 1 */
3278
	reg = er32(TXDCTL(1));
3279
	reg |= (1 << 22);
3280
	ew32(TXDCTL(1), reg);
3281 3282

	/* Transmit Arbitration Control 0 */
3283
	reg = er32(TARC(0));
3284 3285 3286
	if (hw->mac.type == e1000_ich8lan)
		reg |= (1 << 28) | (1 << 29);
	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3287
	ew32(TARC(0), reg);
3288 3289

	/* Transmit Arbitration Control 1 */
3290
	reg = er32(TARC(1));
3291 3292 3293 3294 3295
	if (er32(TCTL) & E1000_TCTL_MULR)
		reg &= ~(1 << 28);
	else
		reg |= (1 << 28);
	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3296
	ew32(TARC(1), reg);
3297 3298 3299 3300 3301 3302 3303

	/* Device Status */
	if (hw->mac.type == e1000_ich8lan) {
		reg = er32(STATUS);
		reg &= ~(1 << 31);
		ew32(STATUS, reg);
	}
3304 3305 3306 3307 3308 3309 3310 3311

	/*
	 * work-around descriptor data corruption issue during nfs v2 udp
	 * traffic, just disable the nfs filtering capability
	 */
	reg = er32(RFCTL);
	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
	ew32(RFCTL, reg);
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
}

/**
 *  e1000_setup_link_ich8lan - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;

3328
	if (hw->phy.ops.check_reset_block(hw))
3329 3330
		return 0;

3331 3332
	/*
	 * ICH parts do not have a word in the NVM to determine
3333 3334 3335
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
3336 3337 3338 3339 3340 3341 3342
	if (hw->fc.requested_mode == e1000_fc_default) {
		/* Workaround h/w hang when Tx flow control enabled */
		if (hw->mac.type == e1000_pchlan)
			hw->fc.requested_mode = e1000_fc_rx_pause;
		else
			hw->fc.requested_mode = e1000_fc_full;
	}
3343

3344 3345 3346 3347 3348
	/*
	 * Save off the requested flow control mode for use later.  Depending
	 * on the link partner's capabilities, we may or may not use this mode.
	 */
	hw->fc.current_mode = hw->fc.requested_mode;
3349

3350
	e_dbg("After fix-ups FlowControl is now = %x\n",
3351
		hw->fc.current_mode);
3352 3353

	/* Continue to configure the copper link. */
3354
	ret_val = hw->mac.ops.setup_physical_interface(hw);
3355 3356 3357
	if (ret_val)
		return ret_val;

3358
	ew32(FCTTV, hw->fc.pause_time);
3359
	if ((hw->phy.type == e1000_phy_82578) ||
3360
	    (hw->phy.type == e1000_phy_82579) ||
3361
	    (hw->phy.type == e1000_phy_82577)) {
3362 3363
		ew32(FCRTV_PCH, hw->fc.refresh_time);

3364 3365
		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
				   hw->fc.pause_time);
3366 3367 3368
		if (ret_val)
			return ret_val;
	}
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

	return e1000e_set_fc_watermarks(hw);
}

/**
 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
 *  @hw: pointer to the HW structure
 *
 *  Configures the kumeran interface to the PHY to wait the appropriate time
 *  when polling the PHY, then call the generic setup_copper_link to finish
 *  configuring the copper link.
 **/
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;
	u16 reg_data;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

3392 3393
	/*
	 * Set the mac to wait the maximum time between each iteration
3394
	 * and increase the max iterations when polling the phy;
3395 3396
	 * this fixes erroneous timeouts at 10Mbps.
	 */
3397
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3398 3399
	if (ret_val)
		return ret_val;
3400 3401
	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
	                               &reg_data);
3402 3403 3404
	if (ret_val)
		return ret_val;
	reg_data |= 0x3F;
3405 3406
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
	                                reg_data);
3407 3408 3409
	if (ret_val)
		return ret_val;

3410 3411
	switch (hw->phy.type) {
	case e1000_phy_igp_3:
3412 3413 3414
		ret_val = e1000e_copper_link_setup_igp(hw);
		if (ret_val)
			return ret_val;
3415 3416 3417
		break;
	case e1000_phy_bm:
	case e1000_phy_82578:
3418 3419 3420
		ret_val = e1000e_copper_link_setup_m88(hw);
		if (ret_val)
			return ret_val;
3421 3422
		break;
	case e1000_phy_82577:
3423
	case e1000_phy_82579:
3424 3425 3426 3427 3428
		ret_val = e1000_copper_link_setup_82577(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_phy_ife:
3429
		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
		if (ret_val)
			return ret_val;

		reg_data &= ~IFE_PMC_AUTO_MDIX;

		switch (hw->phy.mdix) {
		case 1:
			reg_data &= ~IFE_PMC_FORCE_MDIX;
			break;
		case 2:
			reg_data |= IFE_PMC_FORCE_MDIX;
			break;
		case 0:
		default:
			reg_data |= IFE_PMC_AUTO_MDIX;
			break;
		}
3447
		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3448 3449
		if (ret_val)
			return ret_val;
3450 3451 3452
		break;
	default:
		break;
3453
	}
3454

3455 3456 3457 3458 3459 3460 3461 3462 3463
	return e1000e_setup_copper_link(hw);
}

/**
 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
 *  @hw: pointer to the HW structure
 *  @speed: pointer to store current link speed
 *  @duplex: pointer to store the current link duplex
 *
3464
 *  Calls the generic get_speed_and_duplex to retrieve the current link
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
 *  information and then calls the Kumeran lock loss workaround for links at
 *  gigabit speeds.
 **/
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
					  u16 *duplex)
{
	s32 ret_val;

	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
	if (ret_val)
		return ret_val;

	if ((hw->mac.type == e1000_ich8lan) &&
	    (hw->phy.type == e1000_phy_igp_3) &&
	    (*speed == SPEED_1000)) {
		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
	}

	return ret_val;
}

/**
 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
 *  @hw: pointer to the HW structure
 *
 *  Work-around for 82566 Kumeran PCS lock loss:
 *  On link status change (i.e. PCI reset, speed change) and link is up and
 *  speed is gigabit-
 *    0) if workaround is optionally disabled do nothing
 *    1) wait 1ms for Kumeran link to come up
 *    2) check Kumeran Diagnostic register PCS lock loss bit
 *    3) if not set the link is locked (all is good), otherwise...
 *    4) reset the PHY
 *    5) repeat up to 10 times
 *  Note: this is only called for IGP3 copper when speed is 1gb.
 **/
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 phy_ctrl;
	s32 ret_val;
	u16 i, data;
	bool link;

	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
		return 0;

3512 3513
	/*
	 * Make sure link is up before proceeding.  If not just return.
3514
	 * Attempting this while link is negotiating fouled up link
3515 3516
	 * stability
	 */
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (!link)
		return 0;

	for (i = 0; i < 10; i++) {
		/* read once to clear */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;
		/* and again to get new status */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;

		/* check for PCS lock */
		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
			return 0;

		/* Issue PHY reset */
		e1000_phy_hw_reset(hw);
		mdelay(5);
	}
	/* Disable GigE link negotiation */
	phy_ctrl = er32(PHY_CTRL);
	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
	ew32(PHY_CTRL, phy_ctrl);

3545 3546 3547 3548
	/*
	 * Call gig speed drop workaround on Gig disable before accessing
	 * any PHY registers
	 */
3549 3550 3551 3552 3553 3554 3555
	e1000e_gig_downshift_workaround_ich8lan(hw);

	/* unable to acquire PCS lock */
	return -E1000_ERR_PHY;
}

/**
3556
 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3557
 *  @hw: pointer to the HW structure
3558
 *  @state: boolean value used to set the current Kumeran workaround state
3559
 *
3560 3561
 *  If ICH8, set the current Kumeran workaround state (enabled - true
 *  /disabled - false).
3562 3563 3564 3565 3566 3567 3568
 **/
void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
						 bool state)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;

	if (hw->mac.type != e1000_ich8lan) {
3569
		e_dbg("Workaround applies to ICH8 only.\n");
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
		return;
	}

	dev_spec->kmrn_lock_loss_workaround_enabled = state;
}

/**
 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
 *  @hw: pointer to the HW structure
 *
 *  Workaround for 82566 power-down on D3 entry:
 *    1) disable gigabit link
 *    2) write VR power-down enable
 *    3) read it back
 *  Continue if successful, else issue LCD reset and repeat
 **/
void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
{
	u32 reg;
	u16 data;
	u8  retry = 0;

	if (hw->phy.type != e1000_phy_igp_3)
		return;

	/* Try the workaround twice (if needed) */
	do {
		/* Disable link */
		reg = er32(PHY_CTRL);
		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
		ew32(PHY_CTRL, reg);

3603 3604 3605 3606
		/*
		 * Call gig speed drop workaround on Gig disable before
		 * accessing any PHY registers
		 */
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
		if (hw->mac.type == e1000_ich8lan)
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* Write VR power-down enable */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);

		/* Read it back and test */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
			break;

		/* Issue PHY reset and repeat at most one more time */
		reg = er32(CTRL);
		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
		retry++;
	} while (retry);
}

/**
 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
 *  @hw: pointer to the HW structure
 *
 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3633
 *  LPLU, Gig disable, MDIC PHY reset):
3634 3635
 *    1) Set Kumeran Near-end loopback
 *    2) Clear Kumeran Near-end loopback
3636
 *  Should only be called for ICH8[m] devices with any 1G Phy.
3637 3638 3639 3640 3641 3642
 **/
void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 reg_data;

3643
	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
		return;

	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				      &reg_data);
	if (ret_val)
		return;
	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
	if (ret_val)
		return;
	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
}

3660
/**
3661
 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3662 3663 3664 3665
 *  @hw: pointer to the HW structure
 *
 *  During S0 to Sx transition, it is possible the link remains at gig
 *  instead of negotiating to a lower speed.  Before going to Sx, set
3666 3667 3668 3669
 *  'Gig Disable' to force link speed negotiation to a lower speed based on
 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
 *  needs to be written.
3670
 **/
3671
void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3672 3673
{
	u32 phy_ctrl;
3674
	s32 ret_val;
3675

3676
	phy_ctrl = er32(PHY_CTRL);
3677
	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
3678
	ew32(PHY_CTRL, phy_ctrl);
3679

3680 3681 3682
	if (hw->mac.type == e1000_ich8lan)
		e1000e_gig_downshift_workaround_ich8lan(hw);

3683
	if (hw->mac.type >= e1000_pchlan) {
3684
		e1000_oem_bits_config_ich8lan(hw, false);
B
Bruce Allan 已提交
3685
		e1000_phy_hw_reset_ich8lan(hw);
3686 3687 3688 3689 3690 3691
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return;
		e1000_write_smbus_addr(hw);
		hw->phy.ops.release(hw);
	}
3692 3693
}

3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
/**
 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
 *  @hw: pointer to the HW structure
 *
 *  During Sx to S0 transitions on non-managed devices or managed devices
 *  on which PHY resets are not blocked, if the PHY registers cannot be
 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
 *  the PHY.
 **/
void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
{
3705 3706
	u16 phy_id1, phy_id2;
	s32 ret_val;
3707

3708 3709
	if ((hw->mac.type != e1000_pch2lan) ||
	    hw->phy.ops.check_reset_block(hw))
3710 3711
		return;

3712 3713 3714 3715 3716
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val) {
		e_dbg("Failed to acquire PHY semaphore in resume\n");
		return;
	}
3717

3718 3719 3720 3721 3722 3723 3724
	/* Test access to the PHY registers by reading the ID regs */
	ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
	if (ret_val)
		goto release;
	ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
	if (ret_val)
		goto release;
3725

3726 3727 3728
	if (hw->phy.id == ((u32)(phy_id1 << 16) |
			   (u32)(phy_id2 & PHY_REVISION_MASK)))
		goto release;
3729

3730
	e1000_toggle_lanphypc_value_ich8lan(hw);
3731

3732 3733 3734 3735 3736
	hw->phy.ops.release(hw);
	msleep(50);
	e1000_phy_hw_reset(hw);
	msleep(50);
	return;
3737 3738 3739 3740 3741

release:
	hw->phy.ops.release(hw);
}

3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
/**
 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);

	ew32(LEDCTL, hw->mac.ledctl_default);
	return 0;
}

/**
3758
 *  e1000_led_on_ich8lan - Turn LEDs on
3759 3760
 *  @hw: pointer to the HW structure
 *
3761
 *  Turn on the LEDs.
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
 **/
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));

	ew32(LEDCTL, hw->mac.ledctl_mode2);
	return 0;
}

/**
3774
 *  e1000_led_off_ich8lan - Turn LEDs off
3775 3776
 *  @hw: pointer to the HW structure
 *
3777
 *  Turn off the LEDs.
3778 3779 3780 3781 3782
 **/
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3783 3784
				(IFE_PSCL_PROBE_MODE |
				 IFE_PSCL_PROBE_LEDS_OFF));
3785 3786 3787 3788 3789

	ew32(LEDCTL, hw->mac.ledctl_mode1);
	return 0;
}

3790 3791 3792 3793 3794 3795 3796 3797
/**
 *  e1000_setup_led_pchlan - Configures SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  This prepares the SW controllable LED for use.
 **/
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
{
3798
	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
}

/**
 *  e1000_cleanup_led_pchlan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
{
3809
	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
}

/**
 *  e1000_led_on_pchlan - Turn LEDs on
 *  @hw: pointer to the HW structure
 *
 *  Turn on the LEDs.
 **/
static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode2;
	u32 i, led;

	/*
	 * If no link, then turn LED on by setting the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode2.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

3840
	return e1e_wphy(hw, HV_LED_CONFIG, data);
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
}

/**
 *  e1000_led_off_pchlan - Turn LEDs off
 *  @hw: pointer to the HW structure
 *
 *  Turn off the LEDs.
 **/
static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode1;
	u32 i, led;

	/*
	 * If no link, then turn LED off by clearing the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode1.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

3871
	return e1e_wphy(hw, HV_LED_CONFIG, data);
3872 3873
}

3874
/**
3875
 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3876 3877
 *  @hw: pointer to the HW structure
 *
3878 3879 3880 3881 3882 3883 3884
 *  Read appropriate register for the config done bit for completion status
 *  and configure the PHY through s/w for EEPROM-less parts.
 *
 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
 *  config done bit, so only an error is logged and continues.  If we were
 *  to return with error, EEPROM-less silicon would not be able to be reset
 *  or change link.
3885 3886 3887
 **/
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
{
3888
	s32 ret_val = 0;
3889
	u32 bank = 0;
3890
	u32 status;
3891

3892
	e1000e_get_cfg_done(hw);
3893

3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
	/* Wait for indication from h/w that it has completed basic config */
	if (hw->mac.type >= e1000_ich10lan) {
		e1000_lan_init_done_ich8lan(hw);
	} else {
		ret_val = e1000e_get_auto_rd_done(hw);
		if (ret_val) {
			/*
			 * When auto config read does not complete, do not
			 * return with an error. This can happen in situations
			 * where there is no eeprom and prevents getting link.
			 */
			e_dbg("Auto Read Done did not complete\n");
			ret_val = 0;
		}
3908 3909
	}

3910 3911 3912 3913 3914 3915
	/* Clear PHY Reset Asserted bit */
	status = er32(STATUS);
	if (status & E1000_STATUS_PHYRA)
		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
	else
		e_dbg("PHY Reset Asserted not set - needs delay\n");
3916 3917

	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
3918
	if (hw->mac.type <= e1000_ich9lan) {
3919 3920 3921 3922 3923 3924 3925
		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
		    (hw->phy.type == e1000_phy_igp_3)) {
			e1000e_phy_init_script_igp3(hw);
		}
	} else {
		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
			/* Maybe we should do a basic PHY config */
3926
			e_dbg("EEPROM not present\n");
3927
			ret_val = -E1000_ERR_CONFIG;
3928 3929 3930
		}
	}

3931
	return ret_val;
3932 3933
}

3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
/**
 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
{
	/* If the management interface is not enabled, then power down */
	if (!(hw->mac.ops.check_mng_mode(hw) ||
	      hw->phy.ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);
}

3949 3950 3951 3952 3953 3954 3955 3956 3957
/**
 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
 *  @hw: pointer to the HW structure
 *
 *  Clears hardware counters specific to the silicon family and calls
 *  clear_hw_cntrs_generic to clear all general purpose counters.
 **/
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
{
3958
	u16 phy_data;
3959
	s32 ret_val;
3960 3961 3962

	e1000e_clear_hw_cntrs_base(hw);

3963 3964 3965 3966 3967 3968
	er32(ALGNERRC);
	er32(RXERRC);
	er32(TNCRS);
	er32(CEXTERR);
	er32(TSCTC);
	er32(TSCTFC);
3969

3970 3971 3972
	er32(MGTPRC);
	er32(MGTPDC);
	er32(MGTPTC);
3973

3974 3975
	er32(IAC);
	er32(ICRXOC);
3976

3977 3978
	/* Clear PHY statistics registers */
	if ((hw->phy.type == e1000_phy_82578) ||
3979
	    (hw->phy.type == e1000_phy_82579) ||
3980
	    (hw->phy.type == e1000_phy_82577)) {
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return;
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
		if (ret_val)
			goto release;
		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
release:
		hw->phy.ops.release(hw);
4004
	}
4005 4006
}

J
Jeff Kirsher 已提交
4007
static const struct e1000_mac_operations ich8_mac_ops = {
4008
	/* check_mng_mode dependent on mac type */
4009
	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4010
	/* cleanup_led dependent on mac type */
4011 4012
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
	.get_bus_info		= e1000_get_bus_info_ich8lan,
4013
	.set_lan_id		= e1000_set_lan_id_single_port,
4014
	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4015 4016
	/* led_on dependent on mac type */
	/* led_off dependent on mac type */
4017
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4018 4019 4020 4021
	.reset_hw		= e1000_reset_hw_ich8lan,
	.init_hw		= e1000_init_hw_ich8lan,
	.setup_link		= e1000_setup_link_ich8lan,
	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4022
	/* id_led_init dependent on mac type */
4023
	.config_collision_dist	= e1000e_config_collision_dist_generic,
4024 4025
};

J
Jeff Kirsher 已提交
4026
static const struct e1000_phy_operations ich8_phy_ops = {
4027
	.acquire		= e1000_acquire_swflag_ich8lan,
4028
	.check_reset_block	= e1000_check_reset_block_ich8lan,
4029
	.commit			= NULL,
4030
	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4031
	.get_cable_length	= e1000e_get_cable_length_igp_2,
4032 4033 4034
	.read_reg		= e1000e_read_phy_reg_igp,
	.release		= e1000_release_swflag_ich8lan,
	.reset			= e1000_phy_hw_reset_ich8lan,
4035 4036
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4037
	.write_reg		= e1000e_write_phy_reg_igp,
4038 4039
};

J
Jeff Kirsher 已提交
4040
static const struct e1000_nvm_operations ich8_nvm_ops = {
4041 4042 4043
	.acquire		= e1000_acquire_nvm_ich8lan,
	.read		 	= e1000_read_nvm_ich8lan,
	.release		= e1000_release_nvm_ich8lan,
4044
	.reload			= e1000e_reload_nvm_generic,
4045
	.update			= e1000_update_nvm_checksum_ich8lan,
4046
	.valid_led_default	= e1000_valid_led_default_ich8lan,
4047 4048
	.validate		= e1000_validate_nvm_checksum_ich8lan,
	.write			= e1000_write_nvm_ich8lan,
4049 4050
};

J
Jeff Kirsher 已提交
4051
const struct e1000_info e1000_ich8_info = {
4052 4053
	.mac			= e1000_ich8lan,
	.flags			= FLAG_HAS_WOL
4054
				  | FLAG_IS_ICH
4055 4056 4057 4058 4059
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 8,
4060
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
J
Jeff Kirsher 已提交
4061
	.get_variants		= e1000_get_variants_ich8lan,
4062 4063 4064 4065 4066
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

J
Jeff Kirsher 已提交
4067
const struct e1000_info e1000_ich9_info = {
4068 4069
	.mac			= e1000_ich9lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
4070
				  | FLAG_IS_ICH
4071 4072 4073 4074 4075
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
4076
	.pba			= 18,
4077
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
4078
	.get_variants		= e1000_get_variants_ich8lan,
4079 4080 4081 4082 4083
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

J
Jeff Kirsher 已提交
4084
const struct e1000_info e1000_ich10_info = {
4085 4086 4087 4088 4089 4090 4091 4092
	.mac			= e1000_ich10lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
				  | FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
4093
	.pba			= 18,
4094
	.max_hw_frame_size	= DEFAULT_JUMBO,
4095 4096 4097 4098 4099
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};
4100

J
Jeff Kirsher 已提交
4101
const struct e1000_info e1000_pch_info = {
4102 4103 4104 4105 4106 4107 4108
	.mac			= e1000_pchlan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
4109
				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4110
				  | FLAG_APME_IN_WUC,
4111
	.flags2			= FLAG2_HAS_PHY_STATS,
4112 4113 4114 4115 4116 4117 4118
	.pba			= 26,
	.max_hw_frame_size	= 4096,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};
4119

J
Jeff Kirsher 已提交
4120
const struct e1000_info e1000_pch2_info = {
4121 4122 4123 4124 4125 4126 4127 4128
	.mac			= e1000_pch2lan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_APME_IN_WUC,
4129 4130
	.flags2			= FLAG2_HAS_PHY_STATS
				  | FLAG2_HAS_EEE,
4131
	.pba			= 26,
4132 4133 4134 4135 4136 4137
	.max_hw_frame_size	= DEFAULT_JUMBO,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};