evsel.c 53.6 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
 *
 * Parts came from builtin-{top,stat,record}.c, see those files for further
 * copyright notes.
 *
 * Released under the GPL v2. (and only v2, not any later version)
 */

10
#include <byteswap.h>
11
#include <linux/bitops.h>
12
#include <api/fs/debugfs.h>
13 14 15
#include <traceevent/event-parse.h>
#include <linux/hw_breakpoint.h>
#include <linux/perf_event.h>
16
#include <sys/resource.h>
17
#include "asm/bug.h"
18
#include "callchain.h"
19
#include "cgroup.h"
20
#include "evsel.h"
21
#include "evlist.h"
22
#include "util.h"
23
#include "cpumap.h"
24
#include "thread_map.h"
25
#include "target.h"
26
#include "perf_regs.h"
A
Adrian Hunter 已提交
27
#include "debug.h"
28
#include "trace-event.h"
29
#include "stat.h"
30

31 32 33
static struct {
	bool sample_id_all;
	bool exclude_guest;
34
	bool mmap2;
35
	bool cloexec;
36 37
	bool clockid;
	bool clockid_wrong;
38 39
} perf_missing_features;

40 41
static clockid_t clockid;

A
Arnaldo Carvalho de Melo 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
{
	return 0;
}

static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
{
}

static struct {
	size_t	size;
	int	(*init)(struct perf_evsel *evsel);
	void	(*fini)(struct perf_evsel *evsel);
} perf_evsel__object = {
	.size = sizeof(struct perf_evsel),
	.init = perf_evsel__no_extra_init,
	.fini = perf_evsel__no_extra_fini,
};

int perf_evsel__object_config(size_t object_size,
			      int (*init)(struct perf_evsel *evsel),
			      void (*fini)(struct perf_evsel *evsel))
{

	if (object_size == 0)
		goto set_methods;

	if (perf_evsel__object.size > object_size)
		return -EINVAL;

	perf_evsel__object.size = object_size;

set_methods:
	if (init != NULL)
		perf_evsel__object.init = init;

	if (fini != NULL)
		perf_evsel__object.fini = fini;

	return 0;
}

84 85
#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))

86
int __perf_evsel__sample_size(u64 sample_type)
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
{
	u64 mask = sample_type & PERF_SAMPLE_MASK;
	int size = 0;
	int i;

	for (i = 0; i < 64; i++) {
		if (mask & (1ULL << i))
			size++;
	}

	size *= sizeof(u64);

	return size;
}

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
/**
 * __perf_evsel__calc_id_pos - calculate id_pos.
 * @sample_type: sample type
 *
 * This function returns the position of the event id (PERF_SAMPLE_ID or
 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
 * sample_event.
 */
static int __perf_evsel__calc_id_pos(u64 sample_type)
{
	int idx = 0;

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		return 0;

	if (!(sample_type & PERF_SAMPLE_ID))
		return -1;

	if (sample_type & PERF_SAMPLE_IP)
		idx += 1;

	if (sample_type & PERF_SAMPLE_TID)
		idx += 1;

	if (sample_type & PERF_SAMPLE_TIME)
		idx += 1;

	if (sample_type & PERF_SAMPLE_ADDR)
		idx += 1;

	return idx;
}

/**
 * __perf_evsel__calc_is_pos - calculate is_pos.
 * @sample_type: sample type
 *
 * This function returns the position (counting backwards) of the event id
 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
 * sample_id_all is used there is an id sample appended to non-sample events.
 */
static int __perf_evsel__calc_is_pos(u64 sample_type)
{
	int idx = 1;

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		return 1;

	if (!(sample_type & PERF_SAMPLE_ID))
		return -1;

	if (sample_type & PERF_SAMPLE_CPU)
		idx += 1;

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		idx += 1;

	return idx;
}

void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
{
	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
}

168 169 170 171 172 173
void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
				  enum perf_event_sample_format bit)
{
	if (!(evsel->attr.sample_type & bit)) {
		evsel->attr.sample_type |= bit;
		evsel->sample_size += sizeof(u64);
174
		perf_evsel__calc_id_pos(evsel);
175 176 177 178 179 180 181 182 183
	}
}

void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
				    enum perf_event_sample_format bit)
{
	if (evsel->attr.sample_type & bit) {
		evsel->attr.sample_type &= ~bit;
		evsel->sample_size -= sizeof(u64);
184
		perf_evsel__calc_id_pos(evsel);
185 186 187
	}
}

188 189
void perf_evsel__set_sample_id(struct perf_evsel *evsel,
			       bool can_sample_identifier)
190
{
191 192 193 194 195 196
	if (can_sample_identifier) {
		perf_evsel__reset_sample_bit(evsel, ID);
		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
	} else {
		perf_evsel__set_sample_bit(evsel, ID);
	}
197 198 199
	evsel->attr.read_format |= PERF_FORMAT_ID;
}

200 201 202 203
void perf_evsel__init(struct perf_evsel *evsel,
		      struct perf_event_attr *attr, int idx)
{
	evsel->idx	   = idx;
204
	evsel->tracking	   = !idx;
205
	evsel->attr	   = *attr;
206
	evsel->leader	   = evsel;
207 208
	evsel->unit	   = "";
	evsel->scale	   = 1.0;
209
	INIT_LIST_HEAD(&evsel->node);
210
	INIT_LIST_HEAD(&evsel->config_terms);
A
Arnaldo Carvalho de Melo 已提交
211
	perf_evsel__object.init(evsel);
212
	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
213
	perf_evsel__calc_id_pos(evsel);
214
	evsel->cmdline_group_boundary = false;
215 216
}

217
struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
218
{
A
Arnaldo Carvalho de Melo 已提交
219
	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
220

221 222
	if (evsel != NULL)
		perf_evsel__init(evsel, attr, idx);
223 224 225 226

	return evsel;
}

227
struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
228
{
A
Arnaldo Carvalho de Melo 已提交
229
	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
230 231 232

	if (evsel != NULL) {
		struct perf_event_attr attr = {
233 234 235
			.type	       = PERF_TYPE_TRACEPOINT,
			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
236 237
		};

238 239 240
		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
			goto out_free;

241
		evsel->tp_format = trace_event__tp_format(sys, name);
242 243 244
		if (evsel->tp_format == NULL)
			goto out_free;

245
		event_attr_init(&attr);
246
		attr.config = evsel->tp_format->id;
247
		attr.sample_period = 1;
248 249 250 251 252 253
		perf_evsel__init(evsel, &attr, idx);
	}

	return evsel;

out_free:
254
	zfree(&evsel->name);
255 256 257 258
	free(evsel);
	return NULL;
}

259
const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
260 261 262 263 264 265 266 267 268 269 270 271
	"cycles",
	"instructions",
	"cache-references",
	"cache-misses",
	"branches",
	"branch-misses",
	"bus-cycles",
	"stalled-cycles-frontend",
	"stalled-cycles-backend",
	"ref-cycles",
};

272
static const char *__perf_evsel__hw_name(u64 config)
273 274 275 276 277 278 279
{
	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
		return perf_evsel__hw_names[config];

	return "unknown-hardware";
}

280
static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
281
{
282
	int colon = 0, r = 0;
283 284 285 286 287
	struct perf_event_attr *attr = &evsel->attr;
	bool exclude_guest_default = false;

#define MOD_PRINT(context, mod)	do {					\
		if (!attr->exclude_##context) {				\
288
			if (!colon) colon = ++r;			\
289 290 291 292 293 294 295 296 297 298 299 300
			r += scnprintf(bf + r, size - r, "%c", mod);	\
		} } while(0)

	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
		MOD_PRINT(kernel, 'k');
		MOD_PRINT(user, 'u');
		MOD_PRINT(hv, 'h');
		exclude_guest_default = true;
	}

	if (attr->precise_ip) {
		if (!colon)
301
			colon = ++r;
302 303 304 305 306 307 308 309 310 311
		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
		exclude_guest_default = true;
	}

	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
		MOD_PRINT(host, 'H');
		MOD_PRINT(guest, 'G');
	}
#undef MOD_PRINT
	if (colon)
312
		bf[colon - 1] = ':';
313 314 315
	return r;
}

316 317 318 319 320 321
static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}

322
const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
323 324 325 326
	"cpu-clock",
	"task-clock",
	"page-faults",
	"context-switches",
327
	"cpu-migrations",
328 329 330 331
	"minor-faults",
	"major-faults",
	"alignment-faults",
	"emulation-faults",
332
	"dummy",
333 334
};

335
static const char *__perf_evsel__sw_name(u64 config)
336 337 338 339 340 341 342 343 344 345 346 347
{
	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
		return perf_evsel__sw_names[config];
	return "unknown-software";
}

static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
{
	int r;

	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);

	if (type & HW_BREAKPOINT_R)
		r += scnprintf(bf + r, size - r, "r");

	if (type & HW_BREAKPOINT_W)
		r += scnprintf(bf + r, size - r, "w");

	if (type & HW_BREAKPOINT_X)
		r += scnprintf(bf + r, size - r, "x");

	return r;
}

static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
{
	struct perf_event_attr *attr = &evsel->attr;
	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
				[PERF_EVSEL__MAX_ALIASES] = {
 { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
 { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
 { "LLC",	"L2",							},
 { "dTLB",	"d-tlb",	"Data-TLB",				},
 { "iTLB",	"i-tlb",	"Instruction-TLB",			},
 { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
 { "node",								},
};

const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
				   [PERF_EVSEL__MAX_ALIASES] = {
 { "load",	"loads",	"read",					},
 { "store",	"stores",	"write",				},
 { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
};

const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
				       [PERF_EVSEL__MAX_ALIASES] = {
 { "refs",	"Reference",	"ops",		"access",		},
 { "misses",	"miss",							},
};

#define C(x)		PERF_COUNT_HW_CACHE_##x
#define CACHE_READ	(1 << C(OP_READ))
#define CACHE_WRITE	(1 << C(OP_WRITE))
#define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
#define COP(x)		(1 << x)

/*
 * cache operartion stat
 * L1I : Read and prefetch only
 * ITLB and BPU : Read-only
 */
static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
 [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
 [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
 [C(ITLB)]	= (CACHE_READ),
 [C(BPU)]	= (CACHE_READ),
 [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
};

bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
{
	if (perf_evsel__hw_cache_stat[type] & COP(op))
		return true;	/* valid */
	else
		return false;	/* invalid */
}

int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
					    char *bf, size_t size)
{
	if (result) {
		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
				 perf_evsel__hw_cache_op[op][0],
				 perf_evsel__hw_cache_result[result][0]);
	}

	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
			 perf_evsel__hw_cache_op[op][1]);
}

439
static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
{
	u8 op, result, type = (config >>  0) & 0xff;
	const char *err = "unknown-ext-hardware-cache-type";

	if (type > PERF_COUNT_HW_CACHE_MAX)
		goto out_err;

	op = (config >>  8) & 0xff;
	err = "unknown-ext-hardware-cache-op";
	if (op > PERF_COUNT_HW_CACHE_OP_MAX)
		goto out_err;

	result = (config >> 16) & 0xff;
	err = "unknown-ext-hardware-cache-result";
	if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
		goto out_err;

	err = "invalid-cache";
	if (!perf_evsel__is_cache_op_valid(type, op))
		goto out_err;

	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
out_err:
	return scnprintf(bf, size, "%s", err);
}

static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
{
	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
}

472 473 474 475 476 477
static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
{
	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
}

478
const char *perf_evsel__name(struct perf_evsel *evsel)
479
{
480
	char bf[128];
481

482 483
	if (evsel->name)
		return evsel->name;
484 485 486

	switch (evsel->attr.type) {
	case PERF_TYPE_RAW:
487
		perf_evsel__raw_name(evsel, bf, sizeof(bf));
488 489 490
		break;

	case PERF_TYPE_HARDWARE:
491
		perf_evsel__hw_name(evsel, bf, sizeof(bf));
492
		break;
493 494

	case PERF_TYPE_HW_CACHE:
495
		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
496 497
		break;

498
	case PERF_TYPE_SOFTWARE:
499
		perf_evsel__sw_name(evsel, bf, sizeof(bf));
500 501
		break;

502
	case PERF_TYPE_TRACEPOINT:
503
		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
504 505
		break;

506 507 508 509
	case PERF_TYPE_BREAKPOINT:
		perf_evsel__bp_name(evsel, bf, sizeof(bf));
		break;

510
	default:
511 512
		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
			  evsel->attr.type);
513
		break;
514 515
	}

516 517 518
	evsel->name = strdup(bf);

	return evsel->name ?: "unknown";
519 520
}

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
const char *perf_evsel__group_name(struct perf_evsel *evsel)
{
	return evsel->group_name ?: "anon group";
}

int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
{
	int ret;
	struct perf_evsel *pos;
	const char *group_name = perf_evsel__group_name(evsel);

	ret = scnprintf(buf, size, "%s", group_name);

	ret += scnprintf(buf + ret, size - ret, " { %s",
			 perf_evsel__name(evsel));

	for_each_group_member(pos, evsel)
		ret += scnprintf(buf + ret, size - ret, ", %s",
				 perf_evsel__name(pos));

	ret += scnprintf(buf + ret, size - ret, " }");

	return ret;
}

546
static void
547 548
perf_evsel__config_callgraph(struct perf_evsel *evsel,
			     struct record_opts *opts)
549 550 551 552 553 554
{
	bool function = perf_evsel__is_function_event(evsel);
	struct perf_event_attr *attr = &evsel->attr;

	perf_evsel__set_sample_bit(evsel, CALLCHAIN);

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	if (callchain_param.record_mode == CALLCHAIN_LBR) {
		if (!opts->branch_stack) {
			if (attr->exclude_user) {
				pr_warning("LBR callstack option is only available "
					   "to get user callchain information. "
					   "Falling back to framepointers.\n");
			} else {
				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
							PERF_SAMPLE_BRANCH_CALL_STACK;
			}
		} else
			 pr_warning("Cannot use LBR callstack with branch stack. "
				    "Falling back to framepointers.\n");
	}

571
	if (callchain_param.record_mode == CALLCHAIN_DWARF) {
572 573 574 575
		if (!function) {
			perf_evsel__set_sample_bit(evsel, REGS_USER);
			perf_evsel__set_sample_bit(evsel, STACK_USER);
			attr->sample_regs_user = PERF_REGS_MASK;
576
			attr->sample_stack_user = callchain_param.dump_size;
577 578 579 580 581 582 583 584 585 586 587 588 589
			attr->exclude_callchain_user = 1;
		} else {
			pr_info("Cannot use DWARF unwind for function trace event,"
				" falling back to framepointers.\n");
		}
	}

	if (function) {
		pr_info("Disabling user space callchains for function trace event.\n");
		attr->exclude_callchain_user = 1;
	}
}

590 591 592 593 594 595 596
static void apply_config_terms(struct perf_event_attr *attr __maybe_unused,
			       struct list_head *config_terms)
{
	struct perf_evsel_config_term *term;

	list_for_each_entry(term, config_terms, list) {
		switch (term->type) {
597 598
		case PERF_EVSEL__CONFIG_TERM_PERIOD:
			attr->sample_period = term->val.period;
599 600 601 602 603 604
		default:
			break;
		}
	}
}

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * The enable_on_exec/disabled value strategy:
 *
 *  1) For any type of traced program:
 *    - all independent events and group leaders are disabled
 *    - all group members are enabled
 *
 *     Group members are ruled by group leaders. They need to
 *     be enabled, because the group scheduling relies on that.
 *
 *  2) For traced programs executed by perf:
 *     - all independent events and group leaders have
 *       enable_on_exec set
 *     - we don't specifically enable or disable any event during
 *       the record command
 *
 *     Independent events and group leaders are initially disabled
 *     and get enabled by exec. Group members are ruled by group
 *     leaders as stated in 1).
 *
 *  3) For traced programs attached by perf (pid/tid):
 *     - we specifically enable or disable all events during
 *       the record command
 *
 *     When attaching events to already running traced we
 *     enable/disable events specifically, as there's no
 *     initial traced exec call.
 */
633
void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
634
{
635
	struct perf_evsel *leader = evsel->leader;
636
	struct perf_event_attr *attr = &evsel->attr;
637
	int track = evsel->tracking;
638
	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
639

640
	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
641 642
	attr->inherit	    = !opts->no_inherit;

643 644
	perf_evsel__set_sample_bit(evsel, IP);
	perf_evsel__set_sample_bit(evsel, TID);
645

646 647 648 649 650 651 652
	if (evsel->sample_read) {
		perf_evsel__set_sample_bit(evsel, READ);

		/*
		 * We need ID even in case of single event, because
		 * PERF_SAMPLE_READ process ID specific data.
		 */
653
		perf_evsel__set_sample_id(evsel, false);
654 655 656 657 658 659 660 661 662 663 664

		/*
		 * Apply group format only if we belong to group
		 * with more than one members.
		 */
		if (leader->nr_members > 1) {
			attr->read_format |= PERF_FORMAT_GROUP;
			attr->inherit = 0;
		}
	}

665
	/*
666
	 * We default some events to have a default interval. But keep
667 668
	 * it a weak assumption overridable by the user.
	 */
669
	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
670 671
				     opts->user_interval != ULLONG_MAX)) {
		if (opts->freq) {
672
			perf_evsel__set_sample_bit(evsel, PERIOD);
673 674 675 676 677 678 679
			attr->freq		= 1;
			attr->sample_freq	= opts->freq;
		} else {
			attr->sample_period = opts->default_interval;
		}
	}

680 681 682 683 684 685 686 687 688
	/*
	 * Disable sampling for all group members other
	 * than leader in case leader 'leads' the sampling.
	 */
	if ((leader != evsel) && leader->sample_read) {
		attr->sample_freq   = 0;
		attr->sample_period = 0;
	}

689 690 691 692 693 694 695
	if (opts->no_samples)
		attr->sample_freq = 0;

	if (opts->inherit_stat)
		attr->inherit_stat = 1;

	if (opts->sample_address) {
696
		perf_evsel__set_sample_bit(evsel, ADDR);
697 698 699
		attr->mmap_data = track;
	}

700 701 702 703 704 705 706 707
	/*
	 * We don't allow user space callchains for  function trace
	 * event, due to issues with page faults while tracing page
	 * fault handler and its overall trickiness nature.
	 */
	if (perf_evsel__is_function_event(evsel))
		evsel->attr.exclude_callchain_user = 1;

708
	if (callchain_param.enabled && !evsel->no_aux_samples)
709
		perf_evsel__config_callgraph(evsel, opts);
710

711 712 713 714 715
	if (opts->sample_intr_regs) {
		attr->sample_regs_intr = PERF_REGS_MASK;
		perf_evsel__set_sample_bit(evsel, REGS_INTR);
	}

716
	if (target__has_cpu(&opts->target))
717
		perf_evsel__set_sample_bit(evsel, CPU);
718

719
	if (opts->period)
720
		perf_evsel__set_sample_bit(evsel, PERIOD);
721

722 723 724 725 726
	/*
	 * When the user explicitely disabled time don't force it here.
	 */
	if (opts->sample_time &&
	    (!perf_missing_features.sample_id_all &&
727 728
	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
	     opts->sample_time_set)))
729
		perf_evsel__set_sample_bit(evsel, TIME);
730

731
	if (opts->raw_samples && !evsel->no_aux_samples) {
732 733 734
		perf_evsel__set_sample_bit(evsel, TIME);
		perf_evsel__set_sample_bit(evsel, RAW);
		perf_evsel__set_sample_bit(evsel, CPU);
735 736
	}

737
	if (opts->sample_address)
738
		perf_evsel__set_sample_bit(evsel, DATA_SRC);
739

740
	if (opts->no_buffering) {
741 742 743
		attr->watermark = 0;
		attr->wakeup_events = 1;
	}
744
	if (opts->branch_stack && !evsel->no_aux_samples) {
745
		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
746 747
		attr->branch_sample_type = opts->branch_stack;
	}
748

749
	if (opts->sample_weight)
750
		perf_evsel__set_sample_bit(evsel, WEIGHT);
751

752
	attr->task  = track;
753
	attr->mmap  = track;
754
	attr->mmap2 = track && !perf_missing_features.mmap2;
755
	attr->comm  = track;
756

757 758 759
	if (opts->record_switch_events)
		attr->context_switch = track;

760
	if (opts->sample_transaction)
761
		perf_evsel__set_sample_bit(evsel, TRANSACTION);
762

763 764 765 766 767 768
	if (opts->running_time) {
		evsel->attr.read_format |=
			PERF_FORMAT_TOTAL_TIME_ENABLED |
			PERF_FORMAT_TOTAL_TIME_RUNNING;
	}

769 770 771 772 773 774
	/*
	 * XXX see the function comment above
	 *
	 * Disabling only independent events or group leaders,
	 * keeping group members enabled.
	 */
775
	if (perf_evsel__is_group_leader(evsel))
776 777 778 779 780 781
		attr->disabled = 1;

	/*
	 * Setting enable_on_exec for independent events and
	 * group leaders for traced executed by perf.
	 */
782 783
	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
		!opts->initial_delay)
784
		attr->enable_on_exec = 1;
785 786 787 788 789

	if (evsel->immediate) {
		attr->disabled = 0;
		attr->enable_on_exec = 0;
	}
790 791 792 793 794 795

	clockid = opts->clockid;
	if (opts->use_clockid) {
		attr->use_clockid = 1;
		attr->clockid = opts->clockid;
	}
796 797 798 799 800 801

	/*
	 * Apply event specific term settings,
	 * it overloads any global configuration.
	 */
	apply_config_terms(attr, &evsel->config_terms);
802 803
}

804
static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
805
{
806
	int cpu, thread;
807 808 809 810

	if (evsel->system_wide)
		nthreads = 1;

811
	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
812 813 814 815 816 817 818 819 820

	if (evsel->fd) {
		for (cpu = 0; cpu < ncpus; cpu++) {
			for (thread = 0; thread < nthreads; thread++) {
				FD(evsel, cpu, thread) = -1;
			}
		}
	}

821 822 823
	return evsel->fd != NULL ? 0 : -ENOMEM;
}

824 825
static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
			  int ioc,  void *arg)
826 827 828
{
	int cpu, thread;

829 830 831
	if (evsel->system_wide)
		nthreads = 1;

832 833 834
	for (cpu = 0; cpu < ncpus; cpu++) {
		for (thread = 0; thread < nthreads; thread++) {
			int fd = FD(evsel, cpu, thread),
835
			    err = ioctl(fd, ioc, arg);
836 837 838 839 840 841 842 843 844

			if (err)
				return err;
		}
	}

	return 0;
}

845 846
int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
			     const char *filter)
847 848 849 850 851 852
{
	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
				     PERF_EVENT_IOC_SET_FILTER,
				     (void *)filter);
}

853 854 855 856 857 858 859 860 861 862 863 864 865
int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
{
	char *new_filter = strdup(filter);

	if (new_filter != NULL) {
		free(evsel->filter);
		evsel->filter = new_filter;
		return 0;
	}

	return -1;
}

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
int perf_evsel__append_filter(struct perf_evsel *evsel,
			      const char *op, const char *filter)
{
	char *new_filter;

	if (evsel->filter == NULL)
		return perf_evsel__set_filter(evsel, filter);

	if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) {
		free(evsel->filter);
		evsel->filter = new_filter;
		return 0;
	}

	return -1;
}

883 884 885 886 887 888 889
int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
{
	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
				     PERF_EVENT_IOC_ENABLE,
				     0);
}

890 891
int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
{
892 893 894
	if (ncpus == 0 || nthreads == 0)
		return 0;

895 896 897
	if (evsel->system_wide)
		nthreads = 1;

898 899 900 901 902 903 904 905 906 907 908 909
	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
	if (evsel->sample_id == NULL)
		return -ENOMEM;

	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
	if (evsel->id == NULL) {
		xyarray__delete(evsel->sample_id);
		evsel->sample_id = NULL;
		return -ENOMEM;
	}

	return 0;
910 911
}

912
static void perf_evsel__free_fd(struct perf_evsel *evsel)
913 914 915 916 917
{
	xyarray__delete(evsel->fd);
	evsel->fd = NULL;
}

918
static void perf_evsel__free_id(struct perf_evsel *evsel)
919
{
920 921
	xyarray__delete(evsel->sample_id);
	evsel->sample_id = NULL;
922
	zfree(&evsel->id);
923 924
}

925 926 927 928 929 930 931 932 933 934
static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
{
	struct perf_evsel_config_term *term, *h;

	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
		list_del(&term->list);
		free(term);
	}
}

935 936 937 938
void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
{
	int cpu, thread;

939 940 941
	if (evsel->system_wide)
		nthreads = 1;

942 943 944 945 946 947 948
	for (cpu = 0; cpu < ncpus; cpu++)
		for (thread = 0; thread < nthreads; ++thread) {
			close(FD(evsel, cpu, thread));
			FD(evsel, cpu, thread) = -1;
		}
}

949
void perf_evsel__exit(struct perf_evsel *evsel)
950 951
{
	assert(list_empty(&evsel->node));
952 953
	perf_evsel__free_fd(evsel);
	perf_evsel__free_id(evsel);
954
	perf_evsel__free_config_terms(evsel);
955
	close_cgroup(evsel->cgrp);
956
	cpu_map__put(evsel->cpus);
957
	thread_map__put(evsel->threads);
958 959
	zfree(&evsel->group_name);
	zfree(&evsel->name);
A
Arnaldo Carvalho de Melo 已提交
960
	perf_evsel__object.fini(evsel);
961 962 963 964 965
}

void perf_evsel__delete(struct perf_evsel *evsel)
{
	perf_evsel__exit(evsel);
966 967
	free(evsel);
}
968

969
void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
970
				struct perf_counts_values *count)
971 972 973 974 975 976 977 978 979 980
{
	struct perf_counts_values tmp;

	if (!evsel->prev_raw_counts)
		return;

	if (cpu == -1) {
		tmp = evsel->prev_raw_counts->aggr;
		evsel->prev_raw_counts->aggr = *count;
	} else {
981 982
		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
983 984 985 986 987 988 989
	}

	count->val = count->val - tmp.val;
	count->ena = count->ena - tmp.ena;
	count->run = count->run - tmp.run;
}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
void perf_counts_values__scale(struct perf_counts_values *count,
			       bool scale, s8 *pscaled)
{
	s8 scaled = 0;

	if (scale) {
		if (count->run == 0) {
			scaled = -1;
			count->val = 0;
		} else if (count->run < count->ena) {
			scaled = 1;
			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
		}
	} else
		count->ena = count->run = 0;

	if (pscaled)
		*pscaled = scaled;
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
		     struct perf_counts_values *count)
{
	memset(count, 0, sizeof(*count));

	if (FD(evsel, cpu, thread) < 0)
		return -EINVAL;

	if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
		return -errno;

	return 0;
}

1024 1025 1026 1027 1028 1029 1030 1031 1032
int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
			      int cpu, int thread, bool scale)
{
	struct perf_counts_values count;
	size_t nv = scale ? 3 : 1;

	if (FD(evsel, cpu, thread) < 0)
		return -EINVAL;

1033
	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1034 1035
		return -ENOMEM;

1036 1037 1038
	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
		return -errno;

1039
	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1040
	perf_counts_values__scale(&count, scale, NULL);
1041
	*perf_counts(evsel->counts, cpu, thread) = count;
1042 1043 1044
	return 0;
}

1045 1046 1047 1048 1049
static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
{
	struct perf_evsel *leader = evsel->leader;
	int fd;

1050
	if (perf_evsel__is_group_leader(evsel))
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		return -1;

	/*
	 * Leader must be already processed/open,
	 * if not it's a bug.
	 */
	BUG_ON(!leader->fd);

	fd = FD(leader, cpu, thread);
	BUG_ON(fd == -1);

	return fd;
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
struct bit_names {
	int bit;
	const char *name;
};

static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
{
	bool first_bit = true;
	int i = 0;

	do {
		if (value & bits[i].bit) {
			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
			first_bit = false;
		}
	} while (bits[++i].name != NULL);
}

static void __p_sample_type(char *buf, size_t size, u64 value)
{
#define bit_name(n) { PERF_SAMPLE_##n, #n }
	struct bit_names bits[] = {
		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
		bit_name(IDENTIFIER), bit_name(REGS_INTR),
		{ .name = NULL, }
	};
#undef bit_name
	__p_bits(buf, size, value, bits);
}

static void __p_read_format(char *buf, size_t size, u64 value)
{
#define bit_name(n) { PERF_FORMAT_##n, #n }
	struct bit_names bits[] = {
		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
		bit_name(ID), bit_name(GROUP),
		{ .name = NULL, }
	};
#undef bit_name
	__p_bits(buf, size, value, bits);
}

#define BUF_SIZE		1024

1112
#define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
#define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
#define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
#define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
#define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)

#define PRINT_ATTRn(_n, _f, _p)				\
do {							\
	if (attr->_f) {					\
		_p(attr->_f);				\
		ret += attr__fprintf(fp, _n, buf, priv);\
	}						\
} while (0)

#define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)

int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
			     attr__fprintf_f attr__fprintf, void *priv)
{
	char buf[BUF_SIZE];
	int ret = 0;

	PRINT_ATTRf(type, p_unsigned);
	PRINT_ATTRf(size, p_unsigned);
	PRINT_ATTRf(config, p_hex);
	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
	PRINT_ATTRf(sample_type, p_sample_type);
	PRINT_ATTRf(read_format, p_read_format);

	PRINT_ATTRf(disabled, p_unsigned);
	PRINT_ATTRf(inherit, p_unsigned);
	PRINT_ATTRf(pinned, p_unsigned);
	PRINT_ATTRf(exclusive, p_unsigned);
	PRINT_ATTRf(exclude_user, p_unsigned);
	PRINT_ATTRf(exclude_kernel, p_unsigned);
	PRINT_ATTRf(exclude_hv, p_unsigned);
	PRINT_ATTRf(exclude_idle, p_unsigned);
	PRINT_ATTRf(mmap, p_unsigned);
	PRINT_ATTRf(comm, p_unsigned);
	PRINT_ATTRf(freq, p_unsigned);
	PRINT_ATTRf(inherit_stat, p_unsigned);
	PRINT_ATTRf(enable_on_exec, p_unsigned);
	PRINT_ATTRf(task, p_unsigned);
	PRINT_ATTRf(watermark, p_unsigned);
	PRINT_ATTRf(precise_ip, p_unsigned);
	PRINT_ATTRf(mmap_data, p_unsigned);
	PRINT_ATTRf(sample_id_all, p_unsigned);
	PRINT_ATTRf(exclude_host, p_unsigned);
	PRINT_ATTRf(exclude_guest, p_unsigned);
	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
	PRINT_ATTRf(mmap2, p_unsigned);
	PRINT_ATTRf(comm_exec, p_unsigned);
	PRINT_ATTRf(use_clockid, p_unsigned);
1166
	PRINT_ATTRf(context_switch, p_unsigned);
1167 1168 1169 1170 1171 1172 1173 1174 1175

	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
	PRINT_ATTRf(bp_type, p_unsigned);
	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
	PRINT_ATTRf(sample_regs_user, p_hex);
	PRINT_ATTRf(sample_stack_user, p_unsigned);
	PRINT_ATTRf(clockid, p_signed);
	PRINT_ATTRf(sample_regs_intr, p_hex);
1176
	PRINT_ATTRf(aux_watermark, p_unsigned);
A
Adrian Hunter 已提交
1177 1178 1179 1180

	return ret;
}

1181 1182 1183 1184 1185 1186
static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
				void *priv __attribute__((unused)))
{
	return fprintf(fp, "  %-32s %s\n", name, val);
}

1187
static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1188
			      struct thread_map *threads)
1189
{
1190
	int cpu, thread, nthreads;
1191
	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1192
	int pid = -1, err;
1193
	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1194

1195 1196 1197 1198 1199
	if (evsel->system_wide)
		nthreads = 1;
	else
		nthreads = threads->nr;

1200
	if (evsel->fd == NULL &&
1201
	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1202
		return -ENOMEM;
1203

S
Stephane Eranian 已提交
1204
	if (evsel->cgrp) {
1205
		flags |= PERF_FLAG_PID_CGROUP;
S
Stephane Eranian 已提交
1206 1207 1208
		pid = evsel->cgrp->fd;
	}

1209
fallback_missing_features:
1210 1211 1212 1213 1214 1215
	if (perf_missing_features.clockid_wrong)
		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
	if (perf_missing_features.clockid) {
		evsel->attr.use_clockid = 0;
		evsel->attr.clockid = 0;
	}
1216 1217
	if (perf_missing_features.cloexec)
		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1218 1219
	if (perf_missing_features.mmap2)
		evsel->attr.mmap2 = 0;
1220 1221 1222 1223 1224 1225
	if (perf_missing_features.exclude_guest)
		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
retry_sample_id:
	if (perf_missing_features.sample_id_all)
		evsel->attr.sample_id_all = 0;

1226 1227 1228 1229 1230 1231
	if (verbose >= 2) {
		fprintf(stderr, "%.60s\n", graph_dotted_line);
		fprintf(stderr, "perf_event_attr:\n");
		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
		fprintf(stderr, "%.60s\n", graph_dotted_line);
	}
A
Adrian Hunter 已提交
1232

1233
	for (cpu = 0; cpu < cpus->nr; cpu++) {
1234

1235
		for (thread = 0; thread < nthreads; thread++) {
1236
			int group_fd;
S
Stephane Eranian 已提交
1237

1238
			if (!evsel->cgrp && !evsel->system_wide)
1239
				pid = thread_map__pid(threads, thread);
S
Stephane Eranian 已提交
1240

1241
			group_fd = get_group_fd(evsel, cpu, thread);
1242
retry_open:
1243
			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
A
Adrian Hunter 已提交
1244 1245
				  pid, cpus->map[cpu], group_fd, flags);

1246
			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
S
Stephane Eranian 已提交
1247
								     pid,
1248
								     cpus->map[cpu],
S
Stephane Eranian 已提交
1249
								     group_fd, flags);
1250 1251
			if (FD(evsel, cpu, thread) < 0) {
				err = -errno;
1252
				pr_debug2("sys_perf_event_open failed, error %d\n",
1253
					  err);
1254
				goto try_fallback;
1255
			}
1256
			set_rlimit = NO_CHANGE;
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267

			/*
			 * If we succeeded but had to kill clockid, fail and
			 * have perf_evsel__open_strerror() print us a nice
			 * error.
			 */
			if (perf_missing_features.clockid ||
			    perf_missing_features.clockid_wrong) {
				err = -EINVAL;
				goto out_close;
			}
1268
		}
1269 1270 1271 1272
	}

	return 0;

1273
try_fallback:
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	/*
	 * perf stat needs between 5 and 22 fds per CPU. When we run out
	 * of them try to increase the limits.
	 */
	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
		struct rlimit l;
		int old_errno = errno;

		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
			if (set_rlimit == NO_CHANGE)
				l.rlim_cur = l.rlim_max;
			else {
				l.rlim_cur = l.rlim_max + 1000;
				l.rlim_max = l.rlim_cur;
			}
			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
				set_rlimit++;
				errno = old_errno;
				goto retry_open;
			}
		}
		errno = old_errno;
	}

1298 1299 1300
	if (err != -EINVAL || cpu > 0 || thread > 0)
		goto out_close;

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	/*
	 * Must probe features in the order they were added to the
	 * perf_event_attr interface.
	 */
	if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
		perf_missing_features.clockid_wrong = true;
		goto fallback_missing_features;
	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
		perf_missing_features.clockid = true;
		goto fallback_missing_features;
	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1312 1313 1314
		perf_missing_features.cloexec = true;
		goto fallback_missing_features;
	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1315 1316 1317 1318
		perf_missing_features.mmap2 = true;
		goto fallback_missing_features;
	} else if (!perf_missing_features.exclude_guest &&
		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1319 1320 1321 1322 1323 1324 1325
		perf_missing_features.exclude_guest = true;
		goto fallback_missing_features;
	} else if (!perf_missing_features.sample_id_all) {
		perf_missing_features.sample_id_all = true;
		goto retry_sample_id;
	}

1326
out_close:
1327 1328 1329 1330 1331
	do {
		while (--thread >= 0) {
			close(FD(evsel, cpu, thread));
			FD(evsel, cpu, thread) = -1;
		}
1332
		thread = nthreads;
1333
	} while (--cpu >= 0);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	return err;
}

void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
{
	if (evsel->fd == NULL)
		return;

	perf_evsel__close_fd(evsel, ncpus, nthreads);
	perf_evsel__free_fd(evsel);
1344 1345
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
static struct {
	struct cpu_map map;
	int cpus[1];
} empty_cpu_map = {
	.map.nr	= 1,
	.cpus	= { -1, },
};

static struct {
	struct thread_map map;
	int threads[1];
} empty_thread_map = {
	.map.nr	 = 1,
	.threads = { -1, },
};

1362
int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1363
		     struct thread_map *threads)
1364
{
1365 1366 1367
	if (cpus == NULL) {
		/* Work around old compiler warnings about strict aliasing */
		cpus = &empty_cpu_map.map;
1368 1369
	}

1370 1371
	if (threads == NULL)
		threads = &empty_thread_map.map;
1372

1373
	return __perf_evsel__open(evsel, cpus, threads);
1374 1375
}

1376
int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1377
			     struct cpu_map *cpus)
1378
{
1379
	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1380
}
1381

1382
int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1383
				struct thread_map *threads)
1384
{
1385
	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1386
}
1387

1388 1389 1390
static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
				       const union perf_event *event,
				       struct perf_sample *sample)
1391
{
1392
	u64 type = evsel->attr.sample_type;
1393
	const u64 *array = event->sample.array;
1394
	bool swapped = evsel->needs_swap;
1395
	union u64_swap u;
1396 1397 1398 1399

	array += ((event->header.size -
		   sizeof(event->header)) / sizeof(u64)) - 1;

1400 1401 1402 1403 1404
	if (type & PERF_SAMPLE_IDENTIFIER) {
		sample->id = *array;
		array--;
	}

1405
	if (type & PERF_SAMPLE_CPU) {
1406 1407 1408 1409 1410 1411 1412 1413
		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
		}

		sample->cpu = u.val32[0];
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		array--;
	}

	if (type & PERF_SAMPLE_STREAM_ID) {
		sample->stream_id = *array;
		array--;
	}

	if (type & PERF_SAMPLE_ID) {
		sample->id = *array;
		array--;
	}

	if (type & PERF_SAMPLE_TIME) {
		sample->time = *array;
		array--;
	}

	if (type & PERF_SAMPLE_TID) {
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
		}

		sample->pid = u.val32[0];
		sample->tid = u.val32[1];
1443
		array--;
1444 1445 1446 1447 1448
	}

	return 0;
}

1449 1450
static inline bool overflow(const void *endp, u16 max_size, const void *offset,
			    u64 size)
1451
{
1452 1453
	return size > max_size || offset + size > endp;
}
1454

1455 1456 1457 1458 1459
#define OVERFLOW_CHECK(offset, size, max_size)				\
	do {								\
		if (overflow(endp, (max_size), (offset), (size)))	\
			return -EFAULT;					\
	} while (0)
1460

1461 1462
#define OVERFLOW_CHECK_u64(offset) \
	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1463

1464
int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1465
			     struct perf_sample *data)
1466
{
1467
	u64 type = evsel->attr.sample_type;
1468
	bool swapped = evsel->needs_swap;
1469
	const u64 *array;
1470 1471 1472
	u16 max_size = event->header.size;
	const void *endp = (void *)event + max_size;
	u64 sz;
1473

1474 1475 1476 1477
	/*
	 * used for cross-endian analysis. See git commit 65014ab3
	 * for why this goofiness is needed.
	 */
1478
	union u64_swap u;
1479

1480
	memset(data, 0, sizeof(*data));
1481 1482
	data->cpu = data->pid = data->tid = -1;
	data->stream_id = data->id = data->time = -1ULL;
1483
	data->period = evsel->attr.sample_period;
1484
	data->weight = 0;
1485 1486

	if (event->header.type != PERF_RECORD_SAMPLE) {
1487
		if (!evsel->attr.sample_id_all)
1488
			return 0;
1489
		return perf_evsel__parse_id_sample(evsel, event, data);
1490 1491 1492 1493
	}

	array = event->sample.array;

1494 1495 1496 1497 1498
	/*
	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
	 * check the format does not go past the end of the event.
	 */
1499
	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1500 1501
		return -EFAULT;

1502 1503 1504 1505 1506 1507
	data->id = -1ULL;
	if (type & PERF_SAMPLE_IDENTIFIER) {
		data->id = *array;
		array++;
	}

1508
	if (type & PERF_SAMPLE_IP) {
1509
		data->ip = *array;
1510 1511 1512 1513
		array++;
	}

	if (type & PERF_SAMPLE_TID) {
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
		}

		data->pid = u.val32[0];
		data->tid = u.val32[1];
1524 1525 1526 1527 1528 1529 1530 1531
		array++;
	}

	if (type & PERF_SAMPLE_TIME) {
		data->time = *array;
		array++;
	}

1532
	data->addr = 0;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	if (type & PERF_SAMPLE_ADDR) {
		data->addr = *array;
		array++;
	}

	if (type & PERF_SAMPLE_ID) {
		data->id = *array;
		array++;
	}

	if (type & PERF_SAMPLE_STREAM_ID) {
		data->stream_id = *array;
		array++;
	}

	if (type & PERF_SAMPLE_CPU) {
1549 1550 1551 1552 1553 1554 1555 1556 1557

		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
		}

		data->cpu = u.val32[0];
1558 1559 1560 1561 1562 1563 1564 1565 1566
		array++;
	}

	if (type & PERF_SAMPLE_PERIOD) {
		data->period = *array;
		array++;
	}

	if (type & PERF_SAMPLE_READ) {
1567 1568
		u64 read_format = evsel->attr.read_format;

1569
		OVERFLOW_CHECK_u64(array);
1570 1571 1572 1573 1574 1575 1576 1577
		if (read_format & PERF_FORMAT_GROUP)
			data->read.group.nr = *array;
		else
			data->read.one.value = *array;

		array++;

		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1578
			OVERFLOW_CHECK_u64(array);
1579 1580 1581 1582 1583
			data->read.time_enabled = *array;
			array++;
		}

		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1584
			OVERFLOW_CHECK_u64(array);
1585 1586 1587 1588 1589 1590
			data->read.time_running = *array;
			array++;
		}

		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
		if (read_format & PERF_FORMAT_GROUP) {
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
			const u64 max_group_nr = UINT64_MAX /
					sizeof(struct sample_read_value);

			if (data->read.group.nr > max_group_nr)
				return -EFAULT;
			sz = data->read.group.nr *
			     sizeof(struct sample_read_value);
			OVERFLOW_CHECK(array, sz, max_size);
			data->read.group.values =
					(struct sample_read_value *)array;
			array = (void *)array + sz;
1602
		} else {
1603
			OVERFLOW_CHECK_u64(array);
1604 1605 1606
			data->read.one.id = *array;
			array++;
		}
1607 1608 1609
	}

	if (type & PERF_SAMPLE_CALLCHAIN) {
1610
		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1611

1612 1613 1614
		OVERFLOW_CHECK_u64(array);
		data->callchain = (struct ip_callchain *)array++;
		if (data->callchain->nr > max_callchain_nr)
1615
			return -EFAULT;
1616 1617 1618
		sz = data->callchain->nr * sizeof(u64);
		OVERFLOW_CHECK(array, sz, max_size);
		array = (void *)array + sz;
1619 1620 1621
	}

	if (type & PERF_SAMPLE_RAW) {
1622
		OVERFLOW_CHECK_u64(array);
1623 1624 1625 1626 1627 1628 1629 1630 1631
		u.val64 = *array;
		if (WARN_ONCE(swapped,
			      "Endianness of raw data not corrected!\n")) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
		}
		data->raw_size = u.val32[0];
1632
		array = (void *)array + sizeof(u32);
1633

1634 1635 1636
		OVERFLOW_CHECK(array, data->raw_size, max_size);
		data->raw_data = (void *)array;
		array = (void *)array + data->raw_size;
1637 1638
	}

1639
	if (type & PERF_SAMPLE_BRANCH_STACK) {
1640 1641
		const u64 max_branch_nr = UINT64_MAX /
					  sizeof(struct branch_entry);
1642

1643 1644
		OVERFLOW_CHECK_u64(array);
		data->branch_stack = (struct branch_stack *)array++;
1645

1646 1647
		if (data->branch_stack->nr > max_branch_nr)
			return -EFAULT;
1648
		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1649 1650
		OVERFLOW_CHECK(array, sz, max_size);
		array = (void *)array + sz;
1651
	}
1652 1653

	if (type & PERF_SAMPLE_REGS_USER) {
1654
		OVERFLOW_CHECK_u64(array);
1655 1656
		data->user_regs.abi = *array;
		array++;
1657

1658
		if (data->user_regs.abi) {
1659
			u64 mask = evsel->attr.sample_regs_user;
1660

1661
			sz = hweight_long(mask) * sizeof(u64);
1662
			OVERFLOW_CHECK(array, sz, max_size);
1663
			data->user_regs.mask = mask;
1664
			data->user_regs.regs = (u64 *)array;
1665
			array = (void *)array + sz;
1666 1667 1668 1669
		}
	}

	if (type & PERF_SAMPLE_STACK_USER) {
1670 1671
		OVERFLOW_CHECK_u64(array);
		sz = *array++;
1672 1673 1674 1675

		data->user_stack.offset = ((char *)(array - 1)
					  - (char *) event);

1676
		if (!sz) {
1677 1678
			data->user_stack.size = 0;
		} else {
1679
			OVERFLOW_CHECK(array, sz, max_size);
1680
			data->user_stack.data = (char *)array;
1681 1682
			array = (void *)array + sz;
			OVERFLOW_CHECK_u64(array);
1683
			data->user_stack.size = *array++;
1684 1685 1686
			if (WARN_ONCE(data->user_stack.size > sz,
				      "user stack dump failure\n"))
				return -EFAULT;
1687 1688 1689
		}
	}

1690 1691
	data->weight = 0;
	if (type & PERF_SAMPLE_WEIGHT) {
1692
		OVERFLOW_CHECK_u64(array);
1693 1694 1695 1696
		data->weight = *array;
		array++;
	}

1697 1698
	data->data_src = PERF_MEM_DATA_SRC_NONE;
	if (type & PERF_SAMPLE_DATA_SRC) {
1699
		OVERFLOW_CHECK_u64(array);
1700 1701 1702 1703
		data->data_src = *array;
		array++;
	}

1704 1705
	data->transaction = 0;
	if (type & PERF_SAMPLE_TRANSACTION) {
1706
		OVERFLOW_CHECK_u64(array);
1707 1708 1709 1710
		data->transaction = *array;
		array++;
	}

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
	if (type & PERF_SAMPLE_REGS_INTR) {
		OVERFLOW_CHECK_u64(array);
		data->intr_regs.abi = *array;
		array++;

		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
			u64 mask = evsel->attr.sample_regs_intr;

			sz = hweight_long(mask) * sizeof(u64);
			OVERFLOW_CHECK(array, sz, max_size);
			data->intr_regs.mask = mask;
			data->intr_regs.regs = (u64 *)array;
			array = (void *)array + sz;
		}
	}

1728 1729
	return 0;
}
1730

1731
size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1732
				     u64 read_format)
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
{
	size_t sz, result = sizeof(struct sample_event);

	if (type & PERF_SAMPLE_IDENTIFIER)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_IP)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_TID)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_TIME)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_ADDR)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_ID)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_STREAM_ID)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_CPU)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_PERIOD)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_READ) {
		result += sizeof(u64);
		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
			result += sizeof(u64);
		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
			result += sizeof(u64);
		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
		if (read_format & PERF_FORMAT_GROUP) {
			sz = sample->read.group.nr *
			     sizeof(struct sample_read_value);
			result += sz;
		} else {
			result += sizeof(u64);
		}
	}

	if (type & PERF_SAMPLE_CALLCHAIN) {
		sz = (sample->callchain->nr + 1) * sizeof(u64);
		result += sz;
	}

	if (type & PERF_SAMPLE_RAW) {
		result += sizeof(u32);
		result += sample->raw_size;
	}

	if (type & PERF_SAMPLE_BRANCH_STACK) {
		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
		sz += sizeof(u64);
		result += sz;
	}

	if (type & PERF_SAMPLE_REGS_USER) {
		if (sample->user_regs.abi) {
			result += sizeof(u64);
1798
			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
			result += sz;
		} else {
			result += sizeof(u64);
		}
	}

	if (type & PERF_SAMPLE_STACK_USER) {
		sz = sample->user_stack.size;
		result += sizeof(u64);
		if (sz) {
			result += sz;
			result += sizeof(u64);
		}
	}

	if (type & PERF_SAMPLE_WEIGHT)
		result += sizeof(u64);

	if (type & PERF_SAMPLE_DATA_SRC)
		result += sizeof(u64);

1820 1821 1822
	if (type & PERF_SAMPLE_TRANSACTION)
		result += sizeof(u64);

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	if (type & PERF_SAMPLE_REGS_INTR) {
		if (sample->intr_regs.abi) {
			result += sizeof(u64);
			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
			result += sz;
		} else {
			result += sizeof(u64);
		}
	}

1833 1834 1835
	return result;
}

1836
int perf_event__synthesize_sample(union perf_event *event, u64 type,
1837
				  u64 read_format,
1838 1839 1840 1841
				  const struct perf_sample *sample,
				  bool swapped)
{
	u64 *array;
1842
	size_t sz;
1843 1844 1845 1846
	/*
	 * used for cross-endian analysis. See git commit 65014ab3
	 * for why this goofiness is needed.
	 */
1847
	union u64_swap u;
1848 1849 1850

	array = event->sample.array;

1851 1852 1853 1854 1855
	if (type & PERF_SAMPLE_IDENTIFIER) {
		*array = sample->id;
		array++;
	}

1856
	if (type & PERF_SAMPLE_IP) {
1857
		*array = sample->ip;
1858 1859 1860 1861 1862 1863 1864 1865
		array++;
	}

	if (type & PERF_SAMPLE_TID) {
		u.val32[0] = sample->pid;
		u.val32[1] = sample->tid;
		if (swapped) {
			/*
1866
			 * Inverse of what is done in perf_evsel__parse_sample
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
			 */
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
			u.val64 = bswap_64(u.val64);
		}

		*array = u.val64;
		array++;
	}

	if (type & PERF_SAMPLE_TIME) {
		*array = sample->time;
		array++;
	}

	if (type & PERF_SAMPLE_ADDR) {
		*array = sample->addr;
		array++;
	}

	if (type & PERF_SAMPLE_ID) {
		*array = sample->id;
		array++;
	}

	if (type & PERF_SAMPLE_STREAM_ID) {
		*array = sample->stream_id;
		array++;
	}

	if (type & PERF_SAMPLE_CPU) {
		u.val32[0] = sample->cpu;
		if (swapped) {
			/*
1901
			 * Inverse of what is done in perf_evsel__parse_sample
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
			 */
			u.val32[0] = bswap_32(u.val32[0]);
			u.val64 = bswap_64(u.val64);
		}
		*array = u.val64;
		array++;
	}

	if (type & PERF_SAMPLE_PERIOD) {
		*array = sample->period;
		array++;
	}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	if (type & PERF_SAMPLE_READ) {
		if (read_format & PERF_FORMAT_GROUP)
			*array = sample->read.group.nr;
		else
			*array = sample->read.one.value;
		array++;

		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
			*array = sample->read.time_enabled;
			array++;
		}

		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
			*array = sample->read.time_running;
			array++;
		}

		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
		if (read_format & PERF_FORMAT_GROUP) {
			sz = sample->read.group.nr *
			     sizeof(struct sample_read_value);
			memcpy(array, sample->read.group.values, sz);
			array = (void *)array + sz;
		} else {
			*array = sample->read.one.id;
			array++;
		}
	}

	if (type & PERF_SAMPLE_CALLCHAIN) {
		sz = (sample->callchain->nr + 1) * sizeof(u64);
		memcpy(array, sample->callchain, sz);
		array = (void *)array + sz;
	}

	if (type & PERF_SAMPLE_RAW) {
		u.val32[0] = sample->raw_size;
		if (WARN_ONCE(swapped,
			      "Endianness of raw data not corrected!\n")) {
			/*
			 * Inverse of what is done in perf_evsel__parse_sample
			 */
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
			u.val64 = bswap_64(u.val64);
		}
		*array = u.val64;
		array = (void *)array + sizeof(u32);

		memcpy(array, sample->raw_data, sample->raw_size);
		array = (void *)array + sample->raw_size;
	}

	if (type & PERF_SAMPLE_BRANCH_STACK) {
		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
		sz += sizeof(u64);
		memcpy(array, sample->branch_stack, sz);
		array = (void *)array + sz;
	}

	if (type & PERF_SAMPLE_REGS_USER) {
		if (sample->user_regs.abi) {
			*array++ = sample->user_regs.abi;
1978
			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
			memcpy(array, sample->user_regs.regs, sz);
			array = (void *)array + sz;
		} else {
			*array++ = 0;
		}
	}

	if (type & PERF_SAMPLE_STACK_USER) {
		sz = sample->user_stack.size;
		*array++ = sz;
		if (sz) {
			memcpy(array, sample->user_stack.data, sz);
			array = (void *)array + sz;
			*array++ = sz;
		}
	}

	if (type & PERF_SAMPLE_WEIGHT) {
		*array = sample->weight;
		array++;
	}

	if (type & PERF_SAMPLE_DATA_SRC) {
		*array = sample->data_src;
		array++;
	}

2006 2007 2008 2009 2010
	if (type & PERF_SAMPLE_TRANSACTION) {
		*array = sample->transaction;
		array++;
	}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	if (type & PERF_SAMPLE_REGS_INTR) {
		if (sample->intr_regs.abi) {
			*array++ = sample->intr_regs.abi;
			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
			memcpy(array, sample->intr_regs.regs, sz);
			array = (void *)array + sz;
		} else {
			*array++ = 0;
		}
	}

2022 2023
	return 0;
}
2024

2025 2026 2027 2028 2029
struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
{
	return pevent_find_field(evsel->tp_format, name);
}

2030
void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2031 2032
			 const char *name)
{
2033
	struct format_field *field = perf_evsel__field(evsel, name);
2034 2035
	int offset;

2036 2037
	if (!field)
		return NULL;
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051

	offset = field->offset;

	if (field->flags & FIELD_IS_DYNAMIC) {
		offset = *(int *)(sample->raw_data + field->offset);
		offset &= 0xffff;
	}

	return sample->raw_data + offset;
}

u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
		       const char *name)
{
2052
	struct format_field *field = perf_evsel__field(evsel, name);
2053 2054
	void *ptr;
	u64 value;
2055

2056 2057
	if (!field)
		return 0;
2058

2059
	ptr = sample->raw_data + field->offset;
2060

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
	switch (field->size) {
	case 1:
		return *(u8 *)ptr;
	case 2:
		value = *(u16 *)ptr;
		break;
	case 4:
		value = *(u32 *)ptr;
		break;
	case 8:
2071
		memcpy(&value, ptr, sizeof(u64));
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
		break;
	default:
		return 0;
	}

	if (!evsel->needs_swap)
		return value;

	switch (field->size) {
	case 2:
		return bswap_16(value);
	case 4:
		return bswap_32(value);
	case 8:
		return bswap_64(value);
	default:
		return 0;
	}

	return 0;
2092
}
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
{
	va_list args;
	int ret = 0;

	if (!*first) {
		ret += fprintf(fp, ",");
	} else {
		ret += fprintf(fp, ":");
		*first = false;
	}

	va_start(args, fmt);
	ret += vfprintf(fp, fmt, args);
	va_end(args);
	return ret;
}

2112
static int __print_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv)
2113
{
2114
	return comma_fprintf(fp, (bool *)priv, " %s: %s", name, val);
2115 2116
}

2117 2118 2119 2120
int perf_evsel__fprintf(struct perf_evsel *evsel,
			struct perf_attr_details *details, FILE *fp)
{
	bool first = true;
N
Namhyung Kim 已提交
2121 2122
	int printed = 0;

2123
	if (details->event_group) {
N
Namhyung Kim 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
		struct perf_evsel *pos;

		if (!perf_evsel__is_group_leader(evsel))
			return 0;

		if (evsel->nr_members > 1)
			printed += fprintf(fp, "%s{", evsel->group_name ?: "");

		printed += fprintf(fp, "%s", perf_evsel__name(evsel));
		for_each_group_member(pos, evsel)
			printed += fprintf(fp, ",%s", perf_evsel__name(pos));

		if (evsel->nr_members > 1)
			printed += fprintf(fp, "}");
		goto out;
	}

	printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2142

2143 2144 2145 2146
	if (details->verbose) {
		printed += perf_event_attr__fprintf(fp, &evsel->attr,
						    __print_attr__fprintf, &first);
	} else if (details->freq) {
2147 2148 2149
		printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
					 (u64)evsel->attr.sample_freq);
	}
N
Namhyung Kim 已提交
2150
out:
2151 2152 2153
	fputc('\n', fp);
	return ++printed;
}
2154 2155 2156 2157

bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
			  char *msg, size_t msgsize)
{
2158
	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
		/*
		 * If it's cycles then fall back to hrtimer based
		 * cpu-clock-tick sw counter, which is always available even if
		 * no PMU support.
		 *
		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
		 * b0a873e).
		 */
		scnprintf(msg, msgsize, "%s",
"The cycles event is not supported, trying to fall back to cpu-clock-ticks");

		evsel->attr.type   = PERF_TYPE_SOFTWARE;
		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;

2175
		zfree(&evsel->name);
2176 2177 2178 2179 2180
		return true;
	}

	return false;
}
2181

2182
int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2183 2184
			      int err, char *msg, size_t size)
{
2185 2186
	char sbuf[STRERR_BUFSIZE];

2187 2188 2189
	switch (err) {
	case EPERM:
	case EACCES:
2190
		return scnprintf(msg, size,
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
		 "You may not have permission to collect %sstats.\n"
		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
		 " -1 - Not paranoid at all\n"
		 "  0 - Disallow raw tracepoint access for unpriv\n"
		 "  1 - Disallow cpu events for unpriv\n"
		 "  2 - Disallow kernel profiling for unpriv",
				 target->system_wide ? "system-wide " : "");
	case ENOENT:
		return scnprintf(msg, size, "The %s event is not supported.",
				 perf_evsel__name(evsel));
	case EMFILE:
		return scnprintf(msg, size, "%s",
			 "Too many events are opened.\n"
2204 2205 2206
			 "Probably the maximum number of open file descriptors has been reached.\n"
			 "Hint: Try again after reducing the number of events.\n"
			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
	case ENODEV:
		if (target->cpu_list)
			return scnprintf(msg, size, "%s",
	 "No such device - did you specify an out-of-range profile CPU?\n");
		break;
	case EOPNOTSUPP:
		if (evsel->attr.precise_ip)
			return scnprintf(msg, size, "%s",
	"\'precise\' request may not be supported. Try removing 'p' modifier.");
#if defined(__i386__) || defined(__x86_64__)
		if (evsel->attr.type == PERF_TYPE_HARDWARE)
			return scnprintf(msg, size, "%s",
	"No hardware sampling interrupt available.\n"
	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
#endif
		break;
2223 2224 2225 2226 2227 2228
	case EBUSY:
		if (find_process("oprofiled"))
			return scnprintf(msg, size,
	"The PMU counters are busy/taken by another profiler.\n"
	"We found oprofile daemon running, please stop it and try again.");
		break;
2229 2230 2231 2232 2233 2234
	case EINVAL:
		if (perf_missing_features.clockid)
			return scnprintf(msg, size, "clockid feature not supported.");
		if (perf_missing_features.clockid_wrong)
			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
		break;
2235 2236 2237 2238 2239
	default:
		break;
	}

	return scnprintf(msg, size,
2240
	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2241 2242
	"/bin/dmesg may provide additional information.\n"
	"No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2243 2244
			 err, strerror_r(err, sbuf, sizeof(sbuf)),
			 perf_evsel__name(evsel));
2245
}