intel_ringbuffer.h 19.8 KB
Newer Older
1 2 3
#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_

4
#include <linux/hashtable.h>
5
#include "i915_gem_batch_pool.h"
6
#include "i915_gem_request.h"
7
#include "i915_gem_timeline.h"
8 9 10

#define I915_CMD_HASH_ORDER 9

11 12 13 14 15 16
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
 * to give some inclination as to some of the magic values used in the various
 * workarounds!
 */
#define CACHELINE_BYTES 64
17
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
18

19 20 21 22 23 24 25 26 27 28 29
/*
 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
 * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
 * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
 *
 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
 * cacheline, the Head Pointer must not be greater than the Tail
 * Pointer."
 */
#define I915_RING_FREE_SPACE 64

30 31 32 33
struct intel_hw_status_page {
	struct i915_vma *vma;
	u32 *page_addr;
	u32 ggtt_offset;
34 35
};

36 37
#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
38

39 40
#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
41

42 43
#define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
44

45 46
#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
47

48 49
#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
50

51 52
#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
53

54 55 56
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
 */
57 58 59
#define gen8_semaphore_seqno_size sizeof(uint64_t)
#define GEN8_SEMAPHORE_OFFSET(__from, __to)			     \
	(((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
60
#define GEN8_SIGNAL_OFFSET(__ring, to)			     \
61
	(dev_priv->semaphore->node.start + \
62
	 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
63
#define GEN8_WAIT_OFFSET(__ring, from)			     \
64
	(dev_priv->semaphore->node.start + \
65
	 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
66

67
enum intel_engine_hangcheck_action {
68
	HANGCHECK_IDLE = 0,
69 70 71 72 73
	HANGCHECK_WAIT,
	HANGCHECK_ACTIVE,
	HANGCHECK_KICK,
	HANGCHECK_HUNG,
};
74

75 76
#define HANGCHECK_SCORE_RING_HUNG 31

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
#define I915_MAX_SLICES	3
#define I915_MAX_SUBSLICES 3

#define instdone_slice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
	 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)

#define instdone_subslice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
	 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)

#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
	for ((slice__) = 0, (subslice__) = 0; \
	     (slice__) < I915_MAX_SLICES; \
	     (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
	       (slice__) += ((subslice__) == 0)) \
		for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
			    (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))

96 97 98 99
struct intel_instdone {
	u32 instdone;
	/* The following exist only in the RCS engine */
	u32 slice_common;
100 101
	u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
	u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
102 103
};

104
struct intel_engine_hangcheck {
105
	u64 acthd;
106
	u32 seqno;
107
	int score;
108
	enum intel_engine_hangcheck_action action;
109
	int deadlock;
110
	struct intel_instdone instdone;
111 112
};

113
struct intel_ring {
114
	struct i915_vma *vma;
115
	void *vaddr;
116

117
	struct intel_engine_cs *engine;
118

119 120
	struct list_head request_list;

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
	u32 head;
	u32 tail;
	int space;
	int size;
	int effective_size;

	/** We track the position of the requests in the ring buffer, and
	 * when each is retired we increment last_retired_head as the GPU
	 * must have finished processing the request and so we know we
	 * can advance the ringbuffer up to that position.
	 *
	 * last_retired_head is set to -1 after the value is consumed so
	 * we can detect new retirements.
	 */
	u32 last_retired_head;
};

138
struct i915_gem_context;
139
struct drm_i915_reg_table;
140

141 142 143 144 145 146 147 148 149 150 151
/*
 * we use a single page to load ctx workarounds so all of these
 * values are referred in terms of dwords
 *
 * struct i915_wa_ctx_bb:
 *  offset: specifies batch starting position, also helpful in case
 *    if we want to have multiple batches at different offsets based on
 *    some criteria. It is not a requirement at the moment but provides
 *    an option for future use.
 *  size: size of the batch in DWORDS
 */
152
struct i915_ctx_workarounds {
153 154 155 156
	struct i915_wa_ctx_bb {
		u32 offset;
		u32 size;
	} indirect_ctx, per_ctx;
157
	struct i915_vma *vma;
158 159
};

160
struct drm_i915_gem_request;
161
struct intel_render_state;
162

163 164
struct intel_engine_cs {
	struct drm_i915_private *i915;
165
	const char	*name;
166
	enum intel_engine_id {
167
		RCS = 0,
168
		BCS,
169 170 171
		VCS,
		VCS2,	/* Keep instances of the same type engine together. */
		VECS
172
	} id;
173
#define _VCS(n) (VCS + (n))
174
	unsigned int exec_id;
175 176 177 178 179 180 181 182
	enum intel_engine_hw_id {
		RCS_HW = 0,
		VCS_HW,
		BCS_HW,
		VECS_HW,
		VCS2_HW
	} hw_id;
	enum intel_engine_hw_id guc_id; /* XXX same as hw_id? */
183
	u32		mmio_base;
184
	unsigned int irq_shift;
185
	struct intel_ring *buffer;
186
	struct intel_timeline *timeline;
187

188 189
	struct intel_render_state *render_state;

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
	/* Rather than have every client wait upon all user interrupts,
	 * with the herd waking after every interrupt and each doing the
	 * heavyweight seqno dance, we delegate the task (of being the
	 * bottom-half of the user interrupt) to the first client. After
	 * every interrupt, we wake up one client, who does the heavyweight
	 * coherent seqno read and either goes back to sleep (if incomplete),
	 * or wakes up all the completed clients in parallel, before then
	 * transferring the bottom-half status to the next client in the queue.
	 *
	 * Compared to walking the entire list of waiters in a single dedicated
	 * bottom-half, we reduce the latency of the first waiter by avoiding
	 * a context switch, but incur additional coherent seqno reads when
	 * following the chain of request breadcrumbs. Since it is most likely
	 * that we have a single client waiting on each seqno, then reducing
	 * the overhead of waking that client is much preferred.
	 */
	struct intel_breadcrumbs {
207
		struct task_struct __rcu *irq_seqno_bh; /* bh for interrupts */
208 209
		bool irq_posted;

210
		spinlock_t lock; /* protects the lists of requests; irqsafe */
211
		struct rb_root waiters; /* sorted by retirement, priority */
212
		struct rb_root signals; /* sorted by retirement */
213
		struct intel_wait *first_wait; /* oldest waiter by retirement */
214
		struct task_struct *signaler; /* used for fence signalling */
215
		struct drm_i915_gem_request *first_signal;
216
		struct timer_list fake_irq; /* used after a missed interrupt */
217 218 219
		struct timer_list hangcheck; /* detect missed interrupts */

		unsigned long timeout;
220 221 222

		bool irq_enabled : 1;
		bool rpm_wakelock : 1;
223 224
	} breadcrumbs;

225 226 227 228 229 230 231
	/*
	 * A pool of objects to use as shadow copies of client batch buffers
	 * when the command parser is enabled. Prevents the client from
	 * modifying the batch contents after software parsing.
	 */
	struct i915_gem_batch_pool batch_pool;

232
	struct intel_hw_status_page status_page;
233
	struct i915_ctx_workarounds wa_ctx;
234
	struct i915_vma *scratch;
235

236 237
	u32             irq_keep_mask; /* always keep these interrupts */
	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
238 239
	void		(*irq_enable)(struct intel_engine_cs *engine);
	void		(*irq_disable)(struct intel_engine_cs *engine);
240

241
	int		(*init_hw)(struct intel_engine_cs *engine);
242 243
	void		(*reset_hw)(struct intel_engine_cs *engine,
				    struct drm_i915_gem_request *req);
244

245
	int		(*init_context)(struct drm_i915_gem_request *req);
246

247 248 249 250 251 252 253 254 255 256 257
	int		(*emit_flush)(struct drm_i915_gem_request *request,
				      u32 mode);
#define EMIT_INVALIDATE	BIT(0)
#define EMIT_FLUSH	BIT(1)
#define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
					 u64 offset, u32 length,
					 unsigned int dispatch_flags);
#define I915_DISPATCH_SECURE BIT(0)
#define I915_DISPATCH_PINNED BIT(1)
#define I915_DISPATCH_RS     BIT(2)
C
Chris Wilson 已提交
258 259
	void		(*emit_breadcrumb)(struct drm_i915_gem_request *req,
					   u32 *out);
260
	int		emit_breadcrumb_sz;
261 262 263 264 265 266 267

	/* Pass the request to the hardware queue (e.g. directly into
	 * the legacy ringbuffer or to the end of an execlist).
	 *
	 * This is called from an atomic context with irqs disabled; must
	 * be irq safe.
	 */
268
	void		(*submit_request)(struct drm_i915_gem_request *req);
269

270 271 272 273 274 275
	/* Some chipsets are not quite as coherent as advertised and need
	 * an expensive kick to force a true read of the up-to-date seqno.
	 * However, the up-to-date seqno is not always required and the last
	 * seen value is good enough. Note that the seqno will always be
	 * monotonic, even if not coherent.
	 */
276 277
	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
	void		(*cleanup)(struct intel_engine_cs *engine);
278

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	/* GEN8 signal/wait table - never trust comments!
	 *	  signal to	signal to    signal to   signal to      signal to
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
	 *  ie. transpose of g(x, y)
	 *
	 *	 sync from	sync from    sync from    sync from	sync from
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
	 *  ie. transpose of f(x, y)
	 */
316
	struct {
317
		union {
318 319 320
#define GEN6_SEMAPHORE_LAST	VECS_HW
#define GEN6_NUM_SEMAPHORES	(GEN6_SEMAPHORE_LAST + 1)
#define GEN6_SEMAPHORES_MASK	GENMASK(GEN6_SEMAPHORE_LAST, 0)
321 322
			struct {
				/* our mbox written by others */
323
				u32		wait[GEN6_NUM_SEMAPHORES];
324
				/* mboxes this ring signals to */
325
				i915_reg_t	signal[GEN6_NUM_SEMAPHORES];
326
			} mbox;
327
			u64		signal_ggtt[I915_NUM_ENGINES];
328
		};
329 330

		/* AKA wait() */
331 332
		int	(*sync_to)(struct drm_i915_gem_request *req,
				   struct drm_i915_gem_request *signal);
C
Chris Wilson 已提交
333
		u32	*(*signal)(struct drm_i915_gem_request *req, u32 *out);
334
	} semaphore;
335

336
	/* Execlists */
337
	struct tasklet_struct irq_tasklet;
338 339 340 341
	struct execlist_port {
		struct drm_i915_gem_request *request;
		unsigned int count;
	} execlist_port[2];
342
	struct list_head execlist_queue;
343
	unsigned int fw_domains;
344
	bool disable_lite_restore_wa;
345
	bool preempt_wa;
346
	u32 ctx_desc_template;
347

348
	struct i915_gem_context *last_context;
349

350
	struct intel_engine_hangcheck hangcheck;
351

352 353
	bool needs_cmd_parser;

354
	/*
355
	 * Table of commands the command parser needs to know about
356
	 * for this engine.
357
	 */
358
	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
359 360 361 362

	/*
	 * Table of registers allowed in commands that read/write registers.
	 */
363 364
	const struct drm_i915_reg_table *reg_tables;
	int reg_table_count;
365 366 367 368 369

	/*
	 * Returns the bitmask for the length field of the specified command.
	 * Return 0 for an unrecognized/invalid command.
	 *
370
	 * If the command parser finds an entry for a command in the engine's
371
	 * cmd_tables, it gets the command's length based on the table entry.
372 373 374
	 * If not, it calls this function to determine the per-engine length
	 * field encoding for the command (i.e. different opcode ranges use
	 * certain bits to encode the command length in the header).
375 376
	 */
	u32 (*get_cmd_length_mask)(u32 cmd_header);
377 378
};

379
static inline unsigned
380
intel_engine_flag(const struct intel_engine_cs *engine)
381
{
382
	return 1 << engine->id;
383 384
}

385
static inline void
386
intel_flush_status_page(struct intel_engine_cs *engine, int reg)
387
{
388 389 390
	mb();
	clflush(&engine->status_page.page_addr[reg]);
	mb();
391 392
}

393
static inline u32
394
intel_read_status_page(struct intel_engine_cs *engine, int reg)
395
{
396
	/* Ensure that the compiler doesn't optimize away the load. */
397
	return READ_ONCE(engine->status_page.page_addr[reg]);
398 399
}

M
Mika Kuoppala 已提交
400
static inline void
401
intel_write_status_page(struct intel_engine_cs *engine,
M
Mika Kuoppala 已提交
402 403
			int reg, u32 value)
{
404
	engine->status_page.page_addr[reg] = value;
M
Mika Kuoppala 已提交
405 406
}

407
/*
C
Chris Wilson 已提交
408 409 410 411 412 413 414 415 416 417 418
 * Reads a dword out of the status page, which is written to from the command
 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 * MI_STORE_DATA_IMM.
 *
 * The following dwords have a reserved meaning:
 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 * 0x04: ring 0 head pointer
 * 0x05: ring 1 head pointer (915-class)
 * 0x06: ring 2 head pointer (915-class)
 * 0x10-0x1b: Context status DWords (GM45)
 * 0x1f: Last written status offset. (GM45)
419
 * 0x20-0x2f: Reserved (Gen6+)
C
Chris Wilson 已提交
420
 *
421
 * The area from dword 0x30 to 0x3ff is available for driver usage.
C
Chris Wilson 已提交
422
 */
423
#define I915_GEM_HWS_INDEX		0x30
424
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
425
#define I915_GEM_HWS_SCRATCH_INDEX	0x40
426
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
C
Chris Wilson 已提交
427

428 429
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size);
430 431
int intel_ring_pin(struct intel_ring *ring);
void intel_ring_unpin(struct intel_ring *ring);
432
void intel_ring_free(struct intel_ring *ring);
433

434 435
void intel_engine_stop(struct intel_engine_cs *engine);
void intel_engine_cleanup(struct intel_engine_cs *engine);
436

437 438
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);

439 440
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);

441
int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
442
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
443

444
static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
445
{
446 447
	*(uint32_t *)(ring->vaddr + ring->tail) = data;
	ring->tail += 4;
448 449
}

450
static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
451
{
452
	intel_ring_emit(ring, i915_mmio_reg_offset(reg));
453
}
454

455
static inline void intel_ring_advance(struct intel_ring *ring)
456
{
457 458 459 460 461 462 463
	/* Dummy function.
	 *
	 * This serves as a placeholder in the code so that the reader
	 * can compare against the preceding intel_ring_begin() and
	 * check that the number of dwords emitted matches the space
	 * reserved for the command packet (i.e. the value passed to
	 * intel_ring_begin()).
464
	 */
465 466
}

C
Chris Wilson 已提交
467
static inline u32 intel_ring_offset(struct intel_ring *ring, void *addr)
468 469
{
	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
C
Chris Wilson 已提交
470 471
	u32 offset = addr - ring->vaddr;
	return offset & (ring->size - 1);
472
}
473

474
int __intel_ring_space(int head, int tail, int size);
475
void intel_ring_update_space(struct intel_ring *ring);
476

477
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
478

479 480
void intel_engine_setup_common(struct intel_engine_cs *engine);
int intel_engine_init_common(struct intel_engine_cs *engine);
481
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
482
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
483

484 485 486 487 488
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
489

490
u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
491 492
u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);

493 494 495 496
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}
497

498 499 500 501 502 503 504 505 506 507 508 509
static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
{
	/* We are only peeking at the tail of the submit queue (and not the
	 * queue itself) in order to gain a hint as to the current active
	 * state of the engine. Callers are not expected to be taking
	 * engine->timeline->lock, nor are they expected to be concerned
	 * wtih serialising this hint with anything, so document it as
	 * a hint and nothing more.
	 */
	return READ_ONCE(engine->timeline->last_submitted_seqno);
}

510
int init_workarounds_ring(struct intel_engine_cs *engine);
511

512 513 514
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone);

515 516 517
/*
 * Arbitrary size for largest possible 'add request' sequence. The code paths
 * are complex and variable. Empirical measurement shows that the worst case
518 519 520
 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 * we need to allocate double the largest single packet within that emission
 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
521
 */
522
#define MIN_SPACE_FOR_ADD_REQUEST 336
523

524 525
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
526
	return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
527 528
}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);

static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
{
	wait->tsk = current;
	wait->seqno = seqno;
}

static inline bool intel_wait_complete(const struct intel_wait *wait)
{
	return RB_EMPTY_NODE(&wait->node);
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait);
547
void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
548

549
static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
550
{
551
	return rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh);
552 553
}

554
static inline bool intel_engine_wakeup(const struct intel_engine_cs *engine)
555 556
{
	bool wakeup = false;
557

558
	/* Note that for this not to dangerously chase a dangling pointer,
559
	 * we must hold the rcu_read_lock here.
560 561 562 563 564
	 *
	 * Also note that tsk is likely to be in !TASK_RUNNING state so an
	 * early test for tsk->state != TASK_RUNNING before wake_up_process()
	 * is unlikely to be beneficial.
	 */
565 566 567 568 569 570 571 572 573 574
	if (intel_engine_has_waiter(engine)) {
		struct task_struct *tsk;

		rcu_read_lock();
		tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
		if (tsk)
			wakeup = wake_up_process(tsk);
		rcu_read_unlock();
	}

575 576 577
	return wakeup;
}

578
void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
579
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
580
unsigned int intel_breadcrumbs_busy(struct drm_i915_private *i915);
581

582
#endif /* _INTEL_RINGBUFFER_H_ */