evsel.c 62.8 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
 *
 * Parts came from builtin-{top,stat,record}.c, see those files for further
 * copyright notes.
 *
 * Released under the GPL v2. (and only v2, not any later version)
 */

10
#include <byteswap.h>
11
#include <errno.h>
12
#include <inttypes.h>
13
#include <linux/bitops.h>
14
#include <api/fs/tracing_path.h>
15 16 17
#include <traceevent/event-parse.h>
#include <linux/hw_breakpoint.h>
#include <linux/perf_event.h>
18
#include <linux/err.h>
19
#include <sys/ioctl.h>
20
#include <sys/resource.h>
21
#include "asm/bug.h"
22
#include "callchain.h"
23
#include "cgroup.h"
24
#include "event.h"
25
#include "evsel.h"
26
#include "evlist.h"
27
#include "util.h"
28
#include "cpumap.h"
29
#include "thread_map.h"
30
#include "target.h"
31
#include "perf_regs.h"
A
Adrian Hunter 已提交
32
#include "debug.h"
33
#include "trace-event.h"
34
#include "stat.h"
35
#include "util/parse-branch-options.h"
36

37 38
#include "sane_ctype.h"

39 40 41
static struct {
	bool sample_id_all;
	bool exclude_guest;
42
	bool mmap2;
43
	bool cloexec;
44 45
	bool clockid;
	bool clockid_wrong;
46
	bool lbr_flags;
47
	bool write_backward;
48 49
} perf_missing_features;

50 51
static clockid_t clockid;

A
Arnaldo Carvalho de Melo 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
{
	return 0;
}

static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
{
}

static struct {
	size_t	size;
	int	(*init)(struct perf_evsel *evsel);
	void	(*fini)(struct perf_evsel *evsel);
} perf_evsel__object = {
	.size = sizeof(struct perf_evsel),
	.init = perf_evsel__no_extra_init,
	.fini = perf_evsel__no_extra_fini,
};

int perf_evsel__object_config(size_t object_size,
			      int (*init)(struct perf_evsel *evsel),
			      void (*fini)(struct perf_evsel *evsel))
{

	if (object_size == 0)
		goto set_methods;

	if (perf_evsel__object.size > object_size)
		return -EINVAL;

	perf_evsel__object.size = object_size;

set_methods:
	if (init != NULL)
		perf_evsel__object.init = init;

	if (fini != NULL)
		perf_evsel__object.fini = fini;

	return 0;
}

94 95
#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))

96
int __perf_evsel__sample_size(u64 sample_type)
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
{
	u64 mask = sample_type & PERF_SAMPLE_MASK;
	int size = 0;
	int i;

	for (i = 0; i < 64; i++) {
		if (mask & (1ULL << i))
			size++;
	}

	size *= sizeof(u64);

	return size;
}

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
/**
 * __perf_evsel__calc_id_pos - calculate id_pos.
 * @sample_type: sample type
 *
 * This function returns the position of the event id (PERF_SAMPLE_ID or
 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
 * sample_event.
 */
static int __perf_evsel__calc_id_pos(u64 sample_type)
{
	int idx = 0;

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		return 0;

	if (!(sample_type & PERF_SAMPLE_ID))
		return -1;

	if (sample_type & PERF_SAMPLE_IP)
		idx += 1;

	if (sample_type & PERF_SAMPLE_TID)
		idx += 1;

	if (sample_type & PERF_SAMPLE_TIME)
		idx += 1;

	if (sample_type & PERF_SAMPLE_ADDR)
		idx += 1;

	return idx;
}

/**
 * __perf_evsel__calc_is_pos - calculate is_pos.
 * @sample_type: sample type
 *
 * This function returns the position (counting backwards) of the event id
 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
 * sample_id_all is used there is an id sample appended to non-sample events.
 */
static int __perf_evsel__calc_is_pos(u64 sample_type)
{
	int idx = 1;

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		return 1;

	if (!(sample_type & PERF_SAMPLE_ID))
		return -1;

	if (sample_type & PERF_SAMPLE_CPU)
		idx += 1;

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		idx += 1;

	return idx;
}

void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
{
	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
}

178 179 180 181 182 183
void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
				  enum perf_event_sample_format bit)
{
	if (!(evsel->attr.sample_type & bit)) {
		evsel->attr.sample_type |= bit;
		evsel->sample_size += sizeof(u64);
184
		perf_evsel__calc_id_pos(evsel);
185 186 187 188 189 190 191 192 193
	}
}

void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
				    enum perf_event_sample_format bit)
{
	if (evsel->attr.sample_type & bit) {
		evsel->attr.sample_type &= ~bit;
		evsel->sample_size -= sizeof(u64);
194
		perf_evsel__calc_id_pos(evsel);
195 196 197
	}
}

198 199
void perf_evsel__set_sample_id(struct perf_evsel *evsel,
			       bool can_sample_identifier)
200
{
201 202 203 204 205 206
	if (can_sample_identifier) {
		perf_evsel__reset_sample_bit(evsel, ID);
		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
	} else {
		perf_evsel__set_sample_bit(evsel, ID);
	}
207 208 209
	evsel->attr.read_format |= PERF_FORMAT_ID;
}

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/**
 * perf_evsel__is_function_event - Return whether given evsel is a function
 * trace event
 *
 * @evsel - evsel selector to be tested
 *
 * Return %true if event is function trace event
 */
bool perf_evsel__is_function_event(struct perf_evsel *evsel)
{
#define FUNCTION_EVENT "ftrace:function"

	return evsel->name &&
	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));

#undef FUNCTION_EVENT
}

228 229 230 231
void perf_evsel__init(struct perf_evsel *evsel,
		      struct perf_event_attr *attr, int idx)
{
	evsel->idx	   = idx;
232
	evsel->tracking	   = !idx;
233
	evsel->attr	   = *attr;
234
	evsel->leader	   = evsel;
235 236
	evsel->unit	   = "";
	evsel->scale	   = 1.0;
237
	evsel->evlist	   = NULL;
238
	evsel->bpf_fd	   = -1;
239
	INIT_LIST_HEAD(&evsel->node);
240
	INIT_LIST_HEAD(&evsel->config_terms);
A
Arnaldo Carvalho de Melo 已提交
241
	perf_evsel__object.init(evsel);
242
	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
243
	perf_evsel__calc_id_pos(evsel);
244
	evsel->cmdline_group_boundary = false;
245
	evsel->metric_expr   = NULL;
246
	evsel->metric_name   = NULL;
247 248
	evsel->metric_events = NULL;
	evsel->collect_stat  = false;
249 250
}

251
struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
252
{
A
Arnaldo Carvalho de Melo 已提交
253
	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
254

255 256
	if (evsel != NULL)
		perf_evsel__init(evsel, attr, idx);
257

258
	if (perf_evsel__is_bpf_output(evsel)) {
259 260
		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
261 262 263
		evsel->attr.sample_period = 1;
	}

264 265 266
	return evsel;
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
struct perf_evsel *perf_evsel__new_cycles(void)
{
	struct perf_event_attr attr = {
		.type	= PERF_TYPE_HARDWARE,
		.config	= PERF_COUNT_HW_CPU_CYCLES,
	};
	struct perf_evsel *evsel;

	event_attr_init(&attr);

	perf_event_attr__set_max_precise_ip(&attr);

	evsel = perf_evsel__new(&attr);
	if (evsel == NULL)
		goto out;

	/* use asprintf() because free(evsel) assumes name is allocated */
	if (asprintf(&evsel->name, "cycles%.*s",
		     attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0)
		goto error_free;
out:
	return evsel;
error_free:
	perf_evsel__delete(evsel);
	evsel = NULL;
	goto out;
}

295 296 297
/*
 * Returns pointer with encoded error via <linux/err.h> interface.
 */
298
struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
299
{
A
Arnaldo Carvalho de Melo 已提交
300
	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
301
	int err = -ENOMEM;
302

303 304 305
	if (evsel == NULL) {
		goto out_err;
	} else {
306
		struct perf_event_attr attr = {
307 308 309
			.type	       = PERF_TYPE_TRACEPOINT,
			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
310 311
		};

312 313 314
		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
			goto out_free;

315
		evsel->tp_format = trace_event__tp_format(sys, name);
316 317
		if (IS_ERR(evsel->tp_format)) {
			err = PTR_ERR(evsel->tp_format);
318
			goto out_free;
319
		}
320

321
		event_attr_init(&attr);
322
		attr.config = evsel->tp_format->id;
323
		attr.sample_period = 1;
324 325 326 327 328 329
		perf_evsel__init(evsel, &attr, idx);
	}

	return evsel;

out_free:
330
	zfree(&evsel->name);
331
	free(evsel);
332 333
out_err:
	return ERR_PTR(err);
334 335
}

336
const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
337 338 339 340 341 342 343 344 345 346 347 348
	"cycles",
	"instructions",
	"cache-references",
	"cache-misses",
	"branches",
	"branch-misses",
	"bus-cycles",
	"stalled-cycles-frontend",
	"stalled-cycles-backend",
	"ref-cycles",
};

349
static const char *__perf_evsel__hw_name(u64 config)
350 351 352 353 354 355 356
{
	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
		return perf_evsel__hw_names[config];

	return "unknown-hardware";
}

357
static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
358
{
359
	int colon = 0, r = 0;
360 361 362 363 364
	struct perf_event_attr *attr = &evsel->attr;
	bool exclude_guest_default = false;

#define MOD_PRINT(context, mod)	do {					\
		if (!attr->exclude_##context) {				\
365
			if (!colon) colon = ++r;			\
366 367 368 369 370 371 372 373 374 375 376 377
			r += scnprintf(bf + r, size - r, "%c", mod);	\
		} } while(0)

	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
		MOD_PRINT(kernel, 'k');
		MOD_PRINT(user, 'u');
		MOD_PRINT(hv, 'h');
		exclude_guest_default = true;
	}

	if (attr->precise_ip) {
		if (!colon)
378
			colon = ++r;
379 380 381 382 383 384 385 386 387 388
		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
		exclude_guest_default = true;
	}

	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
		MOD_PRINT(host, 'H');
		MOD_PRINT(guest, 'G');
	}
#undef MOD_PRINT
	if (colon)
389
		bf[colon - 1] = ':';
390 391 392
	return r;
}

393 394 395 396 397 398
static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}

399
const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
400 401 402 403
	"cpu-clock",
	"task-clock",
	"page-faults",
	"context-switches",
404
	"cpu-migrations",
405 406 407 408
	"minor-faults",
	"major-faults",
	"alignment-faults",
	"emulation-faults",
409
	"dummy",
410 411
};

412
static const char *__perf_evsel__sw_name(u64 config)
413 414 415 416 417 418 419 420 421 422 423 424
{
	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
		return perf_evsel__sw_names[config];
	return "unknown-software";
}

static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
{
	int r;

	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);

	if (type & HW_BREAKPOINT_R)
		r += scnprintf(bf + r, size - r, "r");

	if (type & HW_BREAKPOINT_W)
		r += scnprintf(bf + r, size - r, "w");

	if (type & HW_BREAKPOINT_X)
		r += scnprintf(bf + r, size - r, "x");

	return r;
}

static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
{
	struct perf_event_attr *attr = &evsel->attr;
	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
				[PERF_EVSEL__MAX_ALIASES] = {
 { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
 { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
 { "LLC",	"L2",							},
 { "dTLB",	"d-tlb",	"Data-TLB",				},
 { "iTLB",	"i-tlb",	"Instruction-TLB",			},
 { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
 { "node",								},
};

const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
				   [PERF_EVSEL__MAX_ALIASES] = {
 { "load",	"loads",	"read",					},
 { "store",	"stores",	"write",				},
 { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
};

const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
				       [PERF_EVSEL__MAX_ALIASES] = {
 { "refs",	"Reference",	"ops",		"access",		},
 { "misses",	"miss",							},
};

#define C(x)		PERF_COUNT_HW_CACHE_##x
#define CACHE_READ	(1 << C(OP_READ))
#define CACHE_WRITE	(1 << C(OP_WRITE))
#define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
#define COP(x)		(1 << x)

/*
 * cache operartion stat
 * L1I : Read and prefetch only
 * ITLB and BPU : Read-only
 */
static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
 [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
 [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 [C(ITLB)]	= (CACHE_READ),
 [C(BPU)]	= (CACHE_READ),
 [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
};

bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
{
	if (perf_evsel__hw_cache_stat[type] & COP(op))
		return true;	/* valid */
	else
		return false;	/* invalid */
}

int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
					    char *bf, size_t size)
{
	if (result) {
		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
				 perf_evsel__hw_cache_op[op][0],
				 perf_evsel__hw_cache_result[result][0]);
	}

	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
			 perf_evsel__hw_cache_op[op][1]);
}

516
static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
517 518 519 520
{
	u8 op, result, type = (config >>  0) & 0xff;
	const char *err = "unknown-ext-hardware-cache-type";

521
	if (type >= PERF_COUNT_HW_CACHE_MAX)
522 523 524 525
		goto out_err;

	op = (config >>  8) & 0xff;
	err = "unknown-ext-hardware-cache-op";
526
	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
527 528 529 530
		goto out_err;

	result = (config >> 16) & 0xff;
	err = "unknown-ext-hardware-cache-result";
531
	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
		goto out_err;

	err = "invalid-cache";
	if (!perf_evsel__is_cache_op_valid(type, op))
		goto out_err;

	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
out_err:
	return scnprintf(bf, size, "%s", err);
}

static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
{
	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
}

549 550 551 552 553 554
static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
}

555
const char *perf_evsel__name(struct perf_evsel *evsel)
556
{
557
	char bf[128];
558

559 560
	if (evsel->name)
		return evsel->name;
561 562 563

	switch (evsel->attr.type) {
	case PERF_TYPE_RAW:
564
		perf_evsel__raw_name(evsel, bf, sizeof(bf));
565 566 567
		break;

	case PERF_TYPE_HARDWARE:
568
		perf_evsel__hw_name(evsel, bf, sizeof(bf));
569
		break;
570 571

	case PERF_TYPE_HW_CACHE:
572
		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
573 574
		break;

575
	case PERF_TYPE_SOFTWARE:
576
		perf_evsel__sw_name(evsel, bf, sizeof(bf));
577 578
		break;

579
	case PERF_TYPE_TRACEPOINT:
580
		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
581 582
		break;

583 584 585 586
	case PERF_TYPE_BREAKPOINT:
		perf_evsel__bp_name(evsel, bf, sizeof(bf));
		break;

587
	default:
588 589
		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
			  evsel->attr.type);
590
		break;
591 592
	}

593 594 595
	evsel->name = strdup(bf);

	return evsel->name ?: "unknown";
596 597
}

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
const char *perf_evsel__group_name(struct perf_evsel *evsel)
{
	return evsel->group_name ?: "anon group";
}

int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
{
	int ret;
	struct perf_evsel *pos;
	const char *group_name = perf_evsel__group_name(evsel);

	ret = scnprintf(buf, size, "%s", group_name);

	ret += scnprintf(buf + ret, size - ret, " { %s",
			 perf_evsel__name(evsel));

	for_each_group_member(pos, evsel)
		ret += scnprintf(buf + ret, size - ret, ", %s",
				 perf_evsel__name(pos));

	ret += scnprintf(buf + ret, size - ret, " }");

	return ret;
}

623 624 625
void perf_evsel__config_callchain(struct perf_evsel *evsel,
				  struct record_opts *opts,
				  struct callchain_param *param)
626 627 628 629 630 631
{
	bool function = perf_evsel__is_function_event(evsel);
	struct perf_event_attr *attr = &evsel->attr;

	perf_evsel__set_sample_bit(evsel, CALLCHAIN);

632 633
	attr->sample_max_stack = param->max_stack;

634
	if (param->record_mode == CALLCHAIN_LBR) {
635 636 637 638 639 640 641 642
		if (!opts->branch_stack) {
			if (attr->exclude_user) {
				pr_warning("LBR callstack option is only available "
					   "to get user callchain information. "
					   "Falling back to framepointers.\n");
			} else {
				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
643 644 645
							PERF_SAMPLE_BRANCH_CALL_STACK |
							PERF_SAMPLE_BRANCH_NO_CYCLES |
							PERF_SAMPLE_BRANCH_NO_FLAGS;
646 647 648 649 650 651
			}
		} else
			 pr_warning("Cannot use LBR callstack with branch stack. "
				    "Falling back to framepointers.\n");
	}

652
	if (param->record_mode == CALLCHAIN_DWARF) {
653 654 655 656
		if (!function) {
			perf_evsel__set_sample_bit(evsel, REGS_USER);
			perf_evsel__set_sample_bit(evsel, STACK_USER);
			attr->sample_regs_user = PERF_REGS_MASK;
657
			attr->sample_stack_user = param->dump_size;
658 659 660 661 662 663 664 665 666 667 668 669 670
			attr->exclude_callchain_user = 1;
		} else {
			pr_info("Cannot use DWARF unwind for function trace event,"
				" falling back to framepointers.\n");
		}
	}

	if (function) {
		pr_info("Disabling user space callchains for function trace event.\n");
		attr->exclude_callchain_user = 1;
	}
}

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
static void
perf_evsel__reset_callgraph(struct perf_evsel *evsel,
			    struct callchain_param *param)
{
	struct perf_event_attr *attr = &evsel->attr;

	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
	if (param->record_mode == CALLCHAIN_LBR) {
		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
					      PERF_SAMPLE_BRANCH_CALL_STACK);
	}
	if (param->record_mode == CALLCHAIN_DWARF) {
		perf_evsel__reset_sample_bit(evsel, REGS_USER);
		perf_evsel__reset_sample_bit(evsel, STACK_USER);
	}
}

static void apply_config_terms(struct perf_evsel *evsel,
			       struct record_opts *opts)
691 692
{
	struct perf_evsel_config_term *term;
K
Kan Liang 已提交
693 694
	struct list_head *config_terms = &evsel->config_terms;
	struct perf_event_attr *attr = &evsel->attr;
695 696
	struct callchain_param param;
	u32 dump_size = 0;
697 698
	int max_stack = 0;
	const char *callgraph_buf = NULL;
699 700 701

	/* callgraph default */
	param.record_mode = callchain_param.record_mode;
702 703 704

	list_for_each_entry(term, config_terms, list) {
		switch (term->type) {
705 706
		case PERF_EVSEL__CONFIG_TERM_PERIOD:
			attr->sample_period = term->val.period;
707
			attr->freq = 0;
K
Kan Liang 已提交
708
			break;
709 710 711 712
		case PERF_EVSEL__CONFIG_TERM_FREQ:
			attr->sample_freq = term->val.freq;
			attr->freq = 1;
			break;
K
Kan Liang 已提交
713 714 715 716 717 718
		case PERF_EVSEL__CONFIG_TERM_TIME:
			if (term->val.time)
				perf_evsel__set_sample_bit(evsel, TIME);
			else
				perf_evsel__reset_sample_bit(evsel, TIME);
			break;
719 720 721
		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
			callgraph_buf = term->val.callgraph;
			break;
722 723 724 725 726 727 728 729
		case PERF_EVSEL__CONFIG_TERM_BRANCH:
			if (term->val.branch && strcmp(term->val.branch, "no")) {
				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
				parse_branch_str(term->val.branch,
						 &attr->branch_sample_type);
			} else
				perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
			break;
730 731 732
		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
			dump_size = term->val.stack_user;
			break;
733 734 735
		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
			max_stack = term->val.max_stack;
			break;
736 737 738 739 740 741 742 743 744
		case PERF_EVSEL__CONFIG_TERM_INHERIT:
			/*
			 * attr->inherit should has already been set by
			 * perf_evsel__config. If user explicitly set
			 * inherit using config terms, override global
			 * opt->no_inherit setting.
			 */
			attr->inherit = term->val.inherit ? 1 : 0;
			break;
W
Wang Nan 已提交
745 746 747
		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
			attr->write_backward = term->val.overwrite ? 1 : 0;
			break;
748 749 750 751
		default:
			break;
		}
	}
752 753

	/* User explicitly set per-event callgraph, clear the old setting and reset. */
754 755 756 757 758 759
	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
		if (max_stack) {
			param.max_stack = max_stack;
			if (callgraph_buf == NULL)
				callgraph_buf = "fp";
		}
760 761 762

		/* parse callgraph parameters */
		if (callgraph_buf != NULL) {
763 764 765 766 767 768 769 770 771 772 773
			if (!strcmp(callgraph_buf, "no")) {
				param.enabled = false;
				param.record_mode = CALLCHAIN_NONE;
			} else {
				param.enabled = true;
				if (parse_callchain_record(callgraph_buf, &param)) {
					pr_err("per-event callgraph setting for %s failed. "
					       "Apply callgraph global setting for it\n",
					       evsel->name);
					return;
				}
774 775 776 777 778 779 780 781 782 783 784 785 786
			}
		}
		if (dump_size > 0) {
			dump_size = round_up(dump_size, sizeof(u64));
			param.dump_size = dump_size;
		}

		/* If global callgraph set, clear it */
		if (callchain_param.enabled)
			perf_evsel__reset_callgraph(evsel, &callchain_param);

		/* set perf-event callgraph */
		if (param.enabled)
787
			perf_evsel__config_callchain(evsel, opts, &param);
788
	}
789 790
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
/*
 * The enable_on_exec/disabled value strategy:
 *
 *  1) For any type of traced program:
 *    - all independent events and group leaders are disabled
 *    - all group members are enabled
 *
 *     Group members are ruled by group leaders. They need to
 *     be enabled, because the group scheduling relies on that.
 *
 *  2) For traced programs executed by perf:
 *     - all independent events and group leaders have
 *       enable_on_exec set
 *     - we don't specifically enable or disable any event during
 *       the record command
 *
 *     Independent events and group leaders are initially disabled
 *     and get enabled by exec. Group members are ruled by group
 *     leaders as stated in 1).
 *
 *  3) For traced programs attached by perf (pid/tid):
 *     - we specifically enable or disable all events during
 *       the record command
 *
 *     When attaching events to already running traced we
 *     enable/disable events specifically, as there's no
 *     initial traced exec call.
 */
819 820
void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
			struct callchain_param *callchain)
821
{
822
	struct perf_evsel *leader = evsel->leader;
823
	struct perf_event_attr *attr = &evsel->attr;
824
	int track = evsel->tracking;
825
	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
826

827
	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
828
	attr->inherit	    = !opts->no_inherit;
W
Wang Nan 已提交
829
	attr->write_backward = opts->overwrite ? 1 : 0;
830

831 832
	perf_evsel__set_sample_bit(evsel, IP);
	perf_evsel__set_sample_bit(evsel, TID);
833

834 835 836 837 838 839 840
	if (evsel->sample_read) {
		perf_evsel__set_sample_bit(evsel, READ);

		/*
		 * We need ID even in case of single event, because
		 * PERF_SAMPLE_READ process ID specific data.
		 */
841
		perf_evsel__set_sample_id(evsel, false);
842 843 844 845 846 847 848 849 850 851 852

		/*
		 * Apply group format only if we belong to group
		 * with more than one members.
		 */
		if (leader->nr_members > 1) {
			attr->read_format |= PERF_FORMAT_GROUP;
			attr->inherit = 0;
		}
	}

853
	/*
854
	 * We default some events to have a default interval. But keep
855 856
	 * it a weak assumption overridable by the user.
	 */
857
	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
858 859
				     opts->user_interval != ULLONG_MAX)) {
		if (opts->freq) {
860
			perf_evsel__set_sample_bit(evsel, PERIOD);
861 862 863 864 865 866 867
			attr->freq		= 1;
			attr->sample_freq	= opts->freq;
		} else {
			attr->sample_period = opts->default_interval;
		}
	}

868 869 870 871 872 873 874 875 876
	/*
	 * Disable sampling for all group members other
	 * than leader in case leader 'leads' the sampling.
	 */
	if ((leader != evsel) && leader->sample_read) {
		attr->sample_freq   = 0;
		attr->sample_period = 0;
	}

877 878 879 880 881 882 883
	if (opts->no_samples)
		attr->sample_freq = 0;

	if (opts->inherit_stat)
		attr->inherit_stat = 1;

	if (opts->sample_address) {
884
		perf_evsel__set_sample_bit(evsel, ADDR);
885 886 887
		attr->mmap_data = track;
	}

888 889 890 891 892 893 894 895
	/*
	 * We don't allow user space callchains for  function trace
	 * event, due to issues with page faults while tracing page
	 * fault handler and its overall trickiness nature.
	 */
	if (perf_evsel__is_function_event(evsel))
		evsel->attr.exclude_callchain_user = 1;

896
	if (callchain && callchain->enabled && !evsel->no_aux_samples)
897
		perf_evsel__config_callchain(evsel, opts, callchain);
898

899
	if (opts->sample_intr_regs) {
900
		attr->sample_regs_intr = opts->sample_intr_regs;
901 902 903
		perf_evsel__set_sample_bit(evsel, REGS_INTR);
	}

J
Jiri Olsa 已提交
904
	if (target__has_cpu(&opts->target) || opts->sample_cpu)
905
		perf_evsel__set_sample_bit(evsel, CPU);
906

907
	if (opts->period)
908
		perf_evsel__set_sample_bit(evsel, PERIOD);
909

910
	/*
911
	 * When the user explicitly disabled time don't force it here.
912 913 914
	 */
	if (opts->sample_time &&
	    (!perf_missing_features.sample_id_all &&
915 916
	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
	     opts->sample_time_set)))
917
		perf_evsel__set_sample_bit(evsel, TIME);
918

919
	if (opts->raw_samples && !evsel->no_aux_samples) {
920 921 922
		perf_evsel__set_sample_bit(evsel, TIME);
		perf_evsel__set_sample_bit(evsel, RAW);
		perf_evsel__set_sample_bit(evsel, CPU);
923 924
	}

925
	if (opts->sample_address)
926
		perf_evsel__set_sample_bit(evsel, DATA_SRC);
927

928
	if (opts->no_buffering) {
929 930 931
		attr->watermark = 0;
		attr->wakeup_events = 1;
	}
932
	if (opts->branch_stack && !evsel->no_aux_samples) {
933
		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
934 935
		attr->branch_sample_type = opts->branch_stack;
	}
936

937
	if (opts->sample_weight)
938
		perf_evsel__set_sample_bit(evsel, WEIGHT);
939

940
	attr->task  = track;
941
	attr->mmap  = track;
942
	attr->mmap2 = track && !perf_missing_features.mmap2;
943
	attr->comm  = track;
944

945 946 947
	if (opts->record_namespaces)
		attr->namespaces  = track;

948 949 950
	if (opts->record_switch_events)
		attr->context_switch = track;

951
	if (opts->sample_transaction)
952
		perf_evsel__set_sample_bit(evsel, TRANSACTION);
953

954 955 956 957 958 959
	if (opts->running_time) {
		evsel->attr.read_format |=
			PERF_FORMAT_TOTAL_TIME_ENABLED |
			PERF_FORMAT_TOTAL_TIME_RUNNING;
	}

960 961 962 963 964 965
	/*
	 * XXX see the function comment above
	 *
	 * Disabling only independent events or group leaders,
	 * keeping group members enabled.
	 */
966
	if (perf_evsel__is_group_leader(evsel))
967 968 969 970 971 972
		attr->disabled = 1;

	/*
	 * Setting enable_on_exec for independent events and
	 * group leaders for traced executed by perf.
	 */
973 974
	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
		!opts->initial_delay)
975
		attr->enable_on_exec = 1;
976 977 978 979 980

	if (evsel->immediate) {
		attr->disabled = 0;
		attr->enable_on_exec = 0;
	}
981 982 983 984 985 986

	clockid = opts->clockid;
	if (opts->use_clockid) {
		attr->use_clockid = 1;
		attr->clockid = opts->clockid;
	}
987

988 989 990
	if (evsel->precise_max)
		perf_event_attr__set_max_precise_ip(attr);

991 992 993 994 995 996 997 998 999 1000
	if (opts->all_user) {
		attr->exclude_kernel = 1;
		attr->exclude_user   = 0;
	}

	if (opts->all_kernel) {
		attr->exclude_kernel = 0;
		attr->exclude_user   = 1;
	}

1001 1002 1003 1004
	/*
	 * Apply event specific term settings,
	 * it overloads any global configuration.
	 */
1005
	apply_config_terms(evsel, opts);
1006 1007

	evsel->ignore_missing_thread = opts->ignore_missing_thread;
1008 1009
}

1010
static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1011
{
1012 1013 1014
	if (evsel->system_wide)
		nthreads = 1;

1015
	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1016 1017

	if (evsel->fd) {
1018
		int cpu, thread;
1019 1020 1021 1022 1023 1024 1025
		for (cpu = 0; cpu < ncpus; cpu++) {
			for (thread = 0; thread < nthreads; thread++) {
				FD(evsel, cpu, thread) = -1;
			}
		}
	}

1026 1027 1028
	return evsel->fd != NULL ? 0 : -ENOMEM;
}

1029 1030
static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
			  int ioc,  void *arg)
1031 1032 1033
{
	int cpu, thread;

1034 1035 1036
	if (evsel->system_wide)
		nthreads = 1;

1037 1038 1039
	for (cpu = 0; cpu < ncpus; cpu++) {
		for (thread = 0; thread < nthreads; thread++) {
			int fd = FD(evsel, cpu, thread),
1040
			    err = ioctl(fd, ioc, arg);
1041 1042 1043 1044 1045 1046 1047 1048 1049

			if (err)
				return err;
		}
	}

	return 0;
}

1050 1051
int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
			     const char *filter)
1052 1053 1054 1055 1056 1057
{
	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
				     PERF_EVENT_IOC_SET_FILTER,
				     (void *)filter);
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
{
	char *new_filter = strdup(filter);

	if (new_filter != NULL) {
		free(evsel->filter);
		evsel->filter = new_filter;
		return 0;
	}

	return -1;
}

1071 1072
static int perf_evsel__append_filter(struct perf_evsel *evsel,
				     const char *fmt, const char *filter)
1073 1074 1075 1076 1077 1078
{
	char *new_filter;

	if (evsel->filter == NULL)
		return perf_evsel__set_filter(evsel, filter);

1079
	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1080 1081 1082 1083 1084 1085 1086 1087
		free(evsel->filter);
		evsel->filter = new_filter;
		return 0;
	}

	return -1;
}

1088 1089 1090 1091 1092
int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
{
	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
}

1093 1094 1095 1096 1097
int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
{
	return perf_evsel__append_filter(evsel, "%s,%s", filter);
}

1098
int perf_evsel__enable(struct perf_evsel *evsel)
1099
{
1100 1101 1102
	int nthreads = thread_map__nr(evsel->threads);
	int ncpus = cpu_map__nr(evsel->cpus);

1103 1104 1105 1106 1107
	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
				     PERF_EVENT_IOC_ENABLE,
				     0);
}

J
Jiri Olsa 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
int perf_evsel__disable(struct perf_evsel *evsel)
{
	int nthreads = thread_map__nr(evsel->threads);
	int ncpus = cpu_map__nr(evsel->cpus);

	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
				     PERF_EVENT_IOC_DISABLE,
				     0);
}

1118 1119
int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
{
1120 1121 1122
	if (ncpus == 0 || nthreads == 0)
		return 0;

1123 1124 1125
	if (evsel->system_wide)
		nthreads = 1;

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
	if (evsel->sample_id == NULL)
		return -ENOMEM;

	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
	if (evsel->id == NULL) {
		xyarray__delete(evsel->sample_id);
		evsel->sample_id = NULL;
		return -ENOMEM;
	}

	return 0;
1138 1139
}

1140
static void perf_evsel__free_fd(struct perf_evsel *evsel)
1141 1142 1143 1144 1145
{
	xyarray__delete(evsel->fd);
	evsel->fd = NULL;
}

1146
static void perf_evsel__free_id(struct perf_evsel *evsel)
1147
{
1148 1149
	xyarray__delete(evsel->sample_id);
	evsel->sample_id = NULL;
1150
	zfree(&evsel->id);
1151 1152
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
{
	struct perf_evsel_config_term *term, *h;

	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
		list_del(&term->list);
		free(term);
	}
}

1163 1164 1165 1166
void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
{
	int cpu, thread;

1167 1168 1169
	if (evsel->system_wide)
		nthreads = 1;

1170 1171 1172 1173 1174 1175 1176
	for (cpu = 0; cpu < ncpus; cpu++)
		for (thread = 0; thread < nthreads; ++thread) {
			close(FD(evsel, cpu, thread));
			FD(evsel, cpu, thread) = -1;
		}
}

1177
void perf_evsel__exit(struct perf_evsel *evsel)
1178 1179
{
	assert(list_empty(&evsel->node));
1180
	assert(evsel->evlist == NULL);
1181 1182
	perf_evsel__free_fd(evsel);
	perf_evsel__free_id(evsel);
1183
	perf_evsel__free_config_terms(evsel);
1184
	close_cgroup(evsel->cgrp);
1185
	cpu_map__put(evsel->cpus);
A
Adrian Hunter 已提交
1186
	cpu_map__put(evsel->own_cpus);
1187
	thread_map__put(evsel->threads);
1188 1189
	zfree(&evsel->group_name);
	zfree(&evsel->name);
A
Arnaldo Carvalho de Melo 已提交
1190
	perf_evsel__object.fini(evsel);
1191 1192 1193 1194 1195
}

void perf_evsel__delete(struct perf_evsel *evsel)
{
	perf_evsel__exit(evsel);
1196 1197
	free(evsel);
}
1198

1199
void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1200
				struct perf_counts_values *count)
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
{
	struct perf_counts_values tmp;

	if (!evsel->prev_raw_counts)
		return;

	if (cpu == -1) {
		tmp = evsel->prev_raw_counts->aggr;
		evsel->prev_raw_counts->aggr = *count;
	} else {
1211 1212
		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1213 1214 1215 1216 1217 1218 1219
	}

	count->val = count->val - tmp.val;
	count->ena = count->ena - tmp.ena;
	count->run = count->run - tmp.run;
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
void perf_counts_values__scale(struct perf_counts_values *count,
			       bool scale, s8 *pscaled)
{
	s8 scaled = 0;

	if (scale) {
		if (count->run == 0) {
			scaled = -1;
			count->val = 0;
		} else if (count->run < count->ena) {
			scaled = 1;
			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
		}
	} else
		count->ena = count->run = 0;

	if (pscaled)
		*pscaled = scaled;
}

1240 1241 1242 1243 1244 1245 1246 1247
int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
		     struct perf_counts_values *count)
{
	memset(count, 0, sizeof(*count));

	if (FD(evsel, cpu, thread) < 0)
		return -EINVAL;

1248
	if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) <= 0)
1249 1250 1251 1252 1253
		return -errno;

	return 0;
}

1254 1255 1256 1257 1258 1259 1260 1261 1262
int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
			      int cpu, int thread, bool scale)
{
	struct perf_counts_values count;
	size_t nv = scale ? 3 : 1;

	if (FD(evsel, cpu, thread) < 0)
		return -EINVAL;

1263
	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1264 1265
		return -ENOMEM;

1266
	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1267 1268
		return -errno;

1269
	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1270
	perf_counts_values__scale(&count, scale, NULL);
1271
	*perf_counts(evsel->counts, cpu, thread) = count;
1272 1273 1274
	return 0;
}

1275 1276 1277 1278 1279
static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
{
	struct perf_evsel *leader = evsel->leader;
	int fd;

1280
	if (perf_evsel__is_group_leader(evsel))
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		return -1;

	/*
	 * Leader must be already processed/open,
	 * if not it's a bug.
	 */
	BUG_ON(!leader->fd);

	fd = FD(leader, cpu, thread);
	BUG_ON(fd == -1);

	return fd;
}

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
struct bit_names {
	int bit;
	const char *name;
};

static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
{
	bool first_bit = true;
	int i = 0;

	do {
		if (value & bits[i].bit) {
			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
			first_bit = false;
		}
	} while (bits[++i].name != NULL);
}

static void __p_sample_type(char *buf, size_t size, u64 value)
{
#define bit_name(n) { PERF_SAMPLE_##n, #n }
	struct bit_names bits[] = {
		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1321
		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1322
		bit_name(WEIGHT),
1323 1324 1325 1326 1327 1328
		{ .name = NULL, }
	};
#undef bit_name
	__p_bits(buf, size, value, bits);
}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
static void __p_branch_sample_type(char *buf, size_t size, u64 value)
{
#define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
	struct bit_names bits[] = {
		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
		{ .name = NULL, }
	};
#undef bit_name
	__p_bits(buf, size, value, bits);
}

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
static void __p_read_format(char *buf, size_t size, u64 value)
{
#define bit_name(n) { PERF_FORMAT_##n, #n }
	struct bit_names bits[] = {
		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
		bit_name(ID), bit_name(GROUP),
		{ .name = NULL, }
	};
#undef bit_name
	__p_bits(buf, size, value, bits);
}

#define BUF_SIZE		1024

1358
#define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1359 1360 1361
#define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
#define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
#define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1362
#define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
#define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)

#define PRINT_ATTRn(_n, _f, _p)				\
do {							\
	if (attr->_f) {					\
		_p(attr->_f);				\
		ret += attr__fprintf(fp, _n, buf, priv);\
	}						\
} while (0)

#define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)

int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
			     attr__fprintf_f attr__fprintf, void *priv)
{
	char buf[BUF_SIZE];
	int ret = 0;

	PRINT_ATTRf(type, p_unsigned);
	PRINT_ATTRf(size, p_unsigned);
	PRINT_ATTRf(config, p_hex);
	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
	PRINT_ATTRf(sample_type, p_sample_type);
	PRINT_ATTRf(read_format, p_read_format);

	PRINT_ATTRf(disabled, p_unsigned);
	PRINT_ATTRf(inherit, p_unsigned);
	PRINT_ATTRf(pinned, p_unsigned);
	PRINT_ATTRf(exclusive, p_unsigned);
	PRINT_ATTRf(exclude_user, p_unsigned);
	PRINT_ATTRf(exclude_kernel, p_unsigned);
	PRINT_ATTRf(exclude_hv, p_unsigned);
	PRINT_ATTRf(exclude_idle, p_unsigned);
	PRINT_ATTRf(mmap, p_unsigned);
	PRINT_ATTRf(comm, p_unsigned);
	PRINT_ATTRf(freq, p_unsigned);
	PRINT_ATTRf(inherit_stat, p_unsigned);
	PRINT_ATTRf(enable_on_exec, p_unsigned);
	PRINT_ATTRf(task, p_unsigned);
	PRINT_ATTRf(watermark, p_unsigned);
	PRINT_ATTRf(precise_ip, p_unsigned);
	PRINT_ATTRf(mmap_data, p_unsigned);
	PRINT_ATTRf(sample_id_all, p_unsigned);
	PRINT_ATTRf(exclude_host, p_unsigned);
	PRINT_ATTRf(exclude_guest, p_unsigned);
	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
	PRINT_ATTRf(mmap2, p_unsigned);
	PRINT_ATTRf(comm_exec, p_unsigned);
	PRINT_ATTRf(use_clockid, p_unsigned);
1413
	PRINT_ATTRf(context_switch, p_unsigned);
1414
	PRINT_ATTRf(write_backward, p_unsigned);
1415 1416 1417 1418 1419

	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
	PRINT_ATTRf(bp_type, p_unsigned);
	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1420
	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1421 1422 1423 1424
	PRINT_ATTRf(sample_regs_user, p_hex);
	PRINT_ATTRf(sample_stack_user, p_unsigned);
	PRINT_ATTRf(clockid, p_signed);
	PRINT_ATTRf(sample_regs_intr, p_hex);
1425
	PRINT_ATTRf(aux_watermark, p_unsigned);
1426
	PRINT_ATTRf(sample_max_stack, p_unsigned);
A
Adrian Hunter 已提交
1427 1428 1429 1430

	return ret;
}

1431 1432 1433 1434 1435 1436
static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
				void *priv __attribute__((unused)))
{
	return fprintf(fp, "  %-32s %s\n", name, val);
}

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
static bool ignore_missing_thread(struct perf_evsel *evsel,
				  struct thread_map *threads,
				  int thread, int err)
{
	if (!evsel->ignore_missing_thread)
		return false;

	/* The system wide setup does not work with threads. */
	if (evsel->system_wide)
		return false;

	/* The -ESRCH is perf event syscall errno for pid's not found. */
	if (err != -ESRCH)
		return false;

	/* If there's only one thread, let it fail. */
	if (threads->nr == 1)
		return false;

	if (thread_map__remove(threads, thread))
		return false;

	pr_warning("WARNING: Ignored open failure for pid %d\n",
		   thread_map__pid(threads, thread));
	return true;
}

1464 1465
int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
		     struct thread_map *threads)
1466
{
1467
	int cpu, thread, nthreads;
1468
	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1469
	int pid = -1, err;
1470
	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1471

1472 1473 1474
	if (perf_missing_features.write_backward && evsel->attr.write_backward)
		return -EINVAL;

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	if (cpus == NULL) {
		static struct cpu_map *empty_cpu_map;

		if (empty_cpu_map == NULL) {
			empty_cpu_map = cpu_map__dummy_new();
			if (empty_cpu_map == NULL)
				return -ENOMEM;
		}

		cpus = empty_cpu_map;
	}

	if (threads == NULL) {
		static struct thread_map *empty_thread_map;

		if (empty_thread_map == NULL) {
			empty_thread_map = thread_map__new_by_tid(-1);
			if (empty_thread_map == NULL)
				return -ENOMEM;
		}

		threads = empty_thread_map;
	}

1499 1500 1501 1502 1503
	if (evsel->system_wide)
		nthreads = 1;
	else
		nthreads = threads->nr;

1504
	if (evsel->fd == NULL &&
1505
	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1506
		return -ENOMEM;
1507

S
Stephane Eranian 已提交
1508
	if (evsel->cgrp) {
1509
		flags |= PERF_FLAG_PID_CGROUP;
S
Stephane Eranian 已提交
1510 1511 1512
		pid = evsel->cgrp->fd;
	}

1513
fallback_missing_features:
1514 1515 1516 1517 1518 1519
	if (perf_missing_features.clockid_wrong)
		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
	if (perf_missing_features.clockid) {
		evsel->attr.use_clockid = 0;
		evsel->attr.clockid = 0;
	}
1520 1521
	if (perf_missing_features.cloexec)
		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1522 1523
	if (perf_missing_features.mmap2)
		evsel->attr.mmap2 = 0;
1524 1525
	if (perf_missing_features.exclude_guest)
		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1526 1527 1528
	if (perf_missing_features.lbr_flags)
		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1529 1530 1531 1532
retry_sample_id:
	if (perf_missing_features.sample_id_all)
		evsel->attr.sample_id_all = 0;

1533 1534 1535 1536 1537 1538
	if (verbose >= 2) {
		fprintf(stderr, "%.60s\n", graph_dotted_line);
		fprintf(stderr, "perf_event_attr:\n");
		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
		fprintf(stderr, "%.60s\n", graph_dotted_line);
	}
A
Adrian Hunter 已提交
1539

1540
	for (cpu = 0; cpu < cpus->nr; cpu++) {
1541

1542
		for (thread = 0; thread < nthreads; thread++) {
1543
			int fd, group_fd;
S
Stephane Eranian 已提交
1544

1545
			if (!evsel->cgrp && !evsel->system_wide)
1546
				pid = thread_map__pid(threads, thread);
S
Stephane Eranian 已提交
1547

1548
			group_fd = get_group_fd(evsel, cpu, thread);
1549
retry_open:
1550
			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
A
Adrian Hunter 已提交
1551 1552
				  pid, cpus->map[cpu], group_fd, flags);

1553 1554 1555 1556 1557 1558
			fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
						 group_fd, flags);

			FD(evsel, cpu, thread) = fd;

			if (fd < 0) {
1559
				err = -errno;
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574

				if (ignore_missing_thread(evsel, threads, thread, err)) {
					/*
					 * We just removed 1 thread, so take a step
					 * back on thread index and lower the upper
					 * nthreads limit.
					 */
					nthreads--;
					thread--;

					/* ... and pretend like nothing have happened. */
					err = 0;
					continue;
				}

1575
				pr_debug2("\nsys_perf_event_open failed, error %d\n",
1576
					  err);
1577
				goto try_fallback;
1578
			}
1579

1580
			pr_debug2(" = %d\n", fd);
1581

1582
			if (evsel->bpf_fd >= 0) {
1583
				int evt_fd = fd;
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
				int bpf_fd = evsel->bpf_fd;

				err = ioctl(evt_fd,
					    PERF_EVENT_IOC_SET_BPF,
					    bpf_fd);
				if (err && errno != EEXIST) {
					pr_err("failed to attach bpf fd %d: %s\n",
					       bpf_fd, strerror(errno));
					err = -EINVAL;
					goto out_close;
				}
			}

1597
			set_rlimit = NO_CHANGE;
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608

			/*
			 * If we succeeded but had to kill clockid, fail and
			 * have perf_evsel__open_strerror() print us a nice
			 * error.
			 */
			if (perf_missing_features.clockid ||
			    perf_missing_features.clockid_wrong) {
				err = -EINVAL;
				goto out_close;
			}
1609
		}
1610 1611 1612 1613
	}

	return 0;

1614
try_fallback:
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	/*
	 * perf stat needs between 5 and 22 fds per CPU. When we run out
	 * of them try to increase the limits.
	 */
	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
		struct rlimit l;
		int old_errno = errno;

		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
			if (set_rlimit == NO_CHANGE)
				l.rlim_cur = l.rlim_max;
			else {
				l.rlim_cur = l.rlim_max + 1000;
				l.rlim_max = l.rlim_cur;
			}
			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
				set_rlimit++;
				errno = old_errno;
				goto retry_open;
			}
		}
		errno = old_errno;
	}

1639 1640 1641
	if (err != -EINVAL || cpu > 0 || thread > 0)
		goto out_close;

1642 1643 1644 1645
	/*
	 * Must probe features in the order they were added to the
	 * perf_event_attr interface.
	 */
1646 1647
	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
		perf_missing_features.write_backward = true;
1648
		goto out_close;
1649
	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1650 1651 1652 1653 1654 1655
		perf_missing_features.clockid_wrong = true;
		goto fallback_missing_features;
	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
		perf_missing_features.clockid = true;
		goto fallback_missing_features;
	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1656 1657 1658
		perf_missing_features.cloexec = true;
		goto fallback_missing_features;
	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1659 1660 1661 1662
		perf_missing_features.mmap2 = true;
		goto fallback_missing_features;
	} else if (!perf_missing_features.exclude_guest &&
		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1663 1664 1665 1666 1667
		perf_missing_features.exclude_guest = true;
		goto fallback_missing_features;
	} else if (!perf_missing_features.sample_id_all) {
		perf_missing_features.sample_id_all = true;
		goto retry_sample_id;
1668 1669 1670 1671 1672 1673
	} else if (!perf_missing_features.lbr_flags &&
			(evsel->attr.branch_sample_type &
			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
		perf_missing_features.lbr_flags = true;
		goto fallback_missing_features;
1674
	}
1675
out_close:
1676 1677 1678 1679 1680
	do {
		while (--thread >= 0) {
			close(FD(evsel, cpu, thread));
			FD(evsel, cpu, thread) = -1;
		}
1681
		thread = nthreads;
1682
	} while (--cpu >= 0);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	return err;
}

void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
{
	if (evsel->fd == NULL)
		return;

	perf_evsel__close_fd(evsel, ncpus, nthreads);
	perf_evsel__free_fd(evsel);
1693 1694
}

1695
int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1696
			     struct cpu_map *cpus)
1697
{
1698
	return perf_evsel__open(evsel, cpus, NULL);
1699
}
1700

1701
int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1702
				struct thread_map *threads)
1703
{
1704
	return perf_evsel__open(evsel, NULL, threads);
1705
}
1706

1707 1708 1709
static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
				       const union perf_event *event,
				       struct perf_sample *sample)
1710
{
1711
	u64 type = evsel->attr.sample_type;
1712
	const u64 *array = event->sample.array;
1713
	bool swapped = evsel->needs_swap;
1714
	union u64_swap u;
1715 1716 1717 1718

	array += ((event->header.size -
		   sizeof(event->header)) / sizeof(u64)) - 1;

1719 1720 1721 1722 1723
	if (type & PERF_SAMPLE_IDENTIFIER) {
		sample->id = *array;
		array--;
	}

1724
	if (type & PERF_SAMPLE_CPU) {
1725 1726 1727 1728 1729 1730 1731 1732
		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
		}

		sample->cpu = u.val32[0];
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
		array--;
	}

	if (type & PERF_SAMPLE_STREAM_ID) {
		sample->stream_id = *array;
		array--;
	}

	if (type & PERF_SAMPLE_ID) {
		sample->id = *array;
		array--;
	}

	if (type & PERF_SAMPLE_TIME) {
		sample->time = *array;
		array--;
	}

	if (type & PERF_SAMPLE_TID) {
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
		}

		sample->pid = u.val32[0];
		sample->tid = u.val32[1];
1762
		array--;
1763 1764 1765 1766 1767
	}

	return 0;
}

1768 1769
static inline bool overflow(const void *endp, u16 max_size, const void *offset,
			    u64 size)
1770
{
1771 1772
	return size > max_size || offset + size > endp;
}
1773

1774 1775 1776 1777 1778
#define OVERFLOW_CHECK(offset, size, max_size)				\
	do {								\
		if (overflow(endp, (max_size), (offset), (size)))	\
			return -EFAULT;					\
	} while (0)
1779

1780 1781
#define OVERFLOW_CHECK_u64(offset) \
	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1782

1783
int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1784
			     struct perf_sample *data)
1785
{
1786
	u64 type = evsel->attr.sample_type;
1787
	bool swapped = evsel->needs_swap;
1788
	const u64 *array;
1789 1790 1791
	u16 max_size = event->header.size;
	const void *endp = (void *)event + max_size;
	u64 sz;
1792

1793 1794 1795 1796
	/*
	 * used for cross-endian analysis. See git commit 65014ab3
	 * for why this goofiness is needed.
	 */
1797
	union u64_swap u;
1798

1799
	memset(data, 0, sizeof(*data));
1800 1801
	data->cpu = data->pid = data->tid = -1;
	data->stream_id = data->id = data->time = -1ULL;
1802
	data->period = evsel->attr.sample_period;
1803
	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1804 1805

	if (event->header.type != PERF_RECORD_SAMPLE) {
1806
		if (!evsel->attr.sample_id_all)
1807
			return 0;
1808
		return perf_evsel__parse_id_sample(evsel, event, data);
1809 1810 1811 1812
	}

	array = event->sample.array;

1813 1814 1815 1816 1817
	/*
	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
	 * check the format does not go past the end of the event.
	 */
1818
	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1819 1820
		return -EFAULT;

1821 1822 1823 1824 1825 1826
	data->id = -1ULL;
	if (type & PERF_SAMPLE_IDENTIFIER) {
		data->id = *array;
		array++;
	}

1827
	if (type & PERF_SAMPLE_IP) {
1828
		data->ip = *array;
1829 1830 1831 1832
		array++;
	}

	if (type & PERF_SAMPLE_TID) {
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
		}

		data->pid = u.val32[0];
		data->tid = u.val32[1];
1843 1844 1845 1846 1847 1848 1849 1850
		array++;
	}

	if (type & PERF_SAMPLE_TIME) {
		data->time = *array;
		array++;
	}

1851
	data->addr = 0;
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	if (type & PERF_SAMPLE_ADDR) {
		data->addr = *array;
		array++;
	}

	if (type & PERF_SAMPLE_ID) {
		data->id = *array;
		array++;
	}

	if (type & PERF_SAMPLE_STREAM_ID) {
		data->stream_id = *array;
		array++;
	}

	if (type & PERF_SAMPLE_CPU) {
1868 1869 1870 1871 1872 1873 1874 1875 1876

		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
		}

		data->cpu = u.val32[0];
1877 1878 1879 1880 1881 1882 1883 1884 1885
		array++;
	}

	if (type & PERF_SAMPLE_PERIOD) {
		data->period = *array;
		array++;
	}

	if (type & PERF_SAMPLE_READ) {
1886 1887
		u64 read_format = evsel->attr.read_format;

1888
		OVERFLOW_CHECK_u64(array);
1889 1890 1891 1892 1893 1894 1895 1896
		if (read_format & PERF_FORMAT_GROUP)
			data->read.group.nr = *array;
		else
			data->read.one.value = *array;

		array++;

		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1897
			OVERFLOW_CHECK_u64(array);
1898 1899 1900 1901 1902
			data->read.time_enabled = *array;
			array++;
		}

		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1903
			OVERFLOW_CHECK_u64(array);
1904 1905 1906 1907 1908 1909
			data->read.time_running = *array;
			array++;
		}

		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
		if (read_format & PERF_FORMAT_GROUP) {
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
			const u64 max_group_nr = UINT64_MAX /
					sizeof(struct sample_read_value);

			if (data->read.group.nr > max_group_nr)
				return -EFAULT;
			sz = data->read.group.nr *
			     sizeof(struct sample_read_value);
			OVERFLOW_CHECK(array, sz, max_size);
			data->read.group.values =
					(struct sample_read_value *)array;
			array = (void *)array + sz;
1921
		} else {
1922
			OVERFLOW_CHECK_u64(array);
1923 1924 1925
			data->read.one.id = *array;
			array++;
		}
1926 1927 1928
	}

	if (type & PERF_SAMPLE_CALLCHAIN) {
1929
		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1930

1931 1932 1933
		OVERFLOW_CHECK_u64(array);
		data->callchain = (struct ip_callchain *)array++;
		if (data->callchain->nr > max_callchain_nr)
1934
			return -EFAULT;
1935 1936 1937
		sz = data->callchain->nr * sizeof(u64);
		OVERFLOW_CHECK(array, sz, max_size);
		array = (void *)array + sz;
1938 1939 1940
	}

	if (type & PERF_SAMPLE_RAW) {
1941
		OVERFLOW_CHECK_u64(array);
1942 1943 1944 1945 1946 1947 1948 1949 1950
		u.val64 = *array;
		if (WARN_ONCE(swapped,
			      "Endianness of raw data not corrected!\n")) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
		}
		data->raw_size = u.val32[0];
1951
		array = (void *)array + sizeof(u32);
1952

1953 1954 1955
		OVERFLOW_CHECK(array, data->raw_size, max_size);
		data->raw_data = (void *)array;
		array = (void *)array + data->raw_size;
1956 1957
	}

1958
	if (type & PERF_SAMPLE_BRANCH_STACK) {
1959 1960
		const u64 max_branch_nr = UINT64_MAX /
					  sizeof(struct branch_entry);
1961

1962 1963
		OVERFLOW_CHECK_u64(array);
		data->branch_stack = (struct branch_stack *)array++;
1964

1965 1966
		if (data->branch_stack->nr > max_branch_nr)
			return -EFAULT;
1967
		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1968 1969
		OVERFLOW_CHECK(array, sz, max_size);
		array = (void *)array + sz;
1970
	}
1971 1972

	if (type & PERF_SAMPLE_REGS_USER) {
1973
		OVERFLOW_CHECK_u64(array);
1974 1975
		data->user_regs.abi = *array;
		array++;
1976

1977
		if (data->user_regs.abi) {
1978
			u64 mask = evsel->attr.sample_regs_user;
1979

1980
			sz = hweight_long(mask) * sizeof(u64);
1981
			OVERFLOW_CHECK(array, sz, max_size);
1982
			data->user_regs.mask = mask;
1983
			data->user_regs.regs = (u64 *)array;
1984
			array = (void *)array + sz;
1985 1986 1987 1988
		}
	}

	if (type & PERF_SAMPLE_STACK_USER) {
1989 1990
		OVERFLOW_CHECK_u64(array);
		sz = *array++;
1991 1992 1993 1994

		data->user_stack.offset = ((char *)(array - 1)
					  - (char *) event);

1995
		if (!sz) {
1996 1997
			data->user_stack.size = 0;
		} else {
1998
			OVERFLOW_CHECK(array, sz, max_size);
1999
			data->user_stack.data = (char *)array;
2000 2001
			array = (void *)array + sz;
			OVERFLOW_CHECK_u64(array);
2002
			data->user_stack.size = *array++;
2003 2004 2005
			if (WARN_ONCE(data->user_stack.size > sz,
				      "user stack dump failure\n"))
				return -EFAULT;
2006 2007 2008
		}
	}

2009
	if (type & PERF_SAMPLE_WEIGHT) {
2010
		OVERFLOW_CHECK_u64(array);
2011 2012 2013 2014
		data->weight = *array;
		array++;
	}

2015 2016
	data->data_src = PERF_MEM_DATA_SRC_NONE;
	if (type & PERF_SAMPLE_DATA_SRC) {
2017
		OVERFLOW_CHECK_u64(array);
2018 2019 2020 2021
		data->data_src = *array;
		array++;
	}

2022 2023
	data->transaction = 0;
	if (type & PERF_SAMPLE_TRANSACTION) {
2024
		OVERFLOW_CHECK_u64(array);
2025 2026 2027 2028
		data->transaction = *array;
		array++;
	}

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
	if (type & PERF_SAMPLE_REGS_INTR) {
		OVERFLOW_CHECK_u64(array);
		data->intr_regs.abi = *array;
		array++;

		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
			u64 mask = evsel->attr.sample_regs_intr;

			sz = hweight_long(mask) * sizeof(u64);
			OVERFLOW_CHECK(array, sz, max_size);
			data->intr_regs.mask = mask;
			data->intr_regs.regs = (u64 *)array;
			array = (void *)array + sz;
		}
	}

2046 2047
	return 0;
}
2048

2049
size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2050
				     u64 read_format)
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
{
	size_t sz, result = sizeof(struct sample_event);

	if (type & PERF_SAMPLE_IDENTIFIER)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_IP)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_TID)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_TIME)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_ADDR)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_ID)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_STREAM_ID)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_CPU)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_PERIOD)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_READ) {
		result += sizeof(u64);
		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
			result += sizeof(u64);
		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
			result += sizeof(u64);
		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
		if (read_format & PERF_FORMAT_GROUP) {
			sz = sample->read.group.nr *
			     sizeof(struct sample_read_value);
			result += sz;
		} else {
			result += sizeof(u64);
		}
	}

	if (type & PERF_SAMPLE_CALLCHAIN) {
		sz = (sample->callchain->nr + 1) * sizeof(u64);
		result += sz;
	}

	if (type & PERF_SAMPLE_RAW) {
		result += sizeof(u32);
		result += sample->raw_size;
	}

	if (type & PERF_SAMPLE_BRANCH_STACK) {
		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
		sz += sizeof(u64);
		result += sz;
	}

	if (type & PERF_SAMPLE_REGS_USER) {
		if (sample->user_regs.abi) {
			result += sizeof(u64);
2116
			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
			result += sz;
		} else {
			result += sizeof(u64);
		}
	}

	if (type & PERF_SAMPLE_STACK_USER) {
		sz = sample->user_stack.size;
		result += sizeof(u64);
		if (sz) {
			result += sz;
			result += sizeof(u64);
		}
	}

	if (type & PERF_SAMPLE_WEIGHT)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_DATA_SRC)
		result += sizeof(u64);

2138 2139 2140
	if (type & PERF_SAMPLE_TRANSACTION)
		result += sizeof(u64);

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	if (type & PERF_SAMPLE_REGS_INTR) {
		if (sample->intr_regs.abi) {
			result += sizeof(u64);
			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
			result += sz;
		} else {
			result += sizeof(u64);
		}
	}

2151 2152 2153
	return result;
}

2154
int perf_event__synthesize_sample(union perf_event *event, u64 type,
2155
				  u64 read_format,
2156 2157 2158 2159
				  const struct perf_sample *sample,
				  bool swapped)
{
	u64 *array;
2160
	size_t sz;
2161 2162 2163 2164
	/*
	 * used for cross-endian analysis. See git commit 65014ab3
	 * for why this goofiness is needed.
	 */
2165
	union u64_swap u;
2166 2167 2168

	array = event->sample.array;

2169 2170 2171 2172 2173
	if (type & PERF_SAMPLE_IDENTIFIER) {
		*array = sample->id;
		array++;
	}

2174
	if (type & PERF_SAMPLE_IP) {
2175
		*array = sample->ip;
2176 2177 2178 2179 2180 2181 2182 2183
		array++;
	}

	if (type & PERF_SAMPLE_TID) {
		u.val32[0] = sample->pid;
		u.val32[1] = sample->tid;
		if (swapped) {
			/*
2184
			 * Inverse of what is done in perf_evsel__parse_sample
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
			 */
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
			u.val64 = bswap_64(u.val64);
		}

		*array = u.val64;
		array++;
	}

	if (type & PERF_SAMPLE_TIME) {
		*array = sample->time;
		array++;
	}

	if (type & PERF_SAMPLE_ADDR) {
		*array = sample->addr;
		array++;
	}

	if (type & PERF_SAMPLE_ID) {
		*array = sample->id;
		array++;
	}

	if (type & PERF_SAMPLE_STREAM_ID) {
		*array = sample->stream_id;
		array++;
	}

	if (type & PERF_SAMPLE_CPU) {
		u.val32[0] = sample->cpu;
		if (swapped) {
			/*
2219
			 * Inverse of what is done in perf_evsel__parse_sample
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
			 */
			u.val32[0] = bswap_32(u.val32[0]);
			u.val64 = bswap_64(u.val64);
		}
		*array = u.val64;
		array++;
	}

	if (type & PERF_SAMPLE_PERIOD) {
		*array = sample->period;
		array++;
	}

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	if (type & PERF_SAMPLE_READ) {
		if (read_format & PERF_FORMAT_GROUP)
			*array = sample->read.group.nr;
		else
			*array = sample->read.one.value;
		array++;

		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
			*array = sample->read.time_enabled;
			array++;
		}

		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
			*array = sample->read.time_running;
			array++;
		}

		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
		if (read_format & PERF_FORMAT_GROUP) {
			sz = sample->read.group.nr *
			     sizeof(struct sample_read_value);
			memcpy(array, sample->read.group.values, sz);
			array = (void *)array + sz;
		} else {
			*array = sample->read.one.id;
			array++;
		}
	}

	if (type & PERF_SAMPLE_CALLCHAIN) {
		sz = (sample->callchain->nr + 1) * sizeof(u64);
		memcpy(array, sample->callchain, sz);
		array = (void *)array + sz;
	}

	if (type & PERF_SAMPLE_RAW) {
		u.val32[0] = sample->raw_size;
		if (WARN_ONCE(swapped,
			      "Endianness of raw data not corrected!\n")) {
			/*
			 * Inverse of what is done in perf_evsel__parse_sample
			 */
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
			u.val64 = bswap_64(u.val64);
		}
		*array = u.val64;
		array = (void *)array + sizeof(u32);

		memcpy(array, sample->raw_data, sample->raw_size);
		array = (void *)array + sample->raw_size;
	}

	if (type & PERF_SAMPLE_BRANCH_STACK) {
		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
		sz += sizeof(u64);
		memcpy(array, sample->branch_stack, sz);
		array = (void *)array + sz;
	}

	if (type & PERF_SAMPLE_REGS_USER) {
		if (sample->user_regs.abi) {
			*array++ = sample->user_regs.abi;
2296
			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
			memcpy(array, sample->user_regs.regs, sz);
			array = (void *)array + sz;
		} else {
			*array++ = 0;
		}
	}

	if (type & PERF_SAMPLE_STACK_USER) {
		sz = sample->user_stack.size;
		*array++ = sz;
		if (sz) {
			memcpy(array, sample->user_stack.data, sz);
			array = (void *)array + sz;
			*array++ = sz;
		}
	}

	if (type & PERF_SAMPLE_WEIGHT) {
		*array = sample->weight;
		array++;
	}

	if (type & PERF_SAMPLE_DATA_SRC) {
		*array = sample->data_src;
		array++;
	}

2324 2325 2326 2327 2328
	if (type & PERF_SAMPLE_TRANSACTION) {
		*array = sample->transaction;
		array++;
	}

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
	if (type & PERF_SAMPLE_REGS_INTR) {
		if (sample->intr_regs.abi) {
			*array++ = sample->intr_regs.abi;
			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
			memcpy(array, sample->intr_regs.regs, sz);
			array = (void *)array + sz;
		} else {
			*array++ = 0;
		}
	}

2340 2341
	return 0;
}
2342

2343 2344 2345 2346 2347
struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
{
	return pevent_find_field(evsel->tp_format, name);
}

2348
void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2349 2350
			 const char *name)
{
2351
	struct format_field *field = perf_evsel__field(evsel, name);
2352 2353
	int offset;

2354 2355
	if (!field)
		return NULL;
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366

	offset = field->offset;

	if (field->flags & FIELD_IS_DYNAMIC) {
		offset = *(int *)(sample->raw_data + field->offset);
		offset &= 0xffff;
	}

	return sample->raw_data + offset;
}

2367 2368
u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
			 bool needs_swap)
2369
{
2370
	u64 value;
2371
	void *ptr = sample->raw_data + field->offset;
2372

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	switch (field->size) {
	case 1:
		return *(u8 *)ptr;
	case 2:
		value = *(u16 *)ptr;
		break;
	case 4:
		value = *(u32 *)ptr;
		break;
	case 8:
2383
		memcpy(&value, ptr, sizeof(u64));
2384 2385 2386 2387 2388
		break;
	default:
		return 0;
	}

2389
	if (!needs_swap)
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
		return value;

	switch (field->size) {
	case 2:
		return bswap_16(value);
	case 4:
		return bswap_32(value);
	case 8:
		return bswap_64(value);
	default:
		return 0;
	}

	return 0;
2404
}
2405

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
		       const char *name)
{
	struct format_field *field = perf_evsel__field(evsel, name);

	if (!field)
		return 0;

	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
}

2417 2418 2419
bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
			  char *msg, size_t msgsize)
{
2420 2421
	int paranoid;

2422
	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
		/*
		 * If it's cycles then fall back to hrtimer based
		 * cpu-clock-tick sw counter, which is always available even if
		 * no PMU support.
		 *
		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
		 * b0a873e).
		 */
		scnprintf(msg, msgsize, "%s",
"The cycles event is not supported, trying to fall back to cpu-clock-ticks");

		evsel->attr.type   = PERF_TYPE_SOFTWARE;
		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;

2439
		zfree(&evsel->name);
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
		return true;
	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
		   (paranoid = perf_event_paranoid()) > 1) {
		const char *name = perf_evsel__name(evsel);
		char *new_name;

		if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
			return false;

		if (evsel->name)
			free(evsel->name);
		evsel->name = new_name;
		scnprintf(msg, msgsize,
"kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
		evsel->attr.exclude_kernel = 1;

2456 2457 2458 2459 2460
		return true;
	}

	return false;
}
2461

2462
int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2463 2464
			      int err, char *msg, size_t size)
{
2465
	char sbuf[STRERR_BUFSIZE];
2466
	int printed = 0;
2467

2468 2469 2470
	switch (err) {
	case EPERM:
	case EACCES:
2471 2472 2473 2474 2475 2476
		if (err == EPERM)
			printed = scnprintf(msg, size,
				"No permission to enable %s event.\n\n",
				perf_evsel__name(evsel));

		return scnprintf(msg + printed, size - printed,
2477 2478 2479 2480
		 "You may not have permission to collect %sstats.\n\n"
		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
		 "which controls use of the performance events system by\n"
		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2481
		 "The current value is %d:\n\n"
2482 2483 2484
		 "  -1: Allow use of (almost) all events by all users\n"
		 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2485 2486 2487
		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
		 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
		 "	kernel.perf_event_paranoid = -1\n" ,
2488 2489
				 target->system_wide ? "system-wide " : "",
				 perf_event_paranoid());
2490 2491 2492 2493 2494 2495
	case ENOENT:
		return scnprintf(msg, size, "The %s event is not supported.",
				 perf_evsel__name(evsel));
	case EMFILE:
		return scnprintf(msg, size, "%s",
			 "Too many events are opened.\n"
2496 2497 2498
			 "Probably the maximum number of open file descriptors has been reached.\n"
			 "Hint: Try again after reducing the number of events.\n"
			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2499 2500 2501 2502 2503 2504 2505 2506
	case ENOMEM:
		if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
			return scnprintf(msg, size,
					 "Not enough memory to setup event with callchain.\n"
					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
					 "Hint: Current value: %d", sysctl_perf_event_max_stack);
		break;
2507 2508 2509
	case ENODEV:
		if (target->cpu_list)
			return scnprintf(msg, size, "%s",
2510
	 "No such device - did you specify an out-of-range profile CPU?");
2511 2512
		break;
	case EOPNOTSUPP:
2513 2514 2515
		if (evsel->attr.sample_period != 0)
			return scnprintf(msg, size, "%s",
	"PMU Hardware doesn't support sampling/overflow-interrupts.");
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
		if (evsel->attr.precise_ip)
			return scnprintf(msg, size, "%s",
	"\'precise\' request may not be supported. Try removing 'p' modifier.");
#if defined(__i386__) || defined(__x86_64__)
		if (evsel->attr.type == PERF_TYPE_HARDWARE)
			return scnprintf(msg, size, "%s",
	"No hardware sampling interrupt available.\n"
	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
#endif
		break;
2526 2527 2528 2529 2530 2531
	case EBUSY:
		if (find_process("oprofiled"))
			return scnprintf(msg, size,
	"The PMU counters are busy/taken by another profiler.\n"
	"We found oprofile daemon running, please stop it and try again.");
		break;
2532
	case EINVAL:
2533
		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2534
			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2535 2536 2537 2538 2539
		if (perf_missing_features.clockid)
			return scnprintf(msg, size, "clockid feature not supported.");
		if (perf_missing_features.clockid_wrong)
			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
		break;
2540 2541 2542 2543 2544
	default:
		break;
	}

	return scnprintf(msg, size,
2545
	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2546
	"/bin/dmesg may provide additional information.\n"
2547
	"No CONFIG_PERF_EVENTS=y kernel support configured?",
2548
			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2549
			 perf_evsel__name(evsel));
2550
}
2551 2552 2553 2554 2555 2556 2557

char *perf_evsel__env_arch(struct perf_evsel *evsel)
{
	if (evsel && evsel->evlist && evsel->evlist->env)
		return evsel->evlist->env->arch;
	return NULL;
}