ich8lan.c 111.2 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
30
 * 82562G 10/100 Network Connection
31 32 33 34 35 36 37 38 39 40 41
 * 82562G-2 10/100 Network Connection
 * 82562GT 10/100 Network Connection
 * 82562GT-2 10/100 Network Connection
 * 82562V 10/100 Network Connection
 * 82562V-2 10/100 Network Connection
 * 82566DC-2 Gigabit Network Connection
 * 82566DC Gigabit Network Connection
 * 82566DM-2 Gigabit Network Connection
 * 82566DM Gigabit Network Connection
 * 82566MC Gigabit Network Connection
 * 82566MM Gigabit Network Connection
42 43
 * 82567LM Gigabit Network Connection
 * 82567LF Gigabit Network Connection
44
 * 82567V Gigabit Network Connection
45 46 47
 * 82567LM-2 Gigabit Network Connection
 * 82567LF-2 Gigabit Network Connection
 * 82567V-2 Gigabit Network Connection
48 49
 * 82567LF-3 Gigabit Network Connection
 * 82567LM-3 Gigabit Network Connection
50
 * 82567LM-4 Gigabit Network Connection
51 52 53 54
 * 82577LM Gigabit Network Connection
 * 82577LC Gigabit Network Connection
 * 82578DM Gigabit Network Connection
 * 82578DC Gigabit Network Connection
55 56
 * 82579LM Gigabit Network Connection
 * 82579V Gigabit Network Connection
57 58 59 60 61 62 63 64 65
 */

#include "e1000.h"

#define ICH_FLASH_GFPREG		0x0000
#define ICH_FLASH_HSFSTS		0x0004
#define ICH_FLASH_HSFCTL		0x0006
#define ICH_FLASH_FADDR			0x0008
#define ICH_FLASH_FDATA0		0x0010
66
#define ICH_FLASH_PR0			0x0074
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
#define ICH_FLASH_CYCLE_REPEAT_COUNT	10

#define ICH_CYCLE_READ			0
#define ICH_CYCLE_WRITE			2
#define ICH_CYCLE_ERASE			3

#define FLASH_GFPREG_BASE_MASK		0x1FFF
#define FLASH_SECTOR_ADDR_SHIFT		12

#define ICH_FLASH_SEG_SIZE_256		256
#define ICH_FLASH_SEG_SIZE_4K		4096
#define ICH_FLASH_SEG_SIZE_8K		8192
#define ICH_FLASH_SEG_SIZE_64K		65536


#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
88 89
/* FW established a valid mode */
#define E1000_ICH_FWSM_FW_VALID		0x00008000
90 91 92 93 94 95 96 97 98 99

#define E1000_ICH_MNG_IAMT_MODE		0x2

#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
				 (ID_LED_DEF1_OFF2 <<  8) | \
				 (ID_LED_DEF1_ON2  <<  4) | \
				 (ID_LED_DEF1_DEF2))

#define E1000_ICH_NVM_SIG_WORD		0x13
#define E1000_ICH_NVM_SIG_MASK		0xC000
100 101
#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
#define E1000_ICH_NVM_SIG_VALUE         0x80
102 103 104 105 106 107

#define E1000_ICH8_LAN_INIT_TIMEOUT	1500

#define E1000_FEXTNVM_SW_CONFIG		1
#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */

108 109 110 111
#define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
#define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
#define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3

112 113 114 115 116 117 118 119 120 121 122 123 124 125
#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL

#define E1000_ICH_RAR_ENTRIES		7

#define PHY_PAGE_SHIFT 5
#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
			   ((reg) & MAX_PHY_REG_ADDRESS))
#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */

#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200

126 127
#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */

128 129
#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */

130 131
/* SMBus Address Phy Register */
#define HV_SMB_ADDR            PHY_REG(768, 26)
132
#define HV_SMB_ADDR_MASK       0x007F
133 134 135
#define HV_SMB_ADDR_PEC_EN     0x0200
#define HV_SMB_ADDR_VALID      0x0080

136 137 138
/* PHY Power Management Control */
#define HV_PM_CTRL		PHY_REG(770, 17)

139
/* PHY Low Power Idle Control */
140 141 142
#define I82579_LPI_CTRL				PHY_REG(772, 20)
#define I82579_LPI_CTRL_ENABLE_MASK		0x6000
#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
143

144 145 146 147 148
/* EMI Registers */
#define I82579_EMI_ADDR         0x10
#define I82579_EMI_DATA         0x11
#define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */

149 150 151 152 153
/* Strapping Option Register - RO */
#define E1000_STRAP                     0x0000C
#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17

154 155 156
/* OEM Bits Phy Register */
#define HV_OEM_BITS            PHY_REG(768, 25)
#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
157
#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
158 159
#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */

160 161 162
#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */

163 164 165 166
/* KMRN Mode Control */
#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
#define HV_KMRN_MDIO_SLOW      0x0400

167 168 169 170 171
/* KMRN FIFO Control and Status */
#define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
/* Offset 04h HSFSTS */
union ich8_hws_flash_status {
	struct ich8_hsfsts {
		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
		u16 dael       :1; /* bit 2 Direct Access error Log */
		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
		u16 reserved1  :2; /* bit 13:6 Reserved */
		u16 reserved2  :6; /* bit 13:6 Reserved */
		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
	} hsf_status;
	u16 regval;
};

/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
/* Offset 06h FLCTL */
union ich8_hws_flash_ctrl {
	struct ich8_hsflctl {
		u16 flcgo      :1;   /* 0 Flash Cycle Go */
		u16 flcycle    :2;   /* 2:1 Flash Cycle */
		u16 reserved   :5;   /* 7:3 Reserved  */
		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
		u16 flockdn    :6;   /* 15:10 Reserved */
	} hsf_ctrl;
	u16 regval;
};

/* ICH Flash Region Access Permissions */
union ich8_hws_flash_regacc {
	struct ich8_flracc {
		u32 grra      :8; /* 0:7 GbE region Read Access */
		u32 grwa      :8; /* 8:15 GbE region Write Access */
		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
	} hsf_flregacc;
	u16 regval;
};

213 214 215 216 217 218 219 220 221 222 223 224 225
/* ICH Flash Protected Region */
union ich8_flash_protected_range {
	struct ich8_pr {
		u32 base:13;     /* 0:12 Protected Range Base */
		u32 reserved1:2; /* 13:14 Reserved */
		u32 rpe:1;       /* 15 Read Protection Enable */
		u32 limit:13;    /* 16:28 Protected Range Limit */
		u32 reserved2:2; /* 29:30 Reserved */
		u32 wpe:1;       /* 31 Write Protection Enable */
	} range;
	u32 regval;
};

226 227 228 229 230 231
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte);
232 233
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data);
234 235 236 237 238 239
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data);
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data);
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
240
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
241 242 243 244 245 246 247 248
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
249
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
250
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
251
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
252
static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
253
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
254 255
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
256
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
257
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
{
	return readw(hw->flash_address + reg);
}

static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
{
	return readl(hw->flash_address + reg);
}

static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
{
	writew(val, hw->flash_address + reg);
}

static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
{
	writel(val, hw->flash_address + reg);
}

#define er16flash(reg)		__er16flash(hw, (reg))
#define er32flash(reg)		__er32flash(hw, (reg))
#define ew16flash(reg,val)	__ew16flash(hw, (reg), (val))
#define ew32flash(reg,val)	__ew32flash(hw, (reg), (val))

284 285 286 287 288 289 290 291
static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
{
	u32 ctrl;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
	ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
	ew32(CTRL, ctrl);
292
	e1e_flush();
293 294 295 296 297
	udelay(10);
	ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
	ew32(CTRL, ctrl);
}

298 299 300 301 302 303 304 305 306
/**
 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
307
	u32 fwsm;
308 309 310 311 312
	s32 ret_val = 0;

	phy->addr                     = 1;
	phy->reset_delay_us           = 100;

313
	phy->ops.set_page             = e1000_set_page_igp;
314 315
	phy->ops.read_reg             = e1000_read_phy_reg_hv;
	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
316
	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
317 318
	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
319 320
	phy->ops.write_reg            = e1000_write_phy_reg_hv;
	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
321
	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
322 323
	phy->ops.power_up             = e1000_power_up_phy_copper;
	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
324 325
	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;

326 327 328 329 330 331
	/*
	 * The MAC-PHY interconnect may still be in SMBus mode
	 * after Sx->S0.  If the manageability engine (ME) is
	 * disabled, then toggle the LANPHYPC Value bit to force
	 * the interconnect to PCIe mode.
	 */
332
	fwsm = er32(FWSM);
333
	if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) {
334
		e1000_toggle_lanphypc_value_ich8lan(hw);
335
		msleep(50);
336 337 338 339 340 341 342

		/*
		 * Gate automatic PHY configuration by hardware on
		 * non-managed 82579
		 */
		if (hw->mac.type == e1000_pch2lan)
			e1000_gate_hw_phy_config_ich8lan(hw, true);
343 344
	}

345
	/*
346
	 * Reset the PHY before any access to it.  Doing so, ensures that
347 348 349 350 351 352 353 354
	 * the PHY is in a known good state before we read/write PHY registers.
	 * The generic reset is sufficient here, because we haven't determined
	 * the PHY type yet.
	 */
	ret_val = e1000e_phy_hw_reset_generic(hw);
	if (ret_val)
		goto out;

355
	/* Ungate automatic PHY configuration on non-managed 82579 */
356
	if ((hw->mac.type == e1000_pch2lan) &&
357
	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
358
		usleep_range(10000, 20000);
359 360 361
		e1000_gate_hw_phy_config_ich8lan(hw, false);
	}

362
	phy->id = e1000_phy_unknown;
363 364 365 366 367 368 369 370 371
	switch (hw->mac.type) {
	default:
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
			goto out;
		if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
			break;
		/* fall-through */
	case e1000_pch2lan:
372
		/*
373
		 * In case the PHY needs to be in mdio slow mode,
374 375 376 377 378 379 380 381
		 * set slow mode and try to get the PHY id again.
		 */
		ret_val = e1000_set_mdio_slow_mode_hv(hw);
		if (ret_val)
			goto out;
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
			goto out;
382
		break;
383
	}
384 385
	phy->type = e1000e_get_phy_type_from_id(phy->id);

386 387
	switch (phy->type) {
	case e1000_phy_82577:
388
	case e1000_phy_82579:
389 390
		phy->ops.check_polarity = e1000_check_polarity_82577;
		phy->ops.force_speed_duplex =
391
		    e1000_phy_force_speed_duplex_82577;
392
		phy->ops.get_cable_length = e1000_get_cable_length_82577;
393 394
		phy->ops.get_info = e1000_get_phy_info_82577;
		phy->ops.commit = e1000e_phy_sw_reset;
395
		break;
396 397 398 399 400 401 402 403 404
	case e1000_phy_82578:
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
		phy->ops.get_info = e1000e_get_phy_info_m88;
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		break;
405 406
	}

407
out:
408 409 410
	return ret_val;
}

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
/**
 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 i = 0;

	phy->addr			= 1;
	phy->reset_delay_us		= 100;

426 427 428
	phy->ops.power_up               = e1000_power_up_phy_copper;
	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;

429 430 431 432 433 434
	/*
	 * We may need to do this twice - once for IGP and if that fails,
	 * we'll set BM func pointers and try again
	 */
	ret_val = e1000e_determine_phy_address(hw);
	if (ret_val) {
435 436
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
437
		ret_val = e1000e_determine_phy_address(hw);
B
Bruce Allan 已提交
438 439
		if (ret_val) {
			e_dbg("Cannot determine PHY addr. Erroring out\n");
440
			return ret_val;
B
Bruce Allan 已提交
441
		}
442 443
	}

444 445 446
	phy->id = 0;
	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
	       (i++ < 100)) {
447
		usleep_range(1000, 2000);
448 449 450 451 452 453 454 455 456 457
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
			return ret_val;
	}

	/* Verify phy id */
	switch (phy->id) {
	case IGP03E1000_E_PHY_ID:
		phy->type = e1000_phy_igp_3;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
458 459
		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
460 461 462
		phy->ops.get_info = e1000e_get_phy_info_igp;
		phy->ops.check_polarity = e1000_check_polarity_igp;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
463 464 465 466 467 468
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		phy->type = e1000_phy_ife;
		phy->autoneg_mask = E1000_ALL_NOT_GIG;
469 470 471
		phy->ops.get_info = e1000_get_phy_info_ife;
		phy->ops.check_polarity = e1000_check_polarity_ife;
		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
472
		break;
473 474 475
	case BME1000_E_PHY_ID:
		phy->type = e1000_phy_bm;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
476 477 478
		phy->ops.read_reg = e1000e_read_phy_reg_bm;
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.commit = e1000e_phy_sw_reset;
479 480 481
		phy->ops.get_info = e1000e_get_phy_info_m88;
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
482
		break;
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific NVM parameters and function
 *  pointers.
 **/
static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
502
	u32 gfpreg, sector_base_addr, sector_end_addr;
503 504
	u16 i;

505
	/* Can't read flash registers if the register set isn't mapped. */
506
	if (!hw->flash_address) {
507
		e_dbg("ERROR: Flash registers not mapped\n");
508 509 510 511 512 513 514
		return -E1000_ERR_CONFIG;
	}

	nvm->type = e1000_nvm_flash_sw;

	gfpreg = er32flash(ICH_FLASH_GFPREG);

515 516
	/*
	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
517
	 * Add 1 to sector_end_addr since this sector is included in
518 519
	 * the overall size.
	 */
520 521 522 523 524 525
	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;

	/* flash_base_addr is byte-aligned */
	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;

526 527 528 529
	/*
	 * find total size of the NVM, then cut in half since the total
	 * size represents two separate NVM banks.
	 */
530 531 532 533 534 535 536 537 538 539
	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
				<< FLASH_SECTOR_ADDR_SHIFT;
	nvm->flash_bank_size /= 2;
	/* Adjust to word count */
	nvm->flash_bank_size /= sizeof(u16);

	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;

	/* Clear shadow ram */
	for (i = 0; i < nvm->word_size; i++) {
540
		dev_spec->shadow_ram[i].modified = false;
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
		dev_spec->shadow_ram[i].value    = 0xFFFF;
	}

	return 0;
}

/**
 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific MAC parameters and function
 *  pointers.
 **/
static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &hw->mac;

	/* Set media type function pointer */
560
	hw->phy.media_type = e1000_media_type_copper;
561 562 563 564 565 566 567

	/* Set mta register count */
	mac->mta_reg_count = 32;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
	if (mac->type == e1000_ich8lan)
		mac->rar_entry_count--;
568 569 570 571
	/* FWSM register */
	mac->has_fwsm = true;
	/* ARC subsystem not supported */
	mac->arc_subsystem_valid = false;
572 573
	/* Adaptive IFS supported */
	mac->adaptive_ifs = true;
574

575 576 577 578 579
	/* LED operations */
	switch (mac->type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
580 581
		/* check management mode */
		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
582 583
		/* ID LED init */
		mac->ops.id_led_init = e1000e_id_led_init;
584 585
		/* blink LED */
		mac->ops.blink_led = e1000e_blink_led_generic;
586 587 588 589 590 591 592 593 594
		/* setup LED */
		mac->ops.setup_led = e1000e_setup_led_generic;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_ich8lan;
		mac->ops.led_off = e1000_led_off_ich8lan;
		break;
	case e1000_pchlan:
595
	case e1000_pch2lan:
596 597
		/* check management mode */
		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
598 599 600 601 602 603 604 605 606 607 608 609 610 611
		/* ID LED init */
		mac->ops.id_led_init = e1000_id_led_init_pchlan;
		/* setup LED */
		mac->ops.setup_led = e1000_setup_led_pchlan;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_pchlan;
		mac->ops.led_off = e1000_led_off_pchlan;
		break;
	default:
		break;
	}

612 613
	/* Enable PCS Lock-loss workaround for ICH8 */
	if (mac->type == e1000_ich8lan)
614
		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
615

616 617 618 619
	/* Gate automatic PHY configuration by hardware on managed 82579 */
	if ((mac->type == e1000_pch2lan) &&
	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		e1000_gate_hw_phy_config_ich8lan(hw, true);
620

621 622 623
	return 0;
}

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
/**
 *  e1000_set_eee_pchlan - Enable/disable EEE support
 *  @hw: pointer to the HW structure
 *
 *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
 *  the LPI Control register will remain set only if/when link is up.
 **/
static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 phy_reg;

	if (hw->phy.type != e1000_phy_82579)
		goto out;

	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
	if (ret_val)
		goto out;

	if (hw->dev_spec.ich8lan.eee_disable)
		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
	else
		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;

	ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
out:
	return ret_val;
}

653 654 655 656 657 658 659 660 661 662 663 664 665
/**
 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 *  @hw: pointer to the HW structure
 *
 *  Checks to see of the link status of the hardware has changed.  If a
 *  change in link status has been detected, then we read the PHY registers
 *  to get the current speed/duplex if link exists.
 **/
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	bool link;
666
	u16 phy_reg;
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687

	/*
	 * We only want to go out to the PHY registers to see if Auto-Neg
	 * has completed and/or if our link status has changed.  The
	 * get_link_status flag is set upon receiving a Link Status
	 * Change or Rx Sequence Error interrupt.
	 */
	if (!mac->get_link_status) {
		ret_val = 0;
		goto out;
	}

	/*
	 * First we want to see if the MII Status Register reports
	 * link.  If so, then we want to get the current speed/duplex
	 * of the PHY.
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
		goto out;

688 689 690 691 692 693
	if (hw->mac.type == e1000_pchlan) {
		ret_val = e1000_k1_gig_workaround_hv(hw, link);
		if (ret_val)
			goto out;
	}

694 695 696 697 698
	if (!link)
		goto out; /* No link detected */

	mac->get_link_status = false;

699 700
	switch (hw->mac.type) {
	case e1000_pch2lan:
701 702 703
		ret_val = e1000_k1_workaround_lv(hw);
		if (ret_val)
			goto out;
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
		/* fall-thru */
	case e1000_pchlan:
		if (hw->phy.type == e1000_phy_82578) {
			ret_val = e1000_link_stall_workaround_hv(hw);
			if (ret_val)
				goto out;
		}

		/*
		 * Workaround for PCHx parts in half-duplex:
		 * Set the number of preambles removed from the packet
		 * when it is passed from the PHY to the MAC to prevent
		 * the MAC from misinterpreting the packet type.
		 */
		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;

		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);

		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
		break;
	default:
		break;
728 729
	}

730 731 732 733 734 735
	/*
	 * Check if there was DownShift, must be checked
	 * immediately after link-up
	 */
	e1000e_check_downshift(hw);

736 737 738 739 740
	/* Enable/Disable EEE after link up */
	ret_val = e1000_set_eee_pchlan(hw);
	if (ret_val)
		goto out;

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	/*
	 * If we are forcing speed/duplex, then we simply return since
	 * we have already determined whether we have link or not.
	 */
	if (!mac->autoneg) {
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

	/*
	 * Auto-Neg is enabled.  Auto Speed Detection takes care
	 * of MAC speed/duplex configuration.  So we only need to
	 * configure Collision Distance in the MAC.
	 */
	e1000e_config_collision_dist(hw);

	/*
	 * Configure Flow Control now that Auto-Neg has completed.
	 * First, we need to restore the desired flow control
	 * settings because we may have had to re-autoneg with a
	 * different link partner.
	 */
	ret_val = e1000e_config_fc_after_link_up(hw);
	if (ret_val)
765
		e_dbg("Error configuring flow control\n");
766 767 768 769 770

out:
	return ret_val;
}

J
Jeff Kirsher 已提交
771
static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
772 773 774 775 776 777 778 779 780 781 782 783
{
	struct e1000_hw *hw = &adapter->hw;
	s32 rc;

	rc = e1000_init_mac_params_ich8lan(adapter);
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_ich8lan(hw);
	if (rc)
		return rc;

784 785 786 787
	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
788
		rc = e1000_init_phy_params_ich8lan(hw);
789 790 791 792 793 794 795 796
		break;
	case e1000_pchlan:
	case e1000_pch2lan:
		rc = e1000_init_phy_params_pchlan(hw);
		break;
	default:
		break;
	}
797 798 799
	if (rc)
		return rc;

800 801 802 803 804 805 806
	/*
	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
	 */
	if ((adapter->hw.phy.type == e1000_phy_ife) ||
	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
807 808
		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
809 810

		hw->mac.ops.blink_led = NULL;
811 812
	}

813 814 815 816
	if ((adapter->hw.mac.type == e1000_ich8lan) &&
	    (adapter->hw.phy.type == e1000_phy_igp_3))
		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;

817 818 819 820 821
	/* Enable workaround for 82579 w/ ME enabled */
	if ((adapter->hw.mac.type == e1000_pch2lan) &&
	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;

822 823 824 825
	/* Disable EEE by default until IEEE802.3az spec is finalized */
	if (adapter->flags2 & FLAG2_HAS_EEE)
		adapter->hw.dev_spec.ich8lan.eee_disable = true;

826 827 828
	return 0;
}

829 830
static DEFINE_MUTEX(nvm_mutex);

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
/**
 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Acquires the mutex for performing NVM operations.
 **/
static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
{
	mutex_lock(&nvm_mutex);

	return 0;
}

/**
 *  e1000_release_nvm_ich8lan - Release NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Releases the mutex used while performing NVM operations.
 **/
static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
{
	mutex_unlock(&nvm_mutex);
}

static DEFINE_MUTEX(swflag_mutex);

857 858 859 860
/**
 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
 *  @hw: pointer to the HW structure
 *
861 862
 *  Acquires the software control flag for performing PHY and select
 *  MAC CSR accesses.
863 864 865
 **/
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
{
866 867
	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = 0;
868

869
	mutex_lock(&swflag_mutex);
870

871 872
	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
873 874
		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
			break;
875

876 877 878 879 880
		mdelay(1);
		timeout--;
	}

	if (!timeout) {
881
		e_dbg("SW/FW/HW has locked the resource for too long.\n");
882 883 884 885
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

886
	timeout = SW_FLAG_TIMEOUT;
887 888 889 890 891 892 893 894

	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
	ew32(EXTCNF_CTRL, extcnf_ctrl);

	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
			break;
895

896 897 898 899 900
		mdelay(1);
		timeout--;
	}

	if (!timeout) {
901
		e_dbg("Failed to acquire the semaphore.\n");
902 903
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
904 905
		ret_val = -E1000_ERR_CONFIG;
		goto out;
906 907
	}

908 909
out:
	if (ret_val)
910
		mutex_unlock(&swflag_mutex);
911 912

	return ret_val;
913 914 915 916 917 918
}

/**
 *  e1000_release_swflag_ich8lan - Release software control flag
 *  @hw: pointer to the HW structure
 *
919 920
 *  Releases the software control flag for performing PHY and select
 *  MAC CSR accesses.
921 922 923 924 925 926
 **/
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;

	extcnf_ctrl = er32(EXTCNF_CTRL);
927 928 929 930 931 932 933

	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
	} else {
		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
	}
934

935
	mutex_unlock(&swflag_mutex);
936 937
}

938 939 940 941
/**
 *  e1000_check_mng_mode_ich8lan - Checks management mode
 *  @hw: pointer to the HW structure
 *
942
 *  This checks if the adapter has any manageability enabled.
943 944 945 946 947
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
{
948 949 950
	u32 fwsm;

	fwsm = er32(FWSM);
951 952 953 954
	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
	       ((fwsm & E1000_FWSM_MODE_MASK) ==
		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
}
955

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
/**
 *  e1000_check_mng_mode_pchlan - Checks management mode
 *  @hw: pointer to the HW structure
 *
 *  This checks if the adapter has iAMT enabled.
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);
	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
971 972
}

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
/**
 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Checks if firmware is blocking the reset of the PHY.
 *  This is a function pointer entry point only called by
 *  reset routines.
 **/
static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);

	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
/**
 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
 *  @hw: pointer to the HW structure
 *
 *  Assumes semaphore already acquired.
 *
 **/
static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
{
	u16 phy_data;
	u32 strap = er32(STRAP);
	s32 ret_val = 0;

	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;

	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
	if (ret_val)
		goto out;

	phy_data &= ~HV_SMB_ADDR_MASK;
	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
	ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);

out:
	return ret_val;
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
/**
 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
 *  @hw:   pointer to the HW structure
 *
 *  SW should configure the LCD from the NVM extended configuration region
 *  as a workaround for certain parts.
 **/
static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1029
	s32 ret_val = 0;
1030 1031 1032 1033 1034 1035 1036 1037 1038
	u16 word_addr, reg_data, reg_addr, phy_page = 0;

	/*
	 * Initialize the PHY from the NVM on ICH platforms.  This
	 * is needed due to an issue where the NVM configuration is
	 * not properly autoloaded after power transitions.
	 * Therefore, after each PHY reset, we will load the
	 * configuration data out of the NVM manually.
	 */
1039 1040 1041 1042 1043
	switch (hw->mac.type) {
	case e1000_ich8lan:
		if (phy->type != e1000_phy_igp_3)
			return ret_val;

B
Bruce Allan 已提交
1044 1045
		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1046 1047 1048 1049 1050
			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
			break;
		}
		/* Fall-thru */
	case e1000_pchlan:
1051
	case e1000_pch2lan:
1052
		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1053 1054 1055 1056 1057 1058 1059 1060
		break;
	default:
		return ret_val;
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;
1061 1062 1063 1064

	data = er32(FEXTNVM);
	if (!(data & sw_cfg_mask))
		goto out;
1065

1066 1067 1068 1069 1070
	/*
	 * Make sure HW does not configure LCD from PHY
	 * extended configuration before SW configuration
	 */
	data = er32(EXTCNF_CTRL);
1071 1072 1073 1074
	if (!(hw->mac.type == e1000_pch2lan)) {
		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
			goto out;
	}
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

	cnf_size = er32(EXTCNF_SIZE);
	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
	if (!cnf_size)
		goto out;

	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;

1085 1086 1087
	if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
	    (hw->mac.type == e1000_pchlan)) ||
	     (hw->mac.type == e1000_pch2lan)) {
1088
		/*
1089 1090 1091 1092
		 * HW configures the SMBus address and LEDs when the
		 * OEM and LCD Write Enable bits are set in the NVM.
		 * When both NVM bits are cleared, SW will configure
		 * them instead.
1093
		 */
1094
		ret_val = e1000_write_smbus_addr(hw);
1095
		if (ret_val)
1096 1097
			goto out;

1098 1099 1100 1101
		data = er32(LEDCTL);
		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
							(u16)data);
		if (ret_val)
1102
			goto out;
1103
	}
1104

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	/* Configure LCD from extended configuration region. */

	/* cnf_base_addr is in DWORD */
	word_addr = (u16)(cnf_base_addr << 1);

	for (i = 0; i < cnf_size; i++) {
		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
					 &reg_data);
		if (ret_val)
			goto out;

		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
					 1, &reg_addr);
		if (ret_val)
			goto out;

		/* Save off the PHY page for future writes. */
		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
			phy_page = reg_data;
			continue;
1125
		}
1126 1127 1128 1129 1130 1131 1132 1133

		reg_addr &= PHY_REG_MASK;
		reg_addr |= phy_page;

		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
						    reg_data);
		if (ret_val)
			goto out;
1134 1135 1136
	}

out:
1137
	hw->phy.ops.release(hw);
1138 1139 1140
	return ret_val;
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
/**
 *  e1000_k1_gig_workaround_hv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *  @link: link up bool flag
 *
 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
 *  If link is down, the function will restore the default K1 setting located
 *  in the NVM.
 **/
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
{
	s32 ret_val = 0;
	u16 status_reg = 0;
	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;

	if (hw->mac.type != e1000_pchlan)
		goto out;

	/* Wrap the whole flow with the sw flag */
1161
	ret_val = hw->phy.ops.acquire(hw);
1162 1163 1164 1165 1166 1167
	if (ret_val)
		goto out;

	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
	if (link) {
		if (hw->phy.type == e1000_phy_82578) {
1168
			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
			                                          &status_reg);
			if (ret_val)
				goto release;

			status_reg &= BM_CS_STATUS_LINK_UP |
			              BM_CS_STATUS_RESOLVED |
			              BM_CS_STATUS_SPEED_MASK;

			if (status_reg == (BM_CS_STATUS_LINK_UP |
			                   BM_CS_STATUS_RESOLVED |
			                   BM_CS_STATUS_SPEED_1000))
				k1_enable = false;
		}

		if (hw->phy.type == e1000_phy_82577) {
1184
			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
			                                          &status_reg);
			if (ret_val)
				goto release;

			status_reg &= HV_M_STATUS_LINK_UP |
			              HV_M_STATUS_AUTONEG_COMPLETE |
			              HV_M_STATUS_SPEED_MASK;

			if (status_reg == (HV_M_STATUS_LINK_UP |
			                   HV_M_STATUS_AUTONEG_COMPLETE |
			                   HV_M_STATUS_SPEED_1000))
				k1_enable = false;
		}

		/* Link stall fix for link up */
1200
		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1201 1202 1203 1204 1205 1206
		                                           0x0100);
		if (ret_val)
			goto release;

	} else {
		/* Link stall fix for link down */
1207
		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1208 1209 1210 1211 1212 1213 1214 1215
		                                           0x4100);
		if (ret_val)
			goto release;
	}

	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);

release:
1216
	hw->phy.ops.release(hw);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
out:
	return ret_val;
}

/**
 *  e1000_configure_k1_ich8lan - Configure K1 power state
 *  @hw: pointer to the HW structure
 *  @enable: K1 state to configure
 *
 *  Configure the K1 power state based on the provided parameter.
 *  Assumes semaphore already acquired.
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 **/
1231
s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
{
	s32 ret_val = 0;
	u32 ctrl_reg = 0;
	u32 ctrl_ext = 0;
	u32 reg = 0;
	u16 kmrn_reg = 0;

	ret_val = e1000e_read_kmrn_reg_locked(hw,
	                                     E1000_KMRNCTRLSTA_K1_CONFIG,
	                                     &kmrn_reg);
	if (ret_val)
		goto out;

	if (k1_enable)
		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
	else
		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;

	ret_val = e1000e_write_kmrn_reg_locked(hw,
	                                      E1000_KMRNCTRLSTA_K1_CONFIG,
	                                      kmrn_reg);
	if (ret_val)
		goto out;

	udelay(20);
	ctrl_ext = er32(CTRL_EXT);
	ctrl_reg = er32(CTRL);

	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
	reg |= E1000_CTRL_FRCSPD;
	ew32(CTRL, reg);

	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1265
	e1e_flush();
1266 1267 1268
	udelay(20);
	ew32(CTRL, ctrl_reg);
	ew32(CTRL_EXT, ctrl_ext);
1269
	e1e_flush();
1270 1271 1272 1273 1274 1275
	udelay(20);

out:
	return ret_val;
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
/**
 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
 *  @hw:       pointer to the HW structure
 *  @d0_state: boolean if entering d0 or d3 device state
 *
 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
 **/
static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
{
	s32 ret_val = 0;
	u32 mac_reg;
	u16 oem_reg;

1291
	if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1292 1293
		return ret_val;

1294
	ret_val = hw->phy.ops.acquire(hw);
1295 1296 1297
	if (ret_val)
		return ret_val;

1298 1299 1300 1301 1302
	if (!(hw->mac.type == e1000_pch2lan)) {
		mac_reg = er32(EXTCNF_CTRL);
		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
			goto out;
	}
1303 1304 1305 1306 1307 1308 1309

	mac_reg = er32(FEXTNVM);
	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
		goto out;

	mac_reg = er32(PHY_CTRL);

1310
	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	if (ret_val)
		goto out;

	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);

	if (d0_state) {
		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
			oem_reg |= HV_OEM_BITS_GBE_DIS;

		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
			oem_reg |= HV_OEM_BITS_LPLU;
	} else {
		if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
			oem_reg |= HV_OEM_BITS_GBE_DIS;

		if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
			oem_reg |= HV_OEM_BITS_LPLU;
	}
	/* Restart auto-neg to activate the bits */
1330 1331
	if (!e1000_check_reset_block(hw))
		oem_reg |= HV_OEM_BITS_RESTART_AN;
1332
	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1333 1334

out:
1335
	hw->phy.ops.release(hw);
1336 1337 1338 1339 1340

	return ret_val;
}


1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
/**
 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
 *  @hw:   pointer to the HW structure
 **/
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
	if (ret_val)
		return ret_val;

	data |= HV_KMRN_MDIO_SLOW;

	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);

	return ret_val;
}

1361 1362 1363 1364 1365 1366 1367
/**
 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
1368
	u16 phy_data;
1369 1370 1371 1372

	if (hw->mac.type != e1000_pchlan)
		return ret_val;

1373 1374 1375 1376 1377 1378 1379
	/* Set MDIO slow mode before any other MDIO access */
	if (hw->phy.type == e1000_phy_82577) {
		ret_val = e1000_set_mdio_slow_mode_hv(hw);
		if (ret_val)
			goto out;
	}

1380 1381 1382 1383 1384 1385 1386 1387 1388
	if (((hw->phy.type == e1000_phy_82577) &&
	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
		/* Disable generation of early preamble */
		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
		if (ret_val)
			return ret_val;

		/* Preamble tuning for SSC */
1389
		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
		if (ret_val)
			return ret_val;
	}

	if (hw->phy.type == e1000_phy_82578) {
		/*
		 * Return registers to default by doing a soft reset then
		 * writing 0x3140 to the control register.
		 */
		if (hw->phy.revision < 2) {
			e1000e_phy_sw_reset(hw);
			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
		}
	}

	/* Select page 0 */
1406
	ret_val = hw->phy.ops.acquire(hw);
1407 1408
	if (ret_val)
		return ret_val;
1409

1410
	hw->phy.addr = 1;
1411
	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1412
	hw->phy.ops.release(hw);
1413 1414
	if (ret_val)
		goto out;
1415

1416 1417 1418 1419 1420
	/*
	 * Configure the K1 Si workaround during phy reset assuming there is
	 * link so that it disables K1 if link is in 1Gbps.
	 */
	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1421 1422
	if (ret_val)
		goto out;
1423

1424 1425 1426 1427
	/* Workaround for link disconnects on a busy hub in half duplex */
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;
1428
	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1429 1430
	if (ret_val)
		goto release;
1431 1432
	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
					       phy_data & 0x00FF);
1433 1434
release:
	hw->phy.ops.release(hw);
1435
out:
1436 1437 1438
	return ret_val;
}

1439 1440 1441 1442 1443 1444 1445
/**
 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
 *  @hw:   pointer to the HW structure
 **/
void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
{
	u32 mac_reg;
1446 1447 1448 1449 1450 1451 1452 1453 1454
	u16 i, phy_reg = 0;
	s32 ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;
	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
	if (ret_val)
		goto release;
1455 1456 1457 1458

	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
		mac_reg = er32(RAL(i));
1459 1460 1461 1462 1463
		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
					   (u16)((mac_reg >> 16) & 0xFFFF));

1464
		mac_reg = er32(RAH(i));
1465 1466 1467 1468 1469
		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
					   (u16)((mac_reg & E1000_RAH_AV)
						 >> 16));
1470
	}
1471 1472 1473 1474 1475

	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);

release:
	hw->phy.ops.release(hw);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
}

/**
 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
 *  with 82579 PHY
 *  @hw: pointer to the HW structure
 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
 **/
s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
{
	s32 ret_val = 0;
	u16 phy_reg, data;
	u32 mac_reg;
	u16 i;

	if (hw->mac.type != e1000_pch2lan)
		goto out;

	/* disable Rx path while enabling/disabling workaround */
	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
	if (ret_val)
		goto out;

	if (enable) {
		/*
		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
		 * SHRAL/H) and initial CRC values to the MAC
		 */
		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
			u8 mac_addr[ETH_ALEN] = {0};
			u32 addr_high, addr_low;

			addr_high = er32(RAH(i));
			if (!(addr_high & E1000_RAH_AV))
				continue;
			addr_low = er32(RAL(i));
			mac_addr[0] = (addr_low & 0xFF);
			mac_addr[1] = ((addr_low >> 8) & 0xFF);
			mac_addr[2] = ((addr_low >> 16) & 0xFF);
			mac_addr[3] = ((addr_low >> 24) & 0xFF);
			mac_addr[4] = (addr_high & 0xFF);
			mac_addr[5] = ((addr_high >> 8) & 0xFF);

1520
			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
		}

		/* Write Rx addresses to the PHY */
		e1000_copy_rx_addrs_to_phy_ich8lan(hw);

		/* Enable jumbo frame workaround in the MAC */
		mac_reg = er32(FFLT_DBG);
		mac_reg &= ~(1 << 14);
		mac_reg |= (7 << 15);
		ew32(FFLT_DBG, mac_reg);

		mac_reg = er32(RCTL);
		mac_reg |= E1000_RCTL_SECRC;
		ew32(RCTL, mac_reg);

		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						&data);
		if (ret_val)
			goto out;
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						data | (1 << 0));
		if (ret_val)
			goto out;
		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						&data);
		if (ret_val)
			goto out;
		data &= ~(0xF << 8);
		data |= (0xB << 8);
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						data);
		if (ret_val)
			goto out;

		/* Enable jumbo frame workaround in the PHY */
		e1e_rphy(hw, PHY_REG(769, 23), &data);
		data &= ~(0x7F << 5);
		data |= (0x37 << 5);
		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
		if (ret_val)
			goto out;
		e1e_rphy(hw, PHY_REG(769, 16), &data);
		data &= ~(1 << 13);
		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
		if (ret_val)
			goto out;
		e1e_rphy(hw, PHY_REG(776, 20), &data);
		data &= ~(0x3FF << 2);
		data |= (0x1A << 2);
		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
		if (ret_val)
			goto out;
		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00);
		if (ret_val)
			goto out;
		e1e_rphy(hw, HV_PM_CTRL, &data);
		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
		if (ret_val)
			goto out;
	} else {
		/* Write MAC register values back to h/w defaults */
		mac_reg = er32(FFLT_DBG);
		mac_reg &= ~(0xF << 14);
		ew32(FFLT_DBG, mac_reg);

		mac_reg = er32(RCTL);
		mac_reg &= ~E1000_RCTL_SECRC;
1592
		ew32(RCTL, mac_reg);
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						&data);
		if (ret_val)
			goto out;
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						data & ~(1 << 0));
		if (ret_val)
			goto out;
		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						&data);
		if (ret_val)
			goto out;
		data &= ~(0xF << 8);
		data |= (0xB << 8);
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						data);
		if (ret_val)
			goto out;

		/* Write PHY register values back to h/w defaults */
		e1e_rphy(hw, PHY_REG(769, 23), &data);
		data &= ~(0x7F << 5);
		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
		if (ret_val)
			goto out;
		e1e_rphy(hw, PHY_REG(769, 16), &data);
		data |= (1 << 13);
		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
		if (ret_val)
			goto out;
		e1e_rphy(hw, PHY_REG(776, 20), &data);
		data &= ~(0x3FF << 2);
		data |= (0x8 << 2);
		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
		if (ret_val)
			goto out;
		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
		if (ret_val)
			goto out;
		e1e_rphy(hw, HV_PM_CTRL, &data);
		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
		if (ret_val)
			goto out;
	}

	/* re-enable Rx path after enabling/disabling workaround */
	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));

out:
	return ret_val;
}

/**
 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	if (hw->mac.type != e1000_pch2lan)
		goto out;

	/* Set MDIO slow mode before any other MDIO access */
	ret_val = e1000_set_mdio_slow_mode_hv(hw);

out:
	return ret_val;
}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
/**
 *  e1000_k1_gig_workaround_lv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *
 *  Workaround to set the K1 beacon duration for 82579 parts
 **/
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 status_reg = 0;
	u32 mac_reg;
1679
	u16 phy_reg;
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

	if (hw->mac.type != e1000_pch2lan)
		goto out;

	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
	if (ret_val)
		goto out;

	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
		mac_reg = er32(FEXTNVM4);
		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;

1694 1695 1696 1697 1698
		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
		if (ret_val)
			goto out;

		if (status_reg & HV_M_STATUS_SPEED_1000) {
1699
			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1700 1701
			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
		} else {
1702
			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1703 1704
			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
		}
1705
		ew32(FEXTNVM4, mac_reg);
1706
		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1707 1708 1709 1710 1711 1712
	}

out:
	return ret_val;
}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
/**
 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
 *  @hw:   pointer to the HW structure
 *  @gate: boolean set to true to gate, false to ungate
 *
 *  Gate/ungate the automatic PHY configuration via hardware; perform
 *  the configuration via software instead.
 **/
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
{
	u32 extcnf_ctrl;

	if (hw->mac.type != e1000_pch2lan)
		return;

	extcnf_ctrl = er32(EXTCNF_CTRL);

	if (gate)
		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
	else
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;

	ew32(EXTCNF_CTRL, extcnf_ctrl);
	return;
}

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
/**
 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
 *  @hw: pointer to the HW structure
 *
 *  Check the appropriate indication the MAC has finished configuring the
 *  PHY after a software reset.
 **/
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
{
	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;

	/* Wait for basic configuration completes before proceeding */
	do {
		data = er32(STATUS);
		data &= E1000_STATUS_LAN_INIT_DONE;
		udelay(100);
	} while ((!data) && --loop);

	/*
	 * If basic configuration is incomplete before the above loop
	 * count reaches 0, loading the configuration from NVM will
	 * leave the PHY in a bad state possibly resulting in no link.
	 */
	if (loop == 0)
1763
		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1764 1765 1766 1767 1768 1769 1770

	/* Clear the Init Done bit for the next init event */
	data = er32(STATUS);
	data &= ~E1000_STATUS_LAN_INIT_DONE;
	ew32(STATUS, data);
}

1771
/**
1772
 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1773 1774
 *  @hw: pointer to the HW structure
 **/
1775
static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1776
{
1777 1778
	s32 ret_val = 0;
	u16 reg;
1779

1780 1781
	if (e1000_check_reset_block(hw))
		goto out;
1782

B
Bruce Allan 已提交
1783
	/* Allow time for h/w to get to quiescent state after reset */
1784
	usleep_range(10000, 20000);
B
Bruce Allan 已提交
1785

1786
	/* Perform any necessary post-reset workarounds */
1787 1788
	switch (hw->mac.type) {
	case e1000_pchlan:
1789 1790
		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
		if (ret_val)
1791 1792
			goto out;
		break;
1793 1794 1795 1796 1797
	case e1000_pch2lan:
		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
		if (ret_val)
			goto out;
		break;
1798 1799
	default:
		break;
1800 1801
	}

1802 1803 1804 1805 1806 1807
	/* Clear the host wakeup bit after lcd reset */
	if (hw->mac.type >= e1000_pchlan) {
		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
		reg &= ~BM_WUC_HOST_WU_BIT;
		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
	}
1808

1809 1810 1811 1812
	/* Configure the LCD with the extended configuration region in NVM */
	ret_val = e1000_sw_lcd_config_ich8lan(hw);
	if (ret_val)
		goto out;
1813

1814
	/* Configure the LCD with the OEM bits in NVM */
1815
	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1816

1817 1818 1819
	if (hw->mac.type == e1000_pch2lan) {
		/* Ungate automatic PHY configuration on non-managed 82579 */
		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1820
			usleep_range(10000, 20000);
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
			e1000_gate_hw_phy_config_ich8lan(hw, false);
		}

		/* Set EEE LPI Update Timer to 200usec */
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			goto out;
		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
						       I82579_LPI_UPDATE_TIMER);
		if (ret_val)
			goto release;
		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
						       0x1387);
release:
		hw->phy.ops.release(hw);
1836 1837
	}

1838
out:
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	return ret_val;
}

/**
 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Resets the PHY
 *  This is a function pointer entry point called by drivers
 *  or other shared routines.
 **/
static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

1854 1855 1856 1857 1858
	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
	if ((hw->mac.type == e1000_pch2lan) &&
	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		e1000_gate_hw_phy_config_ich8lan(hw, true);

1859 1860 1861 1862 1863 1864 1865 1866
	ret_val = e1000e_phy_hw_reset_generic(hw);
	if (ret_val)
		goto out;

	ret_val = e1000_post_phy_reset_ich8lan(hw);

out:
	return ret_val;
1867 1868
}

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
/**
 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
 *  the phy speed. This function will manually set the LPLU bit and restart
 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
 *  since it configures the same bit.
 **/
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
{
	s32 ret_val = 0;
	u16 oem_reg;

	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
	if (ret_val)
		goto out;

	if (active)
		oem_reg |= HV_OEM_BITS_LPLU;
	else
		oem_reg &= ~HV_OEM_BITS_LPLU;

	oem_reg |= HV_OEM_BITS_RESTART_AN;
	ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);

out:
	return ret_val;
}

1901 1902 1903
/**
 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
1904
 *  @active: true to enable LPLU, false to disable
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val = 0;
	u16 data;

1921
	if (phy->type == e1000_phy_ife)
1922 1923 1924 1925 1926 1927 1928 1929
		return ret_val;

	phy_ctrl = er32(PHY_CTRL);

	if (active) {
		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

1930 1931 1932
		if (phy->type != e1000_phy_igp_3)
			return 0;

1933 1934 1935 1936
		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
1937
		if (hw->mac.type == e1000_ich8lan)
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

1950 1951 1952
		if (phy->type != e1000_phy_igp_3)
			return 0;

1953 1954
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1955 1956
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
1957 1958
		 * SmartSpeed, so performance is maintained.
		 */
1959 1960
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1961
					   &data);
1962 1963 1964 1965 1966
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1967
					   data);
1968 1969 1970 1971
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1972
					   &data);
1973 1974 1975 1976 1977
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1978
					   data);
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
 *  @hw: pointer to the HW structure
1990
 *  @active: true to enable LPLU, false to disable
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
 *
 *  Sets the LPLU D3 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val;
	u16 data;

	phy_ctrl = er32(PHY_CTRL);

	if (!active) {
		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);
2012 2013 2014 2015

		if (phy->type != e1000_phy_igp_3)
			return 0;

2016 2017
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2018 2019
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
2020 2021
		 * SmartSpeed, so performance is maintained.
		 */
2022
		if (phy->smart_speed == e1000_smart_speed_on) {
2023 2024
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
2025 2026 2027 2028
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
2029 2030
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
2031 2032 2033
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
2034 2035
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
2036 2037 2038 2039
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2040 2041
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
2042 2043 2044 2045 2046 2047 2048 2049 2050
			if (ret_val)
				return ret_val;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

2051 2052 2053
		if (phy->type != e1000_phy_igp_3)
			return 0;

2054 2055 2056 2057
		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
2058
		if (hw->mac.type == e1000_ich8lan)
2059 2060 2061
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
2062
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2063 2064 2065 2066
		if (ret_val)
			return ret_val;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2067
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2068 2069 2070 2071 2072
	}

	return 0;
}

2073 2074 2075 2076 2077 2078
/**
 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
 *  @hw: pointer to the HW structure
 *  @bank:  pointer to the variable that returns the active bank
 *
 *  Reads signature byte from the NVM using the flash access registers.
2079
 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2080 2081 2082
 **/
static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
{
2083
	u32 eecd;
2084 2085 2086
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2087 2088
	u8 sig_byte = 0;
	s32 ret_val = 0;
2089

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
		eecd = er32(EECD);
		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
		    E1000_EECD_SEC1VAL_VALID_MASK) {
			if (eecd & E1000_EECD_SEC1VAL)
				*bank = 1;
			else
				*bank = 0;

			return 0;
		}
2103
		e_dbg("Unable to determine valid NVM bank via EEC - "
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
		       "reading flash signature\n");
		/* fall-thru */
	default:
		/* set bank to 0 in case flash read fails */
		*bank = 0;

		/* Check bank 0 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
2117
			*bank = 0;
2118 2119
			return 0;
		}
2120

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
		/* Check bank 1 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
		                                        bank1_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
			*bank = 1;
			return 0;
2131
		}
2132

2133
		e_dbg("ERROR: No valid NVM bank present\n");
2134
		return -E1000_ERR_NVM;
2135 2136 2137 2138 2139
	}

	return 0;
}

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
/**
 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to read.
 *  @words: Size of data to read in words
 *  @data: Pointer to the word(s) to read at offset.
 *
 *  Reads a word(s) from the NVM using the flash access registers.
 **/
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				  u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 act_offset;
2155
	s32 ret_val = 0;
2156
	u32 bank = 0;
2157 2158 2159 2160
	u16 i, word;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
2161
		e_dbg("nvm parameter(s) out of bounds\n");
2162 2163
		ret_val = -E1000_ERR_NVM;
		goto out;
2164 2165
	}

2166
	nvm->ops.acquire(hw);
2167

2168
	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2169
	if (ret_val) {
2170
		e_dbg("Could not detect valid bank, assuming bank 0\n");
2171 2172
		bank = 0;
	}
2173 2174

	act_offset = (bank) ? nvm->flash_bank_size : 0;
2175 2176
	act_offset += offset;

2177
	ret_val = 0;
2178
	for (i = 0; i < words; i++) {
2179
		if (dev_spec->shadow_ram[offset+i].modified) {
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
			data[i] = dev_spec->shadow_ram[offset+i].value;
		} else {
			ret_val = e1000_read_flash_word_ich8lan(hw,
								act_offset + i,
								&word);
			if (ret_val)
				break;
			data[i] = word;
		}
	}

2191
	nvm->ops.release(hw);
2192

2193 2194
out:
	if (ret_val)
2195
		e_dbg("NVM read error: %d\n", ret_val);
2196

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	return ret_val;
}

/**
 *  e1000_flash_cycle_init_ich8lan - Initialize flash
 *  @hw: pointer to the HW structure
 *
 *  This function does initial flash setup so that a new read/write/erase cycle
 *  can be started.
 **/
static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
{
	union ich8_hws_flash_status hsfsts;
	s32 ret_val = -E1000_ERR_NVM;

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

	/* Check if the flash descriptor is valid */
	if (hsfsts.hsf_status.fldesvalid == 0) {
2216
		e_dbg("Flash descriptor invalid.  "
J
Joe Perches 已提交
2217
			 "SW Sequencing must be used.\n");
2218 2219 2220 2221 2222 2223 2224 2225 2226
		return -E1000_ERR_NVM;
	}

	/* Clear FCERR and DAEL in hw status by writing 1 */
	hsfsts.hsf_status.flcerr = 1;
	hsfsts.hsf_status.dael = 1;

	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);

2227 2228
	/*
	 * Either we should have a hardware SPI cycle in progress
2229 2230
	 * bit to check against, in order to start a new cycle or
	 * FDONE bit should be changed in the hardware so that it
2231
	 * is 1 after hardware reset, which can then be used as an
2232 2233 2234 2235 2236
	 * indication whether a cycle is in progress or has been
	 * completed.
	 */

	if (hsfsts.hsf_status.flcinprog == 0) {
2237 2238
		/*
		 * There is no cycle running at present,
B
Bruce Allan 已提交
2239
		 * so we can start a cycle.
2240 2241
		 * Begin by setting Flash Cycle Done.
		 */
2242 2243 2244 2245
		hsfsts.hsf_status.flcdone = 1;
		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		ret_val = 0;
	} else {
2246 2247
		s32 i = 0;

2248
		/*
B
Bruce Allan 已提交
2249
		 * Otherwise poll for sometime so the current
2250 2251
		 * cycle has a chance to end before giving up.
		 */
2252 2253 2254 2255 2256 2257 2258 2259 2260
		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
			hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcinprog == 0) {
				ret_val = 0;
				break;
			}
			udelay(1);
		}
		if (ret_val == 0) {
2261 2262 2263 2264
			/*
			 * Successful in waiting for previous cycle to timeout,
			 * now set the Flash Cycle Done.
			 */
2265 2266 2267
			hsfsts.hsf_status.flcdone = 1;
			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		} else {
J
Joe Perches 已提交
2268
			e_dbg("Flash controller busy, cannot get access\n");
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
		}
	}

	return ret_val;
}

/**
 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
 *  @hw: pointer to the HW structure
 *  @timeout: maximum time to wait for completion
 *
 *  This function starts a flash cycle and waits for its completion.
 **/
static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
{
	union ich8_hws_flash_ctrl hsflctl;
	union ich8_hws_flash_status hsfsts;
	s32 ret_val = -E1000_ERR_NVM;
	u32 i = 0;

	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
	hsflctl.hsf_ctrl.flcgo = 1;
	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

	/* wait till FDONE bit is set to 1 */
	do {
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
		if (hsfsts.hsf_status.flcdone == 1)
			break;
		udelay(1);
	} while (i++ < timeout);

	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
		return 0;

	return ret_val;
}

/**
 *  e1000_read_flash_word_ich8lan - Read word from flash
 *  @hw: pointer to the HW structure
 *  @offset: offset to data location
 *  @data: pointer to the location for storing the data
 *
 *  Reads the flash word at offset into data.  Offset is converted
 *  to bytes before read.
 **/
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data)
{
	/* Must convert offset into bytes. */
	offset <<= 1;

	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
}

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
/**
 *  e1000_read_flash_byte_ich8lan - Read byte from flash
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to read.
 *  @data: Pointer to a byte to store the value read.
 *
 *  Reads a single byte from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data)
{
	s32 ret_val;
	u16 word = 0;

	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
	if (ret_val)
		return ret_val;

	*data = (u8)word;

	return 0;
}

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
/**
 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte or word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: Pointer to the word to store the value read.
 *
 *  Reads a byte or word from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val = -E1000_ERR_NVM;
	u8 count = 0;

	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val != 0)
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size - 1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		ret_val = e1000_flash_cycle_ich8lan(hw,
						ICH_FLASH_READ_COMMAND_TIMEOUT);

2392 2393
		/*
		 * Check if FCERR is set to 1, if set to 1, clear it
2394 2395
		 * and try the whole sequence a few more times, else
		 * read in (shift in) the Flash Data0, the order is
2396 2397
		 * least significant byte first msb to lsb
		 */
2398 2399
		if (ret_val == 0) {
			flash_data = er32flash(ICH_FLASH_FDATA0);
B
Bruce Allan 已提交
2400
			if (size == 1)
2401
				*data = (u8)(flash_data & 0x000000FF);
B
Bruce Allan 已提交
2402
			else if (size == 2)
2403 2404 2405
				*data = (u16)(flash_data & 0x0000FFFF);
			break;
		} else {
2406 2407
			/*
			 * If we've gotten here, then things are probably
2408 2409 2410 2411 2412 2413 2414 2415 2416
			 * completely hosed, but if the error condition is
			 * detected, it won't hurt to give it another try...
			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
			 */
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcerr == 1) {
				/* Repeat for some time before giving up. */
				continue;
			} else if (hsfsts.hsf_status.flcdone == 0) {
2417
				e_dbg("Timeout error - flash cycle "
J
Joe Perches 已提交
2418
					 "did not complete.\n");
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
				break;
			}
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to write.
 *  @words: Size of data to write in words
 *  @data: Pointer to the word(s) to write at offset.
 *
 *  Writes a byte or word to the NVM using the flash access registers.
 **/
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				   u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u16 i;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
2445
		e_dbg("nvm parameter(s) out of bounds\n");
2446 2447 2448
		return -E1000_ERR_NVM;
	}

2449
	nvm->ops.acquire(hw);
2450

2451
	for (i = 0; i < words; i++) {
2452
		dev_spec->shadow_ram[offset+i].modified = true;
2453 2454 2455
		dev_spec->shadow_ram[offset+i].value = data[i];
	}

2456
	nvm->ops.release(hw);
2457

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	return 0;
}

/**
 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
 *  @hw: pointer to the HW structure
 *
 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
 *  which writes the checksum to the shadow ram.  The changes in the shadow
 *  ram are then committed to the EEPROM by processing each bank at a time
 *  checking for the modified bit and writing only the pending changes.
2469
 *  After a successful commit, the shadow ram is cleared and is ready for
2470 2471 2472 2473 2474 2475
 *  future writes.
 **/
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2476
	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2477 2478 2479 2480 2481
	s32 ret_val;
	u16 data;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
2482
		goto out;
2483 2484

	if (nvm->type != e1000_nvm_flash_sw)
2485
		goto out;
2486

2487
	nvm->ops.acquire(hw);
2488

2489 2490
	/*
	 * We're writing to the opposite bank so if we're on bank 1,
2491
	 * write to bank 0 etc.  We also need to erase the segment that
2492 2493
	 * is going to be written
	 */
2494
	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2495
	if (ret_val) {
2496
		e_dbg("Could not detect valid bank, assuming bank 0\n");
2497
		bank = 0;
2498
	}
2499 2500

	if (bank == 0) {
2501 2502
		new_bank_offset = nvm->flash_bank_size;
		old_bank_offset = 0;
2503
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2504 2505
		if (ret_val)
			goto release;
2506 2507 2508
	} else {
		old_bank_offset = nvm->flash_bank_size;
		new_bank_offset = 0;
2509
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2510 2511
		if (ret_val)
			goto release;
2512 2513 2514
	}

	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2515 2516
		/*
		 * Determine whether to write the value stored
2517
		 * in the other NVM bank or a modified value stored
2518 2519
		 * in the shadow RAM
		 */
2520 2521 2522
		if (dev_spec->shadow_ram[i].modified) {
			data = dev_spec->shadow_ram[i].value;
		} else {
2523 2524 2525 2526 2527
			ret_val = e1000_read_flash_word_ich8lan(hw, i +
			                                        old_bank_offset,
			                                        &data);
			if (ret_val)
				break;
2528 2529
		}

2530 2531
		/*
		 * If the word is 0x13, then make sure the signature bits
2532 2533 2534 2535
		 * (15:14) are 11b until the commit has completed.
		 * This will allow us to write 10b which indicates the
		 * signature is valid.  We want to do this after the write
		 * has completed so that we don't mark the segment valid
2536 2537
		 * while the write is still in progress
		 */
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		if (i == E1000_ICH_NVM_SIG_WORD)
			data |= E1000_ICH_NVM_SIG_MASK;

		/* Convert offset to bytes. */
		act_offset = (i + new_bank_offset) << 1;

		udelay(100);
		/* Write the bytes to the new bank. */
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							       act_offset,
							       (u8)data);
		if (ret_val)
			break;

		udelay(100);
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							  act_offset + 1,
							  (u8)(data >> 8));
		if (ret_val)
			break;
	}

2560 2561 2562 2563
	/*
	 * Don't bother writing the segment valid bits if sector
	 * programming failed.
	 */
2564
	if (ret_val) {
2565
		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2566
		e_dbg("Flash commit failed.\n");
2567
		goto release;
2568 2569
	}

2570 2571
	/*
	 * Finally validate the new segment by setting bit 15:14
2572 2573
	 * to 10b in word 0x13 , this can be done without an
	 * erase as well since these bits are 11 to start with
2574 2575
	 * and we need to change bit 14 to 0b
	 */
2576
	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2577
	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2578 2579 2580
	if (ret_val)
		goto release;

2581 2582 2583 2584
	data &= 0xBFFF;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
						       act_offset * 2 + 1,
						       (u8)(data >> 8));
2585 2586
	if (ret_val)
		goto release;
2587

2588 2589
	/*
	 * And invalidate the previously valid segment by setting
2590 2591
	 * its signature word (0x13) high_byte to 0b. This can be
	 * done without an erase because flash erase sets all bits
2592 2593
	 * to 1's. We can write 1's to 0's without an erase
	 */
2594 2595
	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2596 2597
	if (ret_val)
		goto release;
2598 2599 2600

	/* Great!  Everything worked, we can now clear the cached entries. */
	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2601
		dev_spec->shadow_ram[i].modified = false;
2602 2603 2604
		dev_spec->shadow_ram[i].value = 0xFFFF;
	}

2605
release:
2606
	nvm->ops.release(hw);
2607

2608 2609
	/*
	 * Reload the EEPROM, or else modifications will not appear
2610 2611
	 * until after the next adapter reset.
	 */
2612 2613
	if (!ret_val) {
		e1000e_reload_nvm(hw);
2614
		usleep_range(10000, 20000);
2615
	}
2616

2617 2618
out:
	if (ret_val)
2619
		e_dbg("NVM update error: %d\n", ret_val);
2620

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
	return ret_val;
}

/**
 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
 *  calculated, in which case we need to calculate the checksum and set bit 6.
 **/
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

2637 2638
	/*
	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	 * needs to be fixed.  This bit is an indication that the NVM
	 * was prepared by OEM software and did not calculate the
	 * checksum...a likely scenario.
	 */
	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
	if (ret_val)
		return ret_val;

	if ((data & 0x40) == 0) {
		data |= 0x40;
		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
		if (ret_val)
			return ret_val;
		ret_val = e1000e_update_nvm_checksum(hw);
		if (ret_val)
			return ret_val;
	}

	return e1000e_validate_nvm_checksum_generic(hw);
}

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
/**
 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
 *  @hw: pointer to the HW structure
 *
 *  To prevent malicious write/erase of the NVM, set it to be read-only
 *  so that the hardware ignores all write/erase cycles of the NVM via
 *  the flash control registers.  The shadow-ram copy of the NVM will
 *  still be updated, however any updates to this copy will not stick
 *  across driver reloads.
 **/
void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
{
2672
	struct e1000_nvm_info *nvm = &hw->nvm;
2673 2674 2675 2676
	union ich8_flash_protected_range pr0;
	union ich8_hws_flash_status hsfsts;
	u32 gfpreg;

2677
	nvm->ops.acquire(hw);
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697

	gfpreg = er32flash(ICH_FLASH_GFPREG);

	/* Write-protect GbE Sector of NVM */
	pr0.regval = er32flash(ICH_FLASH_PR0);
	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
	pr0.range.wpe = true;
	ew32flash(ICH_FLASH_PR0, pr0.regval);

	/*
	 * Lock down a subset of GbE Flash Control Registers, e.g.
	 * PR0 to prevent the write-protection from being lifted.
	 * Once FLOCKDN is set, the registers protected by it cannot
	 * be written until FLOCKDN is cleared by a hardware reset.
	 */
	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
	hsfsts.hsf_status.flockdn = true;
	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);

2698
	nvm->ops.release(hw);
2699 2700
}

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
/**
 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte/word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: The byte(s) to write to the NVM.
 *
 *  Writes one/two bytes to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 size, u16 data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val;
	u8 count = 0;

	if (size < 1 || size > 2 || data > size * 0xff ||
	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val)
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size -1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		if (size == 1)
			flash_data = (u32)data & 0x00FF;
		else
			flash_data = (u32)data;

		ew32flash(ICH_FLASH_FDATA0, flash_data);

2749 2750 2751 2752
		/*
		 * check if FCERR is set to 1 , if set to 1, clear it
		 * and try the whole sequence a few more times else done
		 */
2753 2754 2755 2756 2757
		ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
		if (!ret_val)
			break;

2758 2759
		/*
		 * If we're here, then things are most likely
2760 2761 2762 2763 2764 2765 2766 2767 2768
		 * completely hosed, but if the error condition
		 * is detected, it won't hurt to give it another
		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
		 */
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
		if (hsfsts.hsf_status.flcerr == 1)
			/* Repeat for some time before giving up. */
			continue;
		if (hsfsts.hsf_status.flcdone == 0) {
2769
			e_dbg("Timeout error - flash cycle "
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
				 "did not complete.");
			break;
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The index of the byte to read.
 *  @data: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 data)
{
	u16 word = (u16)data;

	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
}

/**
 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to write.
 *  @byte: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 *  Goes through a retry algorithm before giving up.
 **/
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte)
{
	s32 ret_val;
	u16 program_retries;

	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
	if (!ret_val)
		return ret_val;

	for (program_retries = 0; program_retries < 100; program_retries++) {
2814
		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
		udelay(100);
		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
		if (!ret_val)
			break;
	}
	if (program_retries == 100)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
 *  @hw: pointer to the HW structure
 *  @bank: 0 for first bank, 1 for second bank, etc.
 *
 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
 *  bank N is 4096 * N + flash_reg_addr.
 **/
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	/* bank size is in 16bit words - adjust to bytes */
	u32 flash_bank_size = nvm->flash_bank_size * 2;
	s32 ret_val;
	s32 count = 0;
2844
	s32 j, iteration, sector_size;
2845 2846 2847

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

2848 2849 2850 2851
	/*
	 * Determine HW Sector size: Read BERASE bits of hw flash status
	 * register
	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
	 *     consecutive sectors.  The start index for the nth Hw sector
	 *     can be calculated as = bank * 4096 + n * 256
	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
	 *     The start index for the nth Hw sector can be calculated
	 *     as = bank * 4096
	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
	 *     (ich9 only, otherwise error condition)
	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
	 */
	switch (hsfsts.hsf_status.berasesz) {
	case 0:
		/* Hw sector size 256 */
		sector_size = ICH_FLASH_SEG_SIZE_256;
		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
		break;
	case 1:
		sector_size = ICH_FLASH_SEG_SIZE_4K;
2869
		iteration = 1;
2870 2871
		break;
	case 2:
2872 2873
		sector_size = ICH_FLASH_SEG_SIZE_8K;
		iteration = 1;
2874 2875 2876
		break;
	case 3:
		sector_size = ICH_FLASH_SEG_SIZE_64K;
2877
		iteration = 1;
2878 2879 2880 2881 2882 2883 2884
		break;
	default:
		return -E1000_ERR_NVM;
	}

	/* Start with the base address, then add the sector offset. */
	flash_linear_addr = hw->nvm.flash_base_addr;
2885
	flash_linear_addr += (bank) ? flash_bank_size : 0;
2886 2887 2888 2889 2890 2891 2892 2893

	for (j = 0; j < iteration ; j++) {
		do {
			/* Steps */
			ret_val = e1000_flash_cycle_init_ich8lan(hw);
			if (ret_val)
				return ret_val;

2894 2895 2896 2897
			/*
			 * Write a value 11 (block Erase) in Flash
			 * Cycle field in hw flash control
			 */
2898 2899 2900 2901
			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

2902 2903
			/*
			 * Write the last 24 bits of an index within the
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
			 * block into Flash Linear address field in Flash
			 * Address.
			 */
			flash_linear_addr += (j * sector_size);
			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

			ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
			if (ret_val == 0)
				break;

2915 2916
			/*
			 * Check if FCERR is set to 1.  If 1,
2917
			 * clear it and try the whole sequence
2918 2919
			 * a few more times else Done
			 */
2920 2921
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
			if (hsfsts.hsf_status.flcerr == 1)
2922
				/* repeat for some time before giving up */
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
				continue;
			else if (hsfsts.hsf_status.flcdone == 0)
				return ret_val;
		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
	}

	return 0;
}

/**
 *  e1000_valid_led_default_ich8lan - Set the default LED settings
 *  @hw: pointer to the HW structure
 *  @data: Pointer to the LED settings
 *
 *  Reads the LED default settings from the NVM to data.  If the NVM LED
 *  settings is all 0's or F's, set the LED default to a valid LED default
 *  setting.
 **/
static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
2947
		e_dbg("NVM Read Error\n");
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
		return ret_val;
	}

	if (*data == ID_LED_RESERVED_0000 ||
	    *data == ID_LED_RESERVED_FFFF)
		*data = ID_LED_DEFAULT_ICH8LAN;

	return 0;
}

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
/**
 *  e1000_id_led_init_pchlan - store LED configurations
 *  @hw: pointer to the HW structure
 *
 *  PCH does not control LEDs via the LEDCTL register, rather it uses
 *  the PHY LED configuration register.
 *
 *  PCH also does not have an "always on" or "always off" mode which
 *  complicates the ID feature.  Instead of using the "on" mode to indicate
 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
 *  use "link_up" mode.  The LEDs will still ID on request if there is no
 *  link based on logic in e1000_led_[on|off]_pchlan().
 **/
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
	u16 data, i, temp, shift;

	/* Get default ID LED modes */
	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
	if (ret_val)
		goto out;

	mac->ledctl_default = er32(LEDCTL);
	mac->ledctl_mode1 = mac->ledctl_default;
	mac->ledctl_mode2 = mac->ledctl_default;

	for (i = 0; i < 4; i++) {
		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
		shift = (i * 5);
		switch (temp) {
		case ID_LED_ON1_DEF2:
		case ID_LED_ON1_ON2:
		case ID_LED_ON1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_on << shift);
			break;
		case ID_LED_OFF1_DEF2:
		case ID_LED_OFF1_ON2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
		switch (temp) {
		case ID_LED_DEF1_ON2:
		case ID_LED_ON1_ON2:
		case ID_LED_OFF1_ON2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_on << shift);
			break;
		case ID_LED_DEF1_OFF2:
		case ID_LED_ON1_OFF2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
	}

out:
	return ret_val;
}

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
/**
 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
 *  @hw: pointer to the HW structure
 *
 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
 *  register, so the the bus width is hard coded.
 **/
static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;
	s32 ret_val;

	ret_val = e1000e_get_bus_info_pcie(hw);

3045 3046
	/*
	 * ICH devices are "PCI Express"-ish.  They have
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
	 * a configuration space, but do not contain
	 * PCI Express Capability registers, so bus width
	 * must be hardcoded.
	 */
	if (bus->width == e1000_bus_width_unknown)
		bus->width = e1000_bus_width_pcie_x1;

	return ret_val;
}

/**
 *  e1000_reset_hw_ich8lan - Reset the hardware
 *  @hw: pointer to the HW structure
 *
 *  Does a full reset of the hardware which includes a reset of the PHY and
 *  MAC.
 **/
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
{
3066
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3067
	u16 reg;
3068
	u32 ctrl, kab;
3069 3070
	s32 ret_val;

3071 3072
	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3073 3074 3075
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
3076
	if (ret_val)
3077
		e_dbg("PCI-E Master disable polling has failed.\n");
3078

3079
	e_dbg("Masking off all interrupts\n");
3080 3081
	ew32(IMC, 0xffffffff);

3082 3083
	/*
	 * Disable the Transmit and Receive units.  Then delay to allow
3084 3085 3086 3087 3088 3089 3090
	 * any pending transactions to complete before we hit the MAC
	 * with the global reset.
	 */
	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

3091
	usleep_range(10000, 20000);
3092 3093 3094 3095 3096 3097 3098 3099 3100

	/* Workaround for ICH8 bit corruption issue in FIFO memory */
	if (hw->mac.type == e1000_ich8lan) {
		/* Set Tx and Rx buffer allocation to 8k apiece. */
		ew32(PBA, E1000_PBA_8K);
		/* Set Packet Buffer Size to 16k. */
		ew32(PBS, E1000_PBS_16K);
	}

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
	if (hw->mac.type == e1000_pchlan) {
		/* Save the NVM K1 bit setting*/
		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
		if (ret_val)
			return ret_val;

		if (reg & E1000_NVM_K1_ENABLE)
			dev_spec->nvm_k1_enabled = true;
		else
			dev_spec->nvm_k1_enabled = false;
	}

3113 3114 3115
	ctrl = er32(CTRL);

	if (!e1000_check_reset_block(hw)) {
3116
		/*
3117
		 * Full-chip reset requires MAC and PHY reset at the same
3118 3119 3120 3121
		 * time to make sure the interface between MAC and the
		 * external PHY is reset.
		 */
		ctrl |= E1000_CTRL_PHY_RST;
3122 3123 3124 3125 3126 3127 3128 3129

		/*
		 * Gate automatic PHY configuration by hardware on
		 * non-managed 82579
		 */
		if ((hw->mac.type == e1000_pch2lan) &&
		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
			e1000_gate_hw_phy_config_ich8lan(hw, true);
3130 3131
	}
	ret_val = e1000_acquire_swflag_ich8lan(hw);
3132
	e_dbg("Issuing a global reset to ich8lan\n");
3133
	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3134
	/* cannot issue a flush here because it hangs the hardware */
3135 3136
	msleep(20);

3137
	if (!ret_val)
3138
		mutex_unlock(&swflag_mutex);
3139

3140
	if (ctrl & E1000_CTRL_PHY_RST) {
3141
		ret_val = hw->phy.ops.get_cfg_done(hw);
3142 3143
		if (ret_val)
			goto out;
3144

3145
		ret_val = e1000_post_phy_reset_ich8lan(hw);
3146 3147 3148
		if (ret_val)
			goto out;
	}
3149

3150 3151 3152 3153 3154 3155 3156 3157
	/*
	 * For PCH, this write will make sure that any noise
	 * will be detected as a CRC error and be dropped rather than show up
	 * as a bad packet to the DMA engine.
	 */
	if (hw->mac.type == e1000_pchlan)
		ew32(CRC_OFFSET, 0x65656565);

3158
	ew32(IMC, 0xffffffff);
3159
	er32(ICR);
3160 3161 3162 3163 3164

	kab = er32(KABGTXD);
	kab |= E1000_KABGTXD_BGSQLBIAS;
	ew32(KABGTXD, kab);

3165
out:
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
	return ret_val;
}

/**
 *  e1000_init_hw_ich8lan - Initialize the hardware
 *  @hw: pointer to the HW structure
 *
 *  Prepares the hardware for transmit and receive by doing the following:
 *   - initialize hardware bits
 *   - initialize LED identification
 *   - setup receive address registers
 *   - setup flow control
3178
 *   - setup transmit descriptors
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
 *   - clear statistics
 **/
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl_ext, txdctl, snoop;
	s32 ret_val;
	u16 i;

	e1000_initialize_hw_bits_ich8lan(hw);

	/* Initialize identification LED */
3191
	ret_val = mac->ops.id_led_init(hw);
3192
	if (ret_val)
3193
		e_dbg("Error initializing identification LED\n");
3194
		/* This is not fatal and we should not stop init due to this */
3195 3196 3197 3198 3199

	/* Setup the receive address. */
	e1000e_init_rx_addrs(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
3200
	e_dbg("Zeroing the MTA\n");
3201 3202 3203
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

3204 3205
	/*
	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3206
	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3207 3208 3209
	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
	 */
	if (hw->phy.type == e1000_phy_82578) {
3210 3211 3212
		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
		i &= ~BM_WUC_HOST_WU_BIT;
		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3213 3214 3215 3216 3217
		ret_val = e1000_phy_hw_reset_ich8lan(hw);
		if (ret_val)
			return ret_val;
	}

3218 3219 3220 3221
	/* Setup link and flow control */
	ret_val = e1000_setup_link_ich8lan(hw);

	/* Set the transmit descriptor write-back policy for both queues */
3222
	txdctl = er32(TXDCTL(0));
3223 3224 3225 3226
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3227 3228
	ew32(TXDCTL(0), txdctl);
	txdctl = er32(TXDCTL(1));
3229 3230 3231 3232
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3233
	ew32(TXDCTL(1), txdctl);
3234

3235 3236 3237 3238
	/*
	 * ICH8 has opposite polarity of no_snoop bits.
	 * By default, we should use snoop behavior.
	 */
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
	if (mac->type == e1000_ich8lan)
		snoop = PCIE_ICH8_SNOOP_ALL;
	else
		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
	e1000e_set_pcie_no_snoop(hw, snoop);

	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
	ew32(CTRL_EXT, ctrl_ext);

3249 3250
	/*
	 * Clear all of the statistics registers (clear on read).  It is
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_ich8lan(hw);

	return 0;
}
/**
 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
 *  @hw: pointer to the HW structure
 *
 *  Sets/Clears required hardware bits necessary for correctly setting up the
 *  hardware for transmit and receive.
 **/
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
{
	u32 reg;

	/* Extended Device Control */
	reg = er32(CTRL_EXT);
	reg |= (1 << 22);
3273 3274 3275
	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
	if (hw->mac.type >= e1000_pchlan)
		reg |= E1000_CTRL_EXT_PHYPDEN;
3276 3277 3278
	ew32(CTRL_EXT, reg);

	/* Transmit Descriptor Control 0 */
3279
	reg = er32(TXDCTL(0));
3280
	reg |= (1 << 22);
3281
	ew32(TXDCTL(0), reg);
3282 3283

	/* Transmit Descriptor Control 1 */
3284
	reg = er32(TXDCTL(1));
3285
	reg |= (1 << 22);
3286
	ew32(TXDCTL(1), reg);
3287 3288

	/* Transmit Arbitration Control 0 */
3289
	reg = er32(TARC(0));
3290 3291 3292
	if (hw->mac.type == e1000_ich8lan)
		reg |= (1 << 28) | (1 << 29);
	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3293
	ew32(TARC(0), reg);
3294 3295

	/* Transmit Arbitration Control 1 */
3296
	reg = er32(TARC(1));
3297 3298 3299 3300 3301
	if (er32(TCTL) & E1000_TCTL_MULR)
		reg &= ~(1 << 28);
	else
		reg |= (1 << 28);
	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3302
	ew32(TARC(1), reg);
3303 3304 3305 3306 3307 3308 3309

	/* Device Status */
	if (hw->mac.type == e1000_ich8lan) {
		reg = er32(STATUS);
		reg &= ~(1 << 31);
		ew32(STATUS, reg);
	}
3310 3311 3312 3313 3314 3315 3316 3317

	/*
	 * work-around descriptor data corruption issue during nfs v2 udp
	 * traffic, just disable the nfs filtering capability
	 */
	reg = er32(RFCTL);
	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
	ew32(RFCTL, reg);
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
}

/**
 *  e1000_setup_link_ich8lan - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;

	if (e1000_check_reset_block(hw))
		return 0;

3337 3338
	/*
	 * ICH parts do not have a word in the NVM to determine
3339 3340 3341
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
3342 3343 3344 3345 3346 3347 3348
	if (hw->fc.requested_mode == e1000_fc_default) {
		/* Workaround h/w hang when Tx flow control enabled */
		if (hw->mac.type == e1000_pchlan)
			hw->fc.requested_mode = e1000_fc_rx_pause;
		else
			hw->fc.requested_mode = e1000_fc_full;
	}
3349

3350 3351 3352 3353 3354
	/*
	 * Save off the requested flow control mode for use later.  Depending
	 * on the link partner's capabilities, we may or may not use this mode.
	 */
	hw->fc.current_mode = hw->fc.requested_mode;
3355

3356
	e_dbg("After fix-ups FlowControl is now = %x\n",
3357
		hw->fc.current_mode);
3358 3359 3360 3361 3362 3363

	/* Continue to configure the copper link. */
	ret_val = e1000_setup_copper_link_ich8lan(hw);
	if (ret_val)
		return ret_val;

3364
	ew32(FCTTV, hw->fc.pause_time);
3365
	if ((hw->phy.type == e1000_phy_82578) ||
3366
	    (hw->phy.type == e1000_phy_82579) ||
3367
	    (hw->phy.type == e1000_phy_82577)) {
3368 3369
		ew32(FCRTV_PCH, hw->fc.refresh_time);

3370 3371
		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
				   hw->fc.pause_time);
3372 3373 3374
		if (ret_val)
			return ret_val;
	}
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397

	return e1000e_set_fc_watermarks(hw);
}

/**
 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
 *  @hw: pointer to the HW structure
 *
 *  Configures the kumeran interface to the PHY to wait the appropriate time
 *  when polling the PHY, then call the generic setup_copper_link to finish
 *  configuring the copper link.
 **/
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;
	u16 reg_data;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

3398 3399
	/*
	 * Set the mac to wait the maximum time between each iteration
3400
	 * and increase the max iterations when polling the phy;
3401 3402
	 * this fixes erroneous timeouts at 10Mbps.
	 */
3403
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3404 3405
	if (ret_val)
		return ret_val;
3406 3407
	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
	                               &reg_data);
3408 3409 3410
	if (ret_val)
		return ret_val;
	reg_data |= 0x3F;
3411 3412
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
	                                reg_data);
3413 3414 3415
	if (ret_val)
		return ret_val;

3416 3417
	switch (hw->phy.type) {
	case e1000_phy_igp_3:
3418 3419 3420
		ret_val = e1000e_copper_link_setup_igp(hw);
		if (ret_val)
			return ret_val;
3421 3422 3423
		break;
	case e1000_phy_bm:
	case e1000_phy_82578:
3424 3425 3426
		ret_val = e1000e_copper_link_setup_m88(hw);
		if (ret_val)
			return ret_val;
3427 3428
		break;
	case e1000_phy_82577:
3429
	case e1000_phy_82579:
3430 3431 3432 3433 3434
		ret_val = e1000_copper_link_setup_82577(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_phy_ife:
3435
		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
		if (ret_val)
			return ret_val;

		reg_data &= ~IFE_PMC_AUTO_MDIX;

		switch (hw->phy.mdix) {
		case 1:
			reg_data &= ~IFE_PMC_FORCE_MDIX;
			break;
		case 2:
			reg_data |= IFE_PMC_FORCE_MDIX;
			break;
		case 0:
		default:
			reg_data |= IFE_PMC_AUTO_MDIX;
			break;
		}
3453
		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3454 3455
		if (ret_val)
			return ret_val;
3456 3457 3458
		break;
	default:
		break;
3459
	}
3460 3461 3462 3463 3464 3465 3466 3467 3468
	return e1000e_setup_copper_link(hw);
}

/**
 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
 *  @hw: pointer to the HW structure
 *  @speed: pointer to store current link speed
 *  @duplex: pointer to store the current link duplex
 *
3469
 *  Calls the generic get_speed_and_duplex to retrieve the current link
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
 *  information and then calls the Kumeran lock loss workaround for links at
 *  gigabit speeds.
 **/
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
					  u16 *duplex)
{
	s32 ret_val;

	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
	if (ret_val)
		return ret_val;

	if ((hw->mac.type == e1000_ich8lan) &&
	    (hw->phy.type == e1000_phy_igp_3) &&
	    (*speed == SPEED_1000)) {
		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
	}

	return ret_val;
}

/**
 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
 *  @hw: pointer to the HW structure
 *
 *  Work-around for 82566 Kumeran PCS lock loss:
 *  On link status change (i.e. PCI reset, speed change) and link is up and
 *  speed is gigabit-
 *    0) if workaround is optionally disabled do nothing
 *    1) wait 1ms for Kumeran link to come up
 *    2) check Kumeran Diagnostic register PCS lock loss bit
 *    3) if not set the link is locked (all is good), otherwise...
 *    4) reset the PHY
 *    5) repeat up to 10 times
 *  Note: this is only called for IGP3 copper when speed is 1gb.
 **/
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 phy_ctrl;
	s32 ret_val;
	u16 i, data;
	bool link;

	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
		return 0;

3517 3518
	/*
	 * Make sure link is up before proceeding.  If not just return.
3519
	 * Attempting this while link is negotiating fouled up link
3520 3521
	 * stability
	 */
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (!link)
		return 0;

	for (i = 0; i < 10; i++) {
		/* read once to clear */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;
		/* and again to get new status */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;

		/* check for PCS lock */
		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
			return 0;

		/* Issue PHY reset */
		e1000_phy_hw_reset(hw);
		mdelay(5);
	}
	/* Disable GigE link negotiation */
	phy_ctrl = er32(PHY_CTRL);
	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
	ew32(PHY_CTRL, phy_ctrl);

3550 3551 3552 3553
	/*
	 * Call gig speed drop workaround on Gig disable before accessing
	 * any PHY registers
	 */
3554 3555 3556 3557 3558 3559 3560
	e1000e_gig_downshift_workaround_ich8lan(hw);

	/* unable to acquire PCS lock */
	return -E1000_ERR_PHY;
}

/**
3561
 *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3562
 *  @hw: pointer to the HW structure
3563
 *  @state: boolean value used to set the current Kumeran workaround state
3564
 *
3565 3566
 *  If ICH8, set the current Kumeran workaround state (enabled - true
 *  /disabled - false).
3567 3568 3569 3570 3571 3572 3573
 **/
void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
						 bool state)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;

	if (hw->mac.type != e1000_ich8lan) {
3574
		e_dbg("Workaround applies to ICH8 only.\n");
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
		return;
	}

	dev_spec->kmrn_lock_loss_workaround_enabled = state;
}

/**
 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
 *  @hw: pointer to the HW structure
 *
 *  Workaround for 82566 power-down on D3 entry:
 *    1) disable gigabit link
 *    2) write VR power-down enable
 *    3) read it back
 *  Continue if successful, else issue LCD reset and repeat
 **/
void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
{
	u32 reg;
	u16 data;
	u8  retry = 0;

	if (hw->phy.type != e1000_phy_igp_3)
		return;

	/* Try the workaround twice (if needed) */
	do {
		/* Disable link */
		reg = er32(PHY_CTRL);
		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
		ew32(PHY_CTRL, reg);

3608 3609 3610 3611
		/*
		 * Call gig speed drop workaround on Gig disable before
		 * accessing any PHY registers
		 */
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
		if (hw->mac.type == e1000_ich8lan)
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* Write VR power-down enable */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);

		/* Read it back and test */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
			break;

		/* Issue PHY reset and repeat at most one more time */
		reg = er32(CTRL);
		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
		retry++;
	} while (retry);
}

/**
 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
 *  @hw: pointer to the HW structure
 *
 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3638
 *  LPLU, Gig disable, MDIC PHY reset):
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
 *    1) Set Kumeran Near-end loopback
 *    2) Clear Kumeran Near-end loopback
 *  Should only be called for ICH8[m] devices with IGP_3 Phy.
 **/
void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 reg_data;

	if ((hw->mac.type != e1000_ich8lan) ||
	    (hw->phy.type != e1000_phy_igp_3))
		return;

	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				      &reg_data);
	if (ret_val)
		return;
	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
	if (ret_val)
		return;
	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
}

3666
/**
3667
 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3668 3669 3670 3671 3672
 *  @hw: pointer to the HW structure
 *
 *  During S0 to Sx transition, it is possible the link remains at gig
 *  instead of negotiating to a lower speed.  Before going to Sx, set
 *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3673 3674
 *  to a lower speed.  For PCH and newer parts, the OEM bits PHY register
 *  (LED, GbE disable and LPLU configurations) also needs to be written.
3675
 **/
3676
void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3677 3678
{
	u32 phy_ctrl;
3679
	s32 ret_val;
3680

3681 3682 3683
	phy_ctrl = er32(PHY_CTRL);
	phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
	ew32(PHY_CTRL, phy_ctrl);
3684

3685
	if (hw->mac.type >= e1000_pchlan) {
3686
		e1000_oem_bits_config_ich8lan(hw, false);
3687 3688 3689 3690 3691 3692
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return;
		e1000_write_smbus_addr(hw);
		hw->phy.ops.release(hw);
	}
3693 3694
}

3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
/**
 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
 *  @hw: pointer to the HW structure
 *
 *  During Sx to S0 transitions on non-managed devices or managed devices
 *  on which PHY resets are not blocked, if the PHY registers cannot be
 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
 *  the PHY.
 **/
void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
{
	u32 fwsm;

	if (hw->mac.type != e1000_pch2lan)
		return;

	fwsm = er32(FWSM);
	if (!(fwsm & E1000_ICH_FWSM_FW_VALID) || !e1000_check_reset_block(hw)) {
		u16 phy_id1, phy_id2;
		s32 ret_val;

		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val) {
			e_dbg("Failed to acquire PHY semaphore in resume\n");
			return;
		}

		/* Test access to the PHY registers by reading the ID regs */
		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
		if (ret_val)
			goto release;
		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
		if (ret_val)
			goto release;

		if (hw->phy.id == ((u32)(phy_id1 << 16) |
				   (u32)(phy_id2 & PHY_REVISION_MASK)))
			goto release;

		e1000_toggle_lanphypc_value_ich8lan(hw);

		hw->phy.ops.release(hw);
		msleep(50);
		e1000_phy_hw_reset(hw);
		msleep(50);
		return;
	}

release:
	hw->phy.ops.release(hw);

	return;
}

3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
/**
 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);

	ew32(LEDCTL, hw->mac.ledctl_default);
	return 0;
}

/**
3765
 *  e1000_led_on_ich8lan - Turn LEDs on
3766 3767
 *  @hw: pointer to the HW structure
 *
3768
 *  Turn on the LEDs.
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
 **/
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));

	ew32(LEDCTL, hw->mac.ledctl_mode2);
	return 0;
}

/**
3781
 *  e1000_led_off_ich8lan - Turn LEDs off
3782 3783
 *  @hw: pointer to the HW structure
 *
3784
 *  Turn off the LEDs.
3785 3786 3787 3788 3789
 **/
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3790 3791
				(IFE_PSCL_PROBE_MODE |
				 IFE_PSCL_PROBE_LEDS_OFF));
3792 3793 3794 3795 3796

	ew32(LEDCTL, hw->mac.ledctl_mode1);
	return 0;
}

3797 3798 3799 3800 3801 3802 3803 3804
/**
 *  e1000_setup_led_pchlan - Configures SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  This prepares the SW controllable LED for use.
 **/
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
{
3805
	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
}

/**
 *  e1000_cleanup_led_pchlan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
{
3816
	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
}

/**
 *  e1000_led_on_pchlan - Turn LEDs on
 *  @hw: pointer to the HW structure
 *
 *  Turn on the LEDs.
 **/
static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode2;
	u32 i, led;

	/*
	 * If no link, then turn LED on by setting the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode2.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

3847
	return e1e_wphy(hw, HV_LED_CONFIG, data);
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
}

/**
 *  e1000_led_off_pchlan - Turn LEDs off
 *  @hw: pointer to the HW structure
 *
 *  Turn off the LEDs.
 **/
static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode1;
	u32 i, led;

	/*
	 * If no link, then turn LED off by clearing the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode1.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

3878
	return e1e_wphy(hw, HV_LED_CONFIG, data);
3879 3880
}

3881
/**
3882
 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3883 3884
 *  @hw: pointer to the HW structure
 *
3885 3886 3887 3888 3889 3890 3891
 *  Read appropriate register for the config done bit for completion status
 *  and configure the PHY through s/w for EEPROM-less parts.
 *
 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
 *  config done bit, so only an error is logged and continues.  If we were
 *  to return with error, EEPROM-less silicon would not be able to be reset
 *  or change link.
3892 3893 3894
 **/
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
{
3895
	s32 ret_val = 0;
3896
	u32 bank = 0;
3897
	u32 status;
3898

3899
	e1000e_get_cfg_done(hw);
3900

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
	/* Wait for indication from h/w that it has completed basic config */
	if (hw->mac.type >= e1000_ich10lan) {
		e1000_lan_init_done_ich8lan(hw);
	} else {
		ret_val = e1000e_get_auto_rd_done(hw);
		if (ret_val) {
			/*
			 * When auto config read does not complete, do not
			 * return with an error. This can happen in situations
			 * where there is no eeprom and prevents getting link.
			 */
			e_dbg("Auto Read Done did not complete\n");
			ret_val = 0;
		}
3915 3916
	}

3917 3918 3919 3920 3921 3922
	/* Clear PHY Reset Asserted bit */
	status = er32(STATUS);
	if (status & E1000_STATUS_PHYRA)
		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
	else
		e_dbg("PHY Reset Asserted not set - needs delay\n");
3923 3924

	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
3925
	if (hw->mac.type <= e1000_ich9lan) {
3926 3927 3928 3929 3930 3931 3932
		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
		    (hw->phy.type == e1000_phy_igp_3)) {
			e1000e_phy_init_script_igp3(hw);
		}
	} else {
		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
			/* Maybe we should do a basic PHY config */
3933
			e_dbg("EEPROM not present\n");
3934
			ret_val = -E1000_ERR_CONFIG;
3935 3936 3937
		}
	}

3938
	return ret_val;
3939 3940
}

3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
/**
 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
{
	/* If the management interface is not enabled, then power down */
	if (!(hw->mac.ops.check_mng_mode(hw) ||
	      hw->phy.ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);
}

3956 3957 3958 3959 3960 3961 3962 3963 3964
/**
 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
 *  @hw: pointer to the HW structure
 *
 *  Clears hardware counters specific to the silicon family and calls
 *  clear_hw_cntrs_generic to clear all general purpose counters.
 **/
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
{
3965
	u16 phy_data;
3966
	s32 ret_val;
3967 3968 3969

	e1000e_clear_hw_cntrs_base(hw);

3970 3971 3972 3973 3974 3975
	er32(ALGNERRC);
	er32(RXERRC);
	er32(TNCRS);
	er32(CEXTERR);
	er32(TSCTC);
	er32(TSCTFC);
3976

3977 3978 3979
	er32(MGTPRC);
	er32(MGTPDC);
	er32(MGTPTC);
3980

3981 3982
	er32(IAC);
	er32(ICRXOC);
3983

3984 3985
	/* Clear PHY statistics registers */
	if ((hw->phy.type == e1000_phy_82578) ||
3986
	    (hw->phy.type == e1000_phy_82579) ||
3987
	    (hw->phy.type == e1000_phy_82577)) {
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return;
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
		if (ret_val)
			goto release;
		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
release:
		hw->phy.ops.release(hw);
4011
	}
4012 4013
}

J
Jeff Kirsher 已提交
4014
static const struct e1000_mac_operations ich8_mac_ops = {
4015
	.id_led_init		= e1000e_id_led_init,
4016
	/* check_mng_mode dependent on mac type */
4017
	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4018
	/* cleanup_led dependent on mac type */
4019 4020
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
	.get_bus_info		= e1000_get_bus_info_ich8lan,
4021
	.set_lan_id		= e1000_set_lan_id_single_port,
4022
	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4023 4024
	/* led_on dependent on mac type */
	/* led_off dependent on mac type */
4025
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4026 4027 4028 4029
	.reset_hw		= e1000_reset_hw_ich8lan,
	.init_hw		= e1000_init_hw_ich8lan,
	.setup_link		= e1000_setup_link_ich8lan,
	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4030
	/* id_led_init dependent on mac type */
4031 4032
};

J
Jeff Kirsher 已提交
4033
static const struct e1000_phy_operations ich8_phy_ops = {
4034
	.acquire		= e1000_acquire_swflag_ich8lan,
4035
	.check_reset_block	= e1000_check_reset_block_ich8lan,
4036
	.commit			= NULL,
4037
	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4038
	.get_cable_length	= e1000e_get_cable_length_igp_2,
4039 4040 4041
	.read_reg		= e1000e_read_phy_reg_igp,
	.release		= e1000_release_swflag_ich8lan,
	.reset			= e1000_phy_hw_reset_ich8lan,
4042 4043
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4044
	.write_reg		= e1000e_write_phy_reg_igp,
4045 4046
};

J
Jeff Kirsher 已提交
4047
static const struct e1000_nvm_operations ich8_nvm_ops = {
4048 4049 4050 4051
	.acquire		= e1000_acquire_nvm_ich8lan,
	.read		 	= e1000_read_nvm_ich8lan,
	.release		= e1000_release_nvm_ich8lan,
	.update			= e1000_update_nvm_checksum_ich8lan,
4052
	.valid_led_default	= e1000_valid_led_default_ich8lan,
4053 4054
	.validate		= e1000_validate_nvm_checksum_ich8lan,
	.write			= e1000_write_nvm_ich8lan,
4055 4056
};

J
Jeff Kirsher 已提交
4057
const struct e1000_info e1000_ich8_info = {
4058 4059
	.mac			= e1000_ich8lan,
	.flags			= FLAG_HAS_WOL
4060
				  | FLAG_IS_ICH
4061 4062 4063 4064 4065
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 8,
4066
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
J
Jeff Kirsher 已提交
4067
	.get_variants		= e1000_get_variants_ich8lan,
4068 4069 4070 4071 4072
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

J
Jeff Kirsher 已提交
4073
const struct e1000_info e1000_ich9_info = {
4074 4075
	.mac			= e1000_ich9lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
4076
				  | FLAG_IS_ICH
4077 4078 4079 4080 4081 4082 4083
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_ERT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 10,
4084
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
4085
	.get_variants		= e1000_get_variants_ich8lan,
4086 4087 4088 4089 4090
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

J
Jeff Kirsher 已提交
4091
const struct e1000_info e1000_ich10_info = {
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
	.mac			= e1000_ich10lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
				  | FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_ERT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 10,
4102
	.max_hw_frame_size	= DEFAULT_JUMBO,
4103 4104 4105 4106 4107
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};
4108

J
Jeff Kirsher 已提交
4109
const struct e1000_info e1000_pch_info = {
4110 4111 4112 4113 4114 4115 4116
	.mac			= e1000_pchlan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
4117
				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4118
				  | FLAG_APME_IN_WUC,
4119
	.flags2			= FLAG2_HAS_PHY_STATS,
4120 4121 4122 4123 4124 4125 4126
	.pba			= 26,
	.max_hw_frame_size	= 4096,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};
4127

J
Jeff Kirsher 已提交
4128
const struct e1000_info e1000_pch2_info = {
4129 4130 4131 4132 4133 4134 4135 4136
	.mac			= e1000_pch2lan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_APME_IN_WUC,
4137 4138
	.flags2			= FLAG2_HAS_PHY_STATS
				  | FLAG2_HAS_EEE,
4139
	.pba			= 26,
4140 4141 4142 4143 4144 4145
	.max_hw_frame_size	= DEFAULT_JUMBO,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};