bio.c 49.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public Licens
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 *
 */
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
22
#include <linux/uio.h>
23
#include <linux/iocontext.h>
L
Linus Torvalds 已提交
24 25 26
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29
#include <linux/mempool.h>
#include <linux/workqueue.h>
30
#include <linux/cgroup.h>
L
Linus Torvalds 已提交
31

32
#include <trace/events/block.h>
33

34 35 36 37 38 39
/*
 * Test patch to inline a certain number of bi_io_vec's inside the bio
 * itself, to shrink a bio data allocation from two mempool calls to one
 */
#define BIO_INLINE_VECS		4

L
Linus Torvalds 已提交
40 41 42 43 44 45
/*
 * if you change this list, also change bvec_alloc or things will
 * break badly! cannot be bigger than what you can fit into an
 * unsigned short
 */
#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46
static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
L
Linus Torvalds 已提交
47 48 49 50 51 52 53 54
	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
};
#undef BV

/*
 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
 * IO code that does not need private memory pools.
 */
55
struct bio_set *fs_bio_set;
56
EXPORT_SYMBOL(fs_bio_set);
L
Linus Torvalds 已提交
57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/*
 * Our slab pool management
 */
struct bio_slab {
	struct kmem_cache *slab;
	unsigned int slab_ref;
	unsigned int slab_size;
	char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
static struct bio_slab *bio_slabs;
static unsigned int bio_slab_nr, bio_slab_max;

static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
{
	unsigned int sz = sizeof(struct bio) + extra_size;
	struct kmem_cache *slab = NULL;
75
	struct bio_slab *bslab, *new_bio_slabs;
76
	unsigned int new_bio_slab_max;
77 78 79 80 81 82
	unsigned int i, entry = -1;

	mutex_lock(&bio_slab_lock);

	i = 0;
	while (i < bio_slab_nr) {
83
		bslab = &bio_slabs[i];
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

		if (!bslab->slab && entry == -1)
			entry = i;
		else if (bslab->slab_size == sz) {
			slab = bslab->slab;
			bslab->slab_ref++;
			break;
		}
		i++;
	}

	if (slab)
		goto out_unlock;

	if (bio_slab_nr == bio_slab_max && entry == -1) {
99
		new_bio_slab_max = bio_slab_max << 1;
100
		new_bio_slabs = krealloc(bio_slabs,
101
					 new_bio_slab_max * sizeof(struct bio_slab),
102 103
					 GFP_KERNEL);
		if (!new_bio_slabs)
104
			goto out_unlock;
105
		bio_slab_max = new_bio_slab_max;
106
		bio_slabs = new_bio_slabs;
107 108 109 110 111 112 113
	}
	if (entry == -1)
		entry = bio_slab_nr++;

	bslab = &bio_slabs[entry];

	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 115
	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
				 SLAB_HWCACHE_ALIGN, NULL);
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
	if (!slab)
		goto out_unlock;

	bslab->slab = slab;
	bslab->slab_ref = 1;
	bslab->slab_size = sz;
out_unlock:
	mutex_unlock(&bio_slab_lock);
	return slab;
}

static void bio_put_slab(struct bio_set *bs)
{
	struct bio_slab *bslab = NULL;
	unsigned int i;

	mutex_lock(&bio_slab_lock);

	for (i = 0; i < bio_slab_nr; i++) {
		if (bs->bio_slab == bio_slabs[i].slab) {
			bslab = &bio_slabs[i];
			break;
		}
	}

	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
		goto out;

	WARN_ON(!bslab->slab_ref);

	if (--bslab->slab_ref)
		goto out;

	kmem_cache_destroy(bslab->slab);
	bslab->slab = NULL;

out:
	mutex_unlock(&bio_slab_lock);
}

156 157 158 159 160
unsigned int bvec_nr_vecs(unsigned short idx)
{
	return bvec_slabs[idx].nr_vecs;
}

161
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 163 164 165
{
	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);

	if (idx == BIOVEC_MAX_IDX)
166
		mempool_free(bv, pool);
167 168 169 170 171 172 173
	else {
		struct biovec_slab *bvs = bvec_slabs + idx;

		kmem_cache_free(bvs->slab, bv);
	}
}

174 175
struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
			   mempool_t *pool)
L
Linus Torvalds 已提交
176 177 178
{
	struct bio_vec *bvl;

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	/*
	 * see comment near bvec_array define!
	 */
	switch (nr) {
	case 1:
		*idx = 0;
		break;
	case 2 ... 4:
		*idx = 1;
		break;
	case 5 ... 16:
		*idx = 2;
		break;
	case 17 ... 64:
		*idx = 3;
		break;
	case 65 ... 128:
		*idx = 4;
		break;
	case 129 ... BIO_MAX_PAGES:
		*idx = 5;
		break;
	default:
		return NULL;
	}

	/*
	 * idx now points to the pool we want to allocate from. only the
	 * 1-vec entry pool is mempool backed.
	 */
	if (*idx == BIOVEC_MAX_IDX) {
fallback:
211
		bvl = mempool_alloc(pool, gfp_mask);
212 213 214 215
	} else {
		struct biovec_slab *bvs = bvec_slabs + *idx;
		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);

J
Jens Axboe 已提交
216
		/*
217 218 219
		 * Make this allocation restricted and don't dump info on
		 * allocation failures, since we'll fallback to the mempool
		 * in case of failure.
J
Jens Axboe 已提交
220
		 */
221
		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
L
Linus Torvalds 已提交
222

J
Jens Axboe 已提交
223
		/*
224 225
		 * Try a slab allocation. If this fails and __GFP_WAIT
		 * is set, retry with the 1-entry mempool
J
Jens Axboe 已提交
226
		 */
227 228 229 230 231 232 233
		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
			*idx = BIOVEC_MAX_IDX;
			goto fallback;
		}
	}

L
Linus Torvalds 已提交
234 235 236
	return bvl;
}

K
Kent Overstreet 已提交
237
static void __bio_free(struct bio *bio)
L
Linus Torvalds 已提交
238
{
K
Kent Overstreet 已提交
239
	bio_disassociate_task(bio);
L
Linus Torvalds 已提交
240

241
	if (bio_integrity(bio))
242
		bio_integrity_free(bio);
K
Kent Overstreet 已提交
243
}
244

K
Kent Overstreet 已提交
245 246 247 248 249 250 251 252
static void bio_free(struct bio *bio)
{
	struct bio_set *bs = bio->bi_pool;
	void *p;

	__bio_free(bio);

	if (bs) {
253
		if (bio_flagged(bio, BIO_OWNS_VEC))
254
			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
K
Kent Overstreet 已提交
255 256 257 258 259

		/*
		 * If we have front padding, adjust the bio pointer before freeing
		 */
		p = bio;
260 261
		p -= bs->front_pad;

K
Kent Overstreet 已提交
262 263 264 265 266
		mempool_free(p, bs->bio_pool);
	} else {
		/* Bio was allocated by bio_kmalloc() */
		kfree(bio);
	}
P
Peter Osterlund 已提交
267 268
}

269
void bio_init(struct bio *bio)
L
Linus Torvalds 已提交
270
{
J
Jens Axboe 已提交
271
	memset(bio, 0, sizeof(*bio));
272
	atomic_set(&bio->__bi_remaining, 1);
273
	atomic_set(&bio->__bi_cnt, 1);
L
Linus Torvalds 已提交
274
}
275
EXPORT_SYMBOL(bio_init);
L
Linus Torvalds 已提交
276

K
Kent Overstreet 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290
/**
 * bio_reset - reinitialize a bio
 * @bio:	bio to reset
 *
 * Description:
 *   After calling bio_reset(), @bio will be in the same state as a freshly
 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 *   comment in struct bio.
 */
void bio_reset(struct bio *bio)
{
	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);

K
Kent Overstreet 已提交
291
	__bio_free(bio);
K
Kent Overstreet 已提交
292 293

	memset(bio, 0, BIO_RESET_BYTES);
294
	bio->bi_flags = flags;
295
	atomic_set(&bio->__bi_remaining, 1);
K
Kent Overstreet 已提交
296 297 298
}
EXPORT_SYMBOL(bio_reset);

299
static void bio_chain_endio(struct bio *bio)
K
Kent Overstreet 已提交
300
{
301 302 303 304
	struct bio *parent = bio->bi_private;

	parent->bi_error = bio->bi_error;
	bio_endio(parent);
K
Kent Overstreet 已提交
305 306 307
	bio_put(bio);
}

308 309 310 311 312 313
/*
 * Increment chain count for the bio. Make sure the CHAIN flag update
 * is visible before the raised count.
 */
static inline void bio_inc_remaining(struct bio *bio)
{
314
	bio_set_flag(bio, BIO_CHAIN);
315 316 317 318
	smp_mb__before_atomic();
	atomic_inc(&bio->__bi_remaining);
}

K
Kent Overstreet 已提交
319 320
/**
 * bio_chain - chain bio completions
321 322
 * @bio: the target bio
 * @parent: the @bio's parent bio
K
Kent Overstreet 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335
 *
 * The caller won't have a bi_end_io called when @bio completes - instead,
 * @parent's bi_end_io won't be called until both @parent and @bio have
 * completed; the chained bio will also be freed when it completes.
 *
 * The caller must not set bi_private or bi_end_io in @bio.
 */
void bio_chain(struct bio *bio, struct bio *parent)
{
	BUG_ON(bio->bi_private || bio->bi_end_io);

	bio->bi_private = parent;
	bio->bi_end_io	= bio_chain_endio;
336
	bio_inc_remaining(parent);
K
Kent Overstreet 已提交
337 338 339
}
EXPORT_SYMBOL(bio_chain);

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
static void bio_alloc_rescue(struct work_struct *work)
{
	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
	struct bio *bio;

	while (1) {
		spin_lock(&bs->rescue_lock);
		bio = bio_list_pop(&bs->rescue_list);
		spin_unlock(&bs->rescue_lock);

		if (!bio)
			break;

		generic_make_request(bio);
	}
}

static void punt_bios_to_rescuer(struct bio_set *bs)
{
	struct bio_list punt, nopunt;
	struct bio *bio;

	/*
	 * In order to guarantee forward progress we must punt only bios that
	 * were allocated from this bio_set; otherwise, if there was a bio on
	 * there for a stacking driver higher up in the stack, processing it
	 * could require allocating bios from this bio_set, and doing that from
	 * our own rescuer would be bad.
	 *
	 * Since bio lists are singly linked, pop them all instead of trying to
	 * remove from the middle of the list:
	 */

	bio_list_init(&punt);
	bio_list_init(&nopunt);

	while ((bio = bio_list_pop(current->bio_list)))
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);

	*current->bio_list = nopunt;

	spin_lock(&bs->rescue_lock);
	bio_list_merge(&bs->rescue_list, &punt);
	spin_unlock(&bs->rescue_lock);

	queue_work(bs->rescue_workqueue, &bs->rescue_work);
}

L
Linus Torvalds 已提交
388 389 390 391
/**
 * bio_alloc_bioset - allocate a bio for I/O
 * @gfp_mask:   the GFP_ mask given to the slab allocator
 * @nr_iovecs:	number of iovecs to pre-allocate
392
 * @bs:		the bio_set to allocate from.
L
Linus Torvalds 已提交
393 394
 *
 * Description:
395 396 397 398 399 400 401 402 403 404
 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 *   backed by the @bs's mempool.
 *
 *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
 *   able to allocate a bio. This is due to the mempool guarantees. To make this
 *   work, callers must never allocate more than 1 bio at a time from this pool.
 *   Callers that need to allocate more than 1 bio must always submit the
 *   previously allocated bio for IO before attempting to allocate a new one.
 *   Failure to do so can cause deadlocks under memory pressure.
 *
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
 *   Note that when running under generic_make_request() (i.e. any block
 *   driver), bios are not submitted until after you return - see the code in
 *   generic_make_request() that converts recursion into iteration, to prevent
 *   stack overflows.
 *
 *   This would normally mean allocating multiple bios under
 *   generic_make_request() would be susceptible to deadlocks, but we have
 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 *   thread.
 *
 *   However, we do not guarantee forward progress for allocations from other
 *   mempools. Doing multiple allocations from the same mempool under
 *   generic_make_request() should be avoided - instead, use bio_set's front_pad
 *   for per bio allocations.
 *
420 421 422
 *   RETURNS:
 *   Pointer to new bio on success, NULL on failure.
 */
A
Al Viro 已提交
423
struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
L
Linus Torvalds 已提交
424
{
425
	gfp_t saved_gfp = gfp_mask;
426 427
	unsigned front_pad;
	unsigned inline_vecs;
T
Tejun Heo 已提交
428
	unsigned long idx = BIO_POOL_NONE;
I
Ingo Molnar 已提交
429
	struct bio_vec *bvl = NULL;
T
Tejun Heo 已提交
430 431 432
	struct bio *bio;
	void *p;

433 434 435 436 437 438 439 440 441 442
	if (!bs) {
		if (nr_iovecs > UIO_MAXIOV)
			return NULL;

		p = kmalloc(sizeof(struct bio) +
			    nr_iovecs * sizeof(struct bio_vec),
			    gfp_mask);
		front_pad = 0;
		inline_vecs = nr_iovecs;
	} else {
J
Junichi Nomura 已提交
443 444 445
		/* should not use nobvec bioset for nr_iovecs > 0 */
		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
			return NULL;
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
		/*
		 * generic_make_request() converts recursion to iteration; this
		 * means if we're running beneath it, any bios we allocate and
		 * submit will not be submitted (and thus freed) until after we
		 * return.
		 *
		 * This exposes us to a potential deadlock if we allocate
		 * multiple bios from the same bio_set() while running
		 * underneath generic_make_request(). If we were to allocate
		 * multiple bios (say a stacking block driver that was splitting
		 * bios), we would deadlock if we exhausted the mempool's
		 * reserve.
		 *
		 * We solve this, and guarantee forward progress, with a rescuer
		 * workqueue per bio_set. If we go to allocate and there are
		 * bios on current->bio_list, we first try the allocation
		 * without __GFP_WAIT; if that fails, we punt those bios we
		 * would be blocking to the rescuer workqueue before we retry
		 * with the original gfp_flags.
		 */

		if (current->bio_list && !bio_list_empty(current->bio_list))
			gfp_mask &= ~__GFP_WAIT;

470
		p = mempool_alloc(bs->bio_pool, gfp_mask);
471 472 473 474 475 476
		if (!p && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
			p = mempool_alloc(bs->bio_pool, gfp_mask);
		}

477 478 479 480
		front_pad = bs->front_pad;
		inline_vecs = BIO_INLINE_VECS;
	}

T
Tejun Heo 已提交
481 482
	if (unlikely(!p))
		return NULL;
L
Linus Torvalds 已提交
483

484
	bio = p + front_pad;
I
Ingo Molnar 已提交
485 486
	bio_init(bio);

487
	if (nr_iovecs > inline_vecs) {
488
		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
489 490 491
		if (!bvl && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
492
			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
493 494
		}

I
Ingo Molnar 已提交
495 496
		if (unlikely(!bvl))
			goto err_free;
497

498
		bio_set_flag(bio, BIO_OWNS_VEC);
499 500
	} else if (nr_iovecs) {
		bvl = bio->bi_inline_vecs;
L
Linus Torvalds 已提交
501
	}
502 503

	bio->bi_pool = bs;
I
Ingo Molnar 已提交
504 505 506
	bio->bi_flags |= idx << BIO_POOL_OFFSET;
	bio->bi_max_vecs = nr_iovecs;
	bio->bi_io_vec = bvl;
L
Linus Torvalds 已提交
507
	return bio;
I
Ingo Molnar 已提交
508 509

err_free:
T
Tejun Heo 已提交
510
	mempool_free(p, bs->bio_pool);
I
Ingo Molnar 已提交
511
	return NULL;
L
Linus Torvalds 已提交
512
}
513
EXPORT_SYMBOL(bio_alloc_bioset);
L
Linus Torvalds 已提交
514 515 516 517

void zero_fill_bio(struct bio *bio)
{
	unsigned long flags;
518 519
	struct bio_vec bv;
	struct bvec_iter iter;
L
Linus Torvalds 已提交
520

521 522 523 524
	bio_for_each_segment(bv, bio, iter) {
		char *data = bvec_kmap_irq(&bv, &flags);
		memset(data, 0, bv.bv_len);
		flush_dcache_page(bv.bv_page);
L
Linus Torvalds 已提交
525 526 527 528 529 530 531 532 533 534 535
		bvec_kunmap_irq(data, &flags);
	}
}
EXPORT_SYMBOL(zero_fill_bio);

/**
 * bio_put - release a reference to a bio
 * @bio:   bio to release reference to
 *
 * Description:
 *   Put a reference to a &struct bio, either one you have gotten with
536
 *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
L
Linus Torvalds 已提交
537 538 539
 **/
void bio_put(struct bio *bio)
{
540
	if (!bio_flagged(bio, BIO_REFFED))
K
Kent Overstreet 已提交
541
		bio_free(bio);
542 543 544 545 546 547 548 549 550
	else {
		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));

		/*
		 * last put frees it
		 */
		if (atomic_dec_and_test(&bio->__bi_cnt))
			bio_free(bio);
	}
L
Linus Torvalds 已提交
551
}
552
EXPORT_SYMBOL(bio_put);
L
Linus Torvalds 已提交
553

554
inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
L
Linus Torvalds 已提交
555 556 557 558 559 560
{
	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
		blk_recount_segments(q, bio);

	return bio->bi_phys_segments;
}
561
EXPORT_SYMBOL(bio_phys_segments);
L
Linus Torvalds 已提交
562

K
Kent Overstreet 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
/**
 * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
 * 	@bio: destination bio
 * 	@bio_src: bio to clone
 *
 *	Clone a &bio. Caller will own the returned bio, but not
 *	the actual data it points to. Reference count of returned
 * 	bio will be one.
 *
 * 	Caller must ensure that @bio_src is not freed before @bio.
 */
void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
{
	BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);

	/*
	 * most users will be overriding ->bi_bdev with a new target,
	 * so we don't set nor calculate new physical/hw segment counts here
	 */
	bio->bi_bdev = bio_src->bi_bdev;
583
	bio_set_flag(bio, BIO_CLONED);
K
Kent Overstreet 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	bio->bi_rw = bio_src->bi_rw;
	bio->bi_iter = bio_src->bi_iter;
	bio->bi_io_vec = bio_src->bi_io_vec;
}
EXPORT_SYMBOL(__bio_clone_fast);

/**
 *	bio_clone_fast - clone a bio that shares the original bio's biovec
 *	@bio: bio to clone
 *	@gfp_mask: allocation priority
 *	@bs: bio_set to allocate from
 *
 * 	Like __bio_clone_fast, only also allocates the returned bio
 */
struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
{
	struct bio *b;

	b = bio_alloc_bioset(gfp_mask, 0, bs);
	if (!b)
		return NULL;

	__bio_clone_fast(b, bio);

	if (bio_integrity(bio)) {
		int ret;

		ret = bio_integrity_clone(b, bio, gfp_mask);

		if (ret < 0) {
			bio_put(b);
			return NULL;
		}
	}

	return b;
}
EXPORT_SYMBOL(bio_clone_fast);

L
Linus Torvalds 已提交
623
/**
624 625
 * 	bio_clone_bioset - clone a bio
 * 	@bio_src: bio to clone
L
Linus Torvalds 已提交
626
 *	@gfp_mask: allocation priority
627
 *	@bs: bio_set to allocate from
L
Linus Torvalds 已提交
628
 *
629 630
 *	Clone bio. Caller will own the returned bio, but not the actual data it
 *	points to. Reference count of returned bio will be one.
L
Linus Torvalds 已提交
631
 */
632
struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
633
			     struct bio_set *bs)
L
Linus Torvalds 已提交
634
{
635 636 637
	struct bvec_iter iter;
	struct bio_vec bv;
	struct bio *bio;
L
Linus Torvalds 已提交
638

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	/*
	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
	 * bio_src->bi_io_vec to bio->bi_io_vec.
	 *
	 * We can't do that anymore, because:
	 *
	 *  - The point of cloning the biovec is to produce a bio with a biovec
	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
	 *
	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
	 *    But the clone should succeed as long as the number of biovecs we
	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
	 *
	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
	 *    that does not own the bio - reason being drivers don't use it for
	 *    iterating over the biovec anymore, so expecting it to be kept up
	 *    to date (i.e. for clones that share the parent biovec) is just
	 *    asking for trouble and would force extra work on
	 *    __bio_clone_fast() anyways.
	 */

661
	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
662
	if (!bio)
663 664
		return NULL;

665 666 667 668
	bio->bi_bdev		= bio_src->bi_bdev;
	bio->bi_rw		= bio_src->bi_rw;
	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
669

670 671 672 673 674 675 676 677
	if (bio->bi_rw & REQ_DISCARD)
		goto integrity_clone;

	if (bio->bi_rw & REQ_WRITE_SAME) {
		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
		goto integrity_clone;
	}

678 679
	bio_for_each_segment(bv, bio_src, iter)
		bio->bi_io_vec[bio->bi_vcnt++] = bv;
680

681
integrity_clone:
682 683
	if (bio_integrity(bio_src)) {
		int ret;
684

685
		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
L
Li Zefan 已提交
686
		if (ret < 0) {
687
			bio_put(bio);
688
			return NULL;
L
Li Zefan 已提交
689
		}
P
Peter Osterlund 已提交
690
	}
L
Linus Torvalds 已提交
691

692
	return bio;
L
Linus Torvalds 已提交
693
}
694
EXPORT_SYMBOL(bio_clone_bioset);
L
Linus Torvalds 已提交
695 696 697 698 699 700 701 702 703 704 705 706

/**
 *	bio_get_nr_vecs		- return approx number of vecs
 *	@bdev:  I/O target
 *
 *	Return the approximate number of pages we can send to this target.
 *	There's no guarantee that you will be able to fit this number of pages
 *	into a bio, it does not account for dynamic restrictions that vary
 *	on offset.
 */
int bio_get_nr_vecs(struct block_device *bdev)
{
707
	struct request_queue *q = bdev_get_queue(bdev);
708 709 710
	int nr_pages;

	nr_pages = min_t(unsigned,
711 712
		     queue_max_segments(q),
		     queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
713 714 715

	return min_t(unsigned, nr_pages, BIO_MAX_PAGES);

L
Linus Torvalds 已提交
716
}
717
EXPORT_SYMBOL(bio_get_nr_vecs);
L
Linus Torvalds 已提交
718

719
static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
720
			  *page, unsigned int len, unsigned int offset,
721
			  unsigned int max_sectors)
L
Linus Torvalds 已提交
722 723 724 725 726 727 728 729 730 731
{
	int retried_segments = 0;
	struct bio_vec *bvec;

	/*
	 * cloned bio must not modify vec list
	 */
	if (unlikely(bio_flagged(bio, BIO_CLONED)))
		return 0;

732
	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
L
Linus Torvalds 已提交
733 734
		return 0;

735 736 737 738 739 740 741 742 743 744
	/*
	 * For filesystems with a blocksize smaller than the pagesize
	 * we will often be called with the same page as last time and
	 * a consecutive offset.  Optimize this special case.
	 */
	if (bio->bi_vcnt > 0) {
		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];

		if (page == prev->bv_page &&
		    offset == prev->bv_offset + prev->bv_len) {
745
			unsigned int prev_bv_len = prev->bv_len;
746
			prev->bv_len += len;
747 748 749

			if (q->merge_bvec_fn) {
				struct bvec_merge_data bvm = {
750 751 752 753
					/* prev_bvec is already charged in
					   bi_size, discharge it in order to
					   simulate merging updated prev_bvec
					   as new bvec. */
754
					.bi_bdev = bio->bi_bdev,
755 756 757
					.bi_sector = bio->bi_iter.bi_sector,
					.bi_size = bio->bi_iter.bi_size -
						prev_bv_len,
758 759 760
					.bi_rw = bio->bi_rw,
				};

761
				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
762 763 764
					prev->bv_len -= len;
					return 0;
				}
765 766
			}

767
			bio->bi_iter.bi_size += len;
768 769
			goto done;
		}
770 771 772 773 774 775 776 777

		/*
		 * If the queue doesn't support SG gaps and adding this
		 * offset would create a gap, disallow it.
		 */
		if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) &&
		    bvec_gap_to_prev(prev, offset))
			return 0;
778 779 780
	}

	if (bio->bi_vcnt >= bio->bi_max_vecs)
L
Linus Torvalds 已提交
781 782 783
		return 0;

	/*
784 785 786 787 788 789 790 791 792 793 794 795 796 797
	 * setup the new entry, we might clear it again later if we
	 * cannot add the page
	 */
	bvec = &bio->bi_io_vec[bio->bi_vcnt];
	bvec->bv_page = page;
	bvec->bv_len = len;
	bvec->bv_offset = offset;
	bio->bi_vcnt++;
	bio->bi_phys_segments++;
	bio->bi_iter.bi_size += len;

	/*
	 * Perform a recount if the number of segments is greater
	 * than queue_max_segments(q).
L
Linus Torvalds 已提交
798 799
	 */

800
	while (bio->bi_phys_segments > queue_max_segments(q)) {
L
Linus Torvalds 已提交
801 802

		if (retried_segments)
803
			goto failed;
L
Linus Torvalds 已提交
804 805 806 807 808 809 810 811 812 813 814

		retried_segments = 1;
		blk_recount_segments(q, bio);
	}

	/*
	 * if queue has other restrictions (eg varying max sector size
	 * depending on offset), it can specify a merge_bvec_fn in the
	 * queue to get further control
	 */
	if (q->merge_bvec_fn) {
815 816
		struct bvec_merge_data bvm = {
			.bi_bdev = bio->bi_bdev,
817
			.bi_sector = bio->bi_iter.bi_sector,
818
			.bi_size = bio->bi_iter.bi_size - len,
819 820 821
			.bi_rw = bio->bi_rw,
		};

L
Linus Torvalds 已提交
822 823 824 825
		/*
		 * merge_bvec_fn() returns number of bytes it can accept
		 * at this offset
		 */
826 827
		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len)
			goto failed;
L
Linus Torvalds 已提交
828 829 830
	}

	/* If we may be able to merge these biovecs, force a recount */
831
	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
832
		bio_clear_flag(bio, BIO_SEG_VALID);
L
Linus Torvalds 已提交
833

834
 done:
L
Linus Torvalds 已提交
835
	return len;
836 837 838 839 840 841 842 843 844

 failed:
	bvec->bv_page = NULL;
	bvec->bv_len = 0;
	bvec->bv_offset = 0;
	bio->bi_vcnt--;
	bio->bi_iter.bi_size -= len;
	blk_recount_segments(q, bio);
	return 0;
L
Linus Torvalds 已提交
845 846
}

847 848
/**
 *	bio_add_pc_page	-	attempt to add page to bio
J
Jens Axboe 已提交
849
 *	@q: the target queue
850 851 852 853 854 855
 *	@bio: destination bio
 *	@page: page to add
 *	@len: vec entry length
 *	@offset: vec entry offset
 *
 *	Attempt to add a page to the bio_vec maplist. This can fail for a
856 857 858 859 860
 *	number of reasons, such as the bio being full or target block device
 *	limitations. The target block device must allow bio's up to PAGE_SIZE,
 *	so it is always possible to add a single page to an empty bio.
 *
 *	This should only be used by REQ_PC bios.
861
 */
862
int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
863 864
		    unsigned int len, unsigned int offset)
{
865 866
	return __bio_add_page(q, bio, page, len, offset,
			      queue_max_hw_sectors(q));
867
}
868
EXPORT_SYMBOL(bio_add_pc_page);
869

L
Linus Torvalds 已提交
870 871 872 873 874 875 876 877
/**
 *	bio_add_page	-	attempt to add page to bio
 *	@bio: destination bio
 *	@page: page to add
 *	@len: vec entry length
 *	@offset: vec entry offset
 *
 *	Attempt to add a page to the bio_vec maplist. This can fail for a
878 879 880
 *	number of reasons, such as the bio being full or target block device
 *	limitations. The target block device must allow bio's up to PAGE_SIZE,
 *	so it is always possible to add a single page to an empty bio.
L
Linus Torvalds 已提交
881 882 883 884
 */
int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
		 unsigned int offset)
{
885
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
886
	unsigned int max_sectors;
887

888 889 890 891 892
	max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
	if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size)
		max_sectors = len >> 9;

	return __bio_add_page(q, bio, page, len, offset, max_sectors);
L
Linus Torvalds 已提交
893
}
894
EXPORT_SYMBOL(bio_add_page);
L
Linus Torvalds 已提交
895

896 897 898 899 900
struct submit_bio_ret {
	struct completion event;
	int error;
};

901
static void submit_bio_wait_endio(struct bio *bio)
902 903 904
{
	struct submit_bio_ret *ret = bio->bi_private;

905
	ret->error = bio->bi_error;
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
	complete(&ret->event);
}

/**
 * submit_bio_wait - submit a bio, and wait until it completes
 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
 * @bio: The &struct bio which describes the I/O
 *
 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 * bio_endio() on failure.
 */
int submit_bio_wait(int rw, struct bio *bio)
{
	struct submit_bio_ret ret;

	rw |= REQ_SYNC;
	init_completion(&ret.event);
	bio->bi_private = &ret;
	bio->bi_end_io = submit_bio_wait_endio;
	submit_bio(rw, bio);
	wait_for_completion(&ret.event);

	return ret.error;
}
EXPORT_SYMBOL(submit_bio_wait);

K
Kent Overstreet 已提交
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
/**
 * bio_advance - increment/complete a bio by some number of bytes
 * @bio:	bio to advance
 * @bytes:	number of bytes to complete
 *
 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 * be updated on the last bvec as well.
 *
 * @bio will then represent the remaining, uncompleted portion of the io.
 */
void bio_advance(struct bio *bio, unsigned bytes)
{
	if (bio_integrity(bio))
		bio_integrity_advance(bio, bytes);

K
Kent Overstreet 已提交
948
	bio_advance_iter(bio, &bio->bi_iter, bytes);
K
Kent Overstreet 已提交
949 950 951
}
EXPORT_SYMBOL(bio_advance);

K
Kent Overstreet 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
/**
 * bio_alloc_pages - allocates a single page for each bvec in a bio
 * @bio: bio to allocate pages for
 * @gfp_mask: flags for allocation
 *
 * Allocates pages up to @bio->bi_vcnt.
 *
 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
 * freed.
 */
int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
{
	int i;
	struct bio_vec *bv;

	bio_for_each_segment_all(bv, bio, i) {
		bv->bv_page = alloc_page(gfp_mask);
		if (!bv->bv_page) {
			while (--bv >= bio->bi_io_vec)
				__free_page(bv->bv_page);
			return -ENOMEM;
		}
	}

	return 0;
}
EXPORT_SYMBOL(bio_alloc_pages);

K
Kent Overstreet 已提交
980 981 982 983 984 985 986 987 988 989 990 991 992 993
/**
 * bio_copy_data - copy contents of data buffers from one chain of bios to
 * another
 * @src: source bio list
 * @dst: destination bio list
 *
 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
 * @src and @dst as linked lists of bios.
 *
 * Stops when it reaches the end of either @src or @dst - that is, copies
 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 */
void bio_copy_data(struct bio *dst, struct bio *src)
{
994 995
	struct bvec_iter src_iter, dst_iter;
	struct bio_vec src_bv, dst_bv;
K
Kent Overstreet 已提交
996
	void *src_p, *dst_p;
997
	unsigned bytes;
K
Kent Overstreet 已提交
998

999 1000
	src_iter = src->bi_iter;
	dst_iter = dst->bi_iter;
K
Kent Overstreet 已提交
1001 1002

	while (1) {
1003 1004 1005 1006
		if (!src_iter.bi_size) {
			src = src->bi_next;
			if (!src)
				break;
K
Kent Overstreet 已提交
1007

1008
			src_iter = src->bi_iter;
K
Kent Overstreet 已提交
1009 1010
		}

1011 1012 1013 1014
		if (!dst_iter.bi_size) {
			dst = dst->bi_next;
			if (!dst)
				break;
K
Kent Overstreet 已提交
1015

1016
			dst_iter = dst->bi_iter;
K
Kent Overstreet 已提交
1017 1018
		}

1019 1020 1021 1022
		src_bv = bio_iter_iovec(src, src_iter);
		dst_bv = bio_iter_iovec(dst, dst_iter);

		bytes = min(src_bv.bv_len, dst_bv.bv_len);
K
Kent Overstreet 已提交
1023

1024 1025
		src_p = kmap_atomic(src_bv.bv_page);
		dst_p = kmap_atomic(dst_bv.bv_page);
K
Kent Overstreet 已提交
1026

1027 1028
		memcpy(dst_p + dst_bv.bv_offset,
		       src_p + src_bv.bv_offset,
K
Kent Overstreet 已提交
1029 1030 1031 1032 1033
		       bytes);

		kunmap_atomic(dst_p);
		kunmap_atomic(src_p);

1034 1035
		bio_advance_iter(src, &src_iter, bytes);
		bio_advance_iter(dst, &dst_iter, bytes);
K
Kent Overstreet 已提交
1036 1037 1038 1039
	}
}
EXPORT_SYMBOL(bio_copy_data);

L
Linus Torvalds 已提交
1040
struct bio_map_data {
1041
	int is_our_pages;
1042 1043
	struct iov_iter iter;
	struct iovec iov[];
L
Linus Torvalds 已提交
1044 1045
};

1046
static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1047
					       gfp_t gfp_mask)
L
Linus Torvalds 已提交
1048
{
1049 1050
	if (iov_count > UIO_MAXIOV)
		return NULL;
L
Linus Torvalds 已提交
1051

1052
	return kmalloc(sizeof(struct bio_map_data) +
1053
		       sizeof(struct iovec) * iov_count, gfp_mask);
L
Linus Torvalds 已提交
1054 1055
}

1056 1057 1058 1059 1060 1061 1062 1063 1064
/**
 * bio_copy_from_iter - copy all pages from iov_iter to bio
 * @bio: The &struct bio which describes the I/O as destination
 * @iter: iov_iter as source
 *
 * Copy all pages from iov_iter to bio.
 * Returns 0 on success, or error on failure.
 */
static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1065
{
1066
	int i;
1067 1068
	struct bio_vec *bvec;

1069
	bio_for_each_segment_all(bvec, bio, i) {
1070
		ssize_t ret;
1071

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
		ret = copy_page_from_iter(bvec->bv_page,
					  bvec->bv_offset,
					  bvec->bv_len,
					  &iter);

		if (!iov_iter_count(&iter))
			break;

		if (ret < bvec->bv_len)
			return -EFAULT;
1082 1083
	}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	return 0;
}

/**
 * bio_copy_to_iter - copy all pages from bio to iov_iter
 * @bio: The &struct bio which describes the I/O as source
 * @iter: iov_iter as destination
 *
 * Copy all pages from bio to iov_iter.
 * Returns 0 on success, or error on failure.
 */
static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
{
	int i;
	struct bio_vec *bvec;

	bio_for_each_segment_all(bvec, bio, i) {
		ssize_t ret;

		ret = copy_page_to_iter(bvec->bv_page,
					bvec->bv_offset,
					bvec->bv_len,
					&iter);

		if (!iov_iter_count(&iter))
			break;

		if (ret < bvec->bv_len)
			return -EFAULT;
	}

	return 0;
1116 1117
}

1118 1119 1120 1121 1122 1123 1124 1125 1126
static void bio_free_pages(struct bio *bio)
{
	struct bio_vec *bvec;
	int i;

	bio_for_each_segment_all(bvec, bio, i)
		__free_page(bvec->bv_page);
}

L
Linus Torvalds 已提交
1127 1128 1129 1130
/**
 *	bio_uncopy_user	-	finish previously mapped bio
 *	@bio: bio being terminated
 *
1131
 *	Free pages allocated from bio_copy_user_iov() and write back data
L
Linus Torvalds 已提交
1132 1133 1134 1135 1136
 *	to user space in case of a read.
 */
int bio_uncopy_user(struct bio *bio)
{
	struct bio_map_data *bmd = bio->bi_private;
1137
	int ret = 0;
L
Linus Torvalds 已提交
1138

1139 1140 1141 1142 1143
	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
		/*
		 * if we're in a workqueue, the request is orphaned, so
		 * don't copy into a random user address space, just free.
		 */
1144 1145
		if (current->mm && bio_data_dir(bio) == READ)
			ret = bio_copy_to_iter(bio, bmd->iter);
1146 1147
		if (bmd->is_our_pages)
			bio_free_pages(bio);
1148
	}
1149
	kfree(bmd);
L
Linus Torvalds 已提交
1150 1151 1152
	bio_put(bio);
	return ret;
}
1153
EXPORT_SYMBOL(bio_uncopy_user);
L
Linus Torvalds 已提交
1154 1155

/**
1156
 *	bio_copy_user_iov	-	copy user data to bio
1157 1158 1159 1160
 *	@q:		destination block queue
 *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
 *	@iter:		iovec iterator
 *	@gfp_mask:	memory allocation flags
L
Linus Torvalds 已提交
1161 1162 1163 1164 1165
 *
 *	Prepares and returns a bio for indirect user io, bouncing data
 *	to/from kernel pages as necessary. Must be paired with
 *	call bio_uncopy_user() on io completion.
 */
1166 1167
struct bio *bio_copy_user_iov(struct request_queue *q,
			      struct rq_map_data *map_data,
1168 1169
			      const struct iov_iter *iter,
			      gfp_t gfp_mask)
L
Linus Torvalds 已提交
1170 1171 1172 1173 1174
{
	struct bio_map_data *bmd;
	struct page *page;
	struct bio *bio;
	int i, ret;
1175
	int nr_pages = 0;
1176
	unsigned int len = iter->count;
1177
	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
L
Linus Torvalds 已提交
1178

1179
	for (i = 0; i < iter->nr_segs; i++) {
1180 1181 1182 1183
		unsigned long uaddr;
		unsigned long end;
		unsigned long start;

1184 1185 1186
		uaddr = (unsigned long) iter->iov[i].iov_base;
		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
			>> PAGE_SHIFT;
1187 1188
		start = uaddr >> PAGE_SHIFT;

1189 1190 1191 1192 1193 1194
		/*
		 * Overflow, abort
		 */
		if (end < start)
			return ERR_PTR(-EINVAL);

1195 1196 1197
		nr_pages += end - start;
	}

1198 1199 1200
	if (offset)
		nr_pages++;

1201
	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
L
Linus Torvalds 已提交
1202 1203 1204
	if (!bmd)
		return ERR_PTR(-ENOMEM);

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	/*
	 * We need to do a deep copy of the iov_iter including the iovecs.
	 * The caller provided iov might point to an on-stack or otherwise
	 * shortlived one.
	 */
	bmd->is_our_pages = map_data ? 0 : 1;
	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
			iter->nr_segs, iter->count);

L
Linus Torvalds 已提交
1215
	ret = -ENOMEM;
1216
	bio = bio_kmalloc(gfp_mask, nr_pages);
L
Linus Torvalds 已提交
1217 1218 1219
	if (!bio)
		goto out_bmd;

1220
	if (iter->type & WRITE)
1221
		bio->bi_rw |= REQ_WRITE;
L
Linus Torvalds 已提交
1222 1223

	ret = 0;
1224 1225

	if (map_data) {
1226
		nr_pages = 1 << map_data->page_order;
1227 1228
		i = map_data->offset / PAGE_SIZE;
	}
L
Linus Torvalds 已提交
1229
	while (len) {
1230
		unsigned int bytes = PAGE_SIZE;
L
Linus Torvalds 已提交
1231

1232 1233
		bytes -= offset;

L
Linus Torvalds 已提交
1234 1235 1236
		if (bytes > len)
			bytes = len;

1237
		if (map_data) {
1238
			if (i == map_data->nr_entries * nr_pages) {
1239 1240 1241
				ret = -ENOMEM;
				break;
			}
1242 1243 1244 1245 1246 1247

			page = map_data->pages[i / nr_pages];
			page += (i % nr_pages);

			i++;
		} else {
1248
			page = alloc_page(q->bounce_gfp | gfp_mask);
1249 1250 1251 1252
			if (!page) {
				ret = -ENOMEM;
				break;
			}
L
Linus Torvalds 已提交
1253 1254
		}

1255
		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
L
Linus Torvalds 已提交
1256 1257 1258
			break;

		len -= bytes;
1259
		offset = 0;
L
Linus Torvalds 已提交
1260 1261 1262 1263 1264 1265 1266 1267
	}

	if (ret)
		goto cleanup;

	/*
	 * success
	 */
1268
	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1269
	    (map_data && map_data->from_user)) {
1270
		ret = bio_copy_from_iter(bio, *iter);
1271 1272
		if (ret)
			goto cleanup;
L
Linus Torvalds 已提交
1273 1274
	}

1275
	bio->bi_private = bmd;
L
Linus Torvalds 已提交
1276 1277
	return bio;
cleanup:
1278
	if (!map_data)
1279
		bio_free_pages(bio);
L
Linus Torvalds 已提交
1280 1281
	bio_put(bio);
out_bmd:
1282
	kfree(bmd);
L
Linus Torvalds 已提交
1283 1284 1285
	return ERR_PTR(ret);
}

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
/**
 *	bio_map_user_iov - map user iovec into bio
 *	@q:		the struct request_queue for the bio
 *	@iter:		iovec iterator
 *	@gfp_mask:	memory allocation flags
 *
 *	Map the user space address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
struct bio *bio_map_user_iov(struct request_queue *q,
			     const struct iov_iter *iter,
			     gfp_t gfp_mask)
L
Linus Torvalds 已提交
1298
{
1299
	int j;
1300
	int nr_pages = 0;
L
Linus Torvalds 已提交
1301 1302
	struct page **pages;
	struct bio *bio;
1303 1304
	int cur_page = 0;
	int ret, offset;
1305 1306
	struct iov_iter i;
	struct iovec iov;
L
Linus Torvalds 已提交
1307

1308 1309 1310
	iov_for_each(iov, i, *iter) {
		unsigned long uaddr = (unsigned long) iov.iov_base;
		unsigned long len = iov.iov_len;
1311 1312 1313
		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
		unsigned long start = uaddr >> PAGE_SHIFT;

1314 1315 1316 1317 1318 1319
		/*
		 * Overflow, abort
		 */
		if (end < start)
			return ERR_PTR(-EINVAL);

1320 1321
		nr_pages += end - start;
		/*
1322
		 * buffer must be aligned to at least hardsector size for now
1323
		 */
1324
		if (uaddr & queue_dma_alignment(q))
1325 1326 1327 1328
			return ERR_PTR(-EINVAL);
	}

	if (!nr_pages)
L
Linus Torvalds 已提交
1329 1330
		return ERR_PTR(-EINVAL);

1331
	bio = bio_kmalloc(gfp_mask, nr_pages);
L
Linus Torvalds 已提交
1332 1333 1334 1335
	if (!bio)
		return ERR_PTR(-ENOMEM);

	ret = -ENOMEM;
1336
	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
L
Linus Torvalds 已提交
1337 1338 1339
	if (!pages)
		goto out;

1340 1341 1342
	iov_for_each(iov, i, *iter) {
		unsigned long uaddr = (unsigned long) iov.iov_base;
		unsigned long len = iov.iov_len;
1343 1344 1345 1346
		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
		unsigned long start = uaddr >> PAGE_SHIFT;
		const int local_nr_pages = end - start;
		const int page_limit = cur_page + local_nr_pages;
1347

N
Nick Piggin 已提交
1348
		ret = get_user_pages_fast(uaddr, local_nr_pages,
1349 1350
				(iter->type & WRITE) != WRITE,
				&pages[cur_page]);
1351 1352
		if (ret < local_nr_pages) {
			ret = -EFAULT;
1353
			goto out_unmap;
1354
		}
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

		offset = uaddr & ~PAGE_MASK;
		for (j = cur_page; j < page_limit; j++) {
			unsigned int bytes = PAGE_SIZE - offset;

			if (len <= 0)
				break;
			
			if (bytes > len)
				bytes = len;

			/*
			 * sorry...
			 */
1369 1370
			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
					    bytes)
1371 1372 1373 1374 1375
				break;

			len -= bytes;
			offset = 0;
		}
L
Linus Torvalds 已提交
1376

1377
		cur_page = j;
L
Linus Torvalds 已提交
1378
		/*
1379
		 * release the pages we didn't map into the bio, if any
L
Linus Torvalds 已提交
1380
		 */
1381 1382
		while (j < page_limit)
			page_cache_release(pages[j++]);
L
Linus Torvalds 已提交
1383 1384 1385 1386 1387 1388 1389
	}

	kfree(pages);

	/*
	 * set data direction, and check if mapped pages need bouncing
	 */
1390
	if (iter->type & WRITE)
1391
		bio->bi_rw |= REQ_WRITE;
L
Linus Torvalds 已提交
1392

1393
	bio_set_flag(bio, BIO_USER_MAPPED);
1394 1395 1396 1397 1398 1399 1400 1401

	/*
	 * subtle -- if __bio_map_user() ended up bouncing a bio,
	 * it would normally disappear when its bi_end_io is run.
	 * however, we need it for the unmap, so grab an extra
	 * reference to it
	 */
	bio_get(bio);
L
Linus Torvalds 已提交
1402
	return bio;
1403 1404

 out_unmap:
1405 1406
	for (j = 0; j < nr_pages; j++) {
		if (!pages[j])
1407
			break;
1408
		page_cache_release(pages[j]);
1409 1410
	}
 out:
L
Linus Torvalds 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	kfree(pages);
	bio_put(bio);
	return ERR_PTR(ret);
}

static void __bio_unmap_user(struct bio *bio)
{
	struct bio_vec *bvec;
	int i;

	/*
	 * make sure we dirty pages we wrote to
	 */
1424
	bio_for_each_segment_all(bvec, bio, i) {
L
Linus Torvalds 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
		if (bio_data_dir(bio) == READ)
			set_page_dirty_lock(bvec->bv_page);

		page_cache_release(bvec->bv_page);
	}

	bio_put(bio);
}

/**
 *	bio_unmap_user	-	unmap a bio
 *	@bio:		the bio being unmapped
 *
 *	Unmap a bio previously mapped by bio_map_user(). Must be called with
 *	a process context.
 *
 *	bio_unmap_user() may sleep.
 */
void bio_unmap_user(struct bio *bio)
{
	__bio_unmap_user(bio);
	bio_put(bio);
}
1448
EXPORT_SYMBOL(bio_unmap_user);
L
Linus Torvalds 已提交
1449

1450
static void bio_map_kern_endio(struct bio *bio)
1451 1452 1453 1454
{
	bio_put(bio);
}

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
/**
 *	bio_map_kern	-	map kernel address into bio
 *	@q: the struct request_queue for the bio
 *	@data: pointer to buffer to map
 *	@len: length in bytes
 *	@gfp_mask: allocation flags for bio allocation
 *
 *	Map the kernel address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
			 gfp_t gfp_mask)
M
Mike Christie 已提交
1467 1468 1469 1470 1471 1472 1473 1474
{
	unsigned long kaddr = (unsigned long)data;
	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	unsigned long start = kaddr >> PAGE_SHIFT;
	const int nr_pages = end - start;
	int offset, i;
	struct bio *bio;

1475
	bio = bio_kmalloc(gfp_mask, nr_pages);
M
Mike Christie 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	if (!bio)
		return ERR_PTR(-ENOMEM);

	offset = offset_in_page(kaddr);
	for (i = 0; i < nr_pages; i++) {
		unsigned int bytes = PAGE_SIZE - offset;

		if (len <= 0)
			break;

		if (bytes > len)
			bytes = len;

1489
		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1490 1491 1492 1493 1494
				    offset) < bytes) {
			/* we don't support partial mappings */
			bio_put(bio);
			return ERR_PTR(-EINVAL);
		}
M
Mike Christie 已提交
1495 1496 1497 1498 1499 1500

		data += bytes;
		len -= bytes;
		offset = 0;
	}

1501
	bio->bi_end_io = bio_map_kern_endio;
M
Mike Christie 已提交
1502 1503
	return bio;
}
1504
EXPORT_SYMBOL(bio_map_kern);
M
Mike Christie 已提交
1505

1506
static void bio_copy_kern_endio(struct bio *bio)
1507
{
1508 1509 1510 1511
	bio_free_pages(bio);
	bio_put(bio);
}

1512
static void bio_copy_kern_endio_read(struct bio *bio)
1513
{
C
Christoph Hellwig 已提交
1514
	char *p = bio->bi_private;
1515
	struct bio_vec *bvec;
1516 1517
	int i;

1518
	bio_for_each_segment_all(bvec, bio, i) {
1519
		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1520
		p += bvec->bv_len;
1521 1522
	}

1523
	bio_copy_kern_endio(bio);
1524 1525 1526 1527 1528 1529 1530 1531
}

/**
 *	bio_copy_kern	-	copy kernel address into bio
 *	@q: the struct request_queue for the bio
 *	@data: pointer to buffer to copy
 *	@len: length in bytes
 *	@gfp_mask: allocation flags for bio and page allocation
1532
 *	@reading: data direction is READ
1533 1534 1535 1536 1537 1538 1539
 *
 *	copy the kernel address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
			  gfp_t gfp_mask, int reading)
{
C
Christoph Hellwig 已提交
1540 1541 1542 1543 1544
	unsigned long kaddr = (unsigned long)data;
	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	unsigned long start = kaddr >> PAGE_SHIFT;
	struct bio *bio;
	void *p = data;
1545
	int nr_pages = 0;
1546

C
Christoph Hellwig 已提交
1547 1548 1549 1550 1551
	/*
	 * Overflow, abort
	 */
	if (end < start)
		return ERR_PTR(-EINVAL);
1552

C
Christoph Hellwig 已提交
1553 1554 1555 1556
	nr_pages = end - start;
	bio = bio_kmalloc(gfp_mask, nr_pages);
	if (!bio)
		return ERR_PTR(-ENOMEM);
1557

C
Christoph Hellwig 已提交
1558 1559 1560
	while (len) {
		struct page *page;
		unsigned int bytes = PAGE_SIZE;
1561

C
Christoph Hellwig 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
		if (bytes > len)
			bytes = len;

		page = alloc_page(q->bounce_gfp | gfp_mask);
		if (!page)
			goto cleanup;

		if (!reading)
			memcpy(page_address(page), p, bytes);

		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
			break;

		len -= bytes;
		p += bytes;
1577 1578
	}

1579 1580 1581 1582 1583
	if (reading) {
		bio->bi_end_io = bio_copy_kern_endio_read;
		bio->bi_private = data;
	} else {
		bio->bi_end_io = bio_copy_kern_endio;
C
Christoph Hellwig 已提交
1584
		bio->bi_rw |= REQ_WRITE;
1585
	}
1586

1587
	return bio;
C
Christoph Hellwig 已提交
1588 1589

cleanup:
1590
	bio_free_pages(bio);
C
Christoph Hellwig 已提交
1591 1592
	bio_put(bio);
	return ERR_PTR(-ENOMEM);
1593
}
1594
EXPORT_SYMBOL(bio_copy_kern);
1595

L
Linus Torvalds 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
/*
 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 * for performing direct-IO in BIOs.
 *
 * The problem is that we cannot run set_page_dirty() from interrupt context
 * because the required locks are not interrupt-safe.  So what we can do is to
 * mark the pages dirty _before_ performing IO.  And in interrupt context,
 * check that the pages are still dirty.   If so, fine.  If not, redirty them
 * in process context.
 *
 * We special-case compound pages here: normally this means reads into hugetlb
 * pages.  The logic in here doesn't really work right for compound pages
 * because the VM does not uniformly chase down the head page in all cases.
 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 * handle them at all.  So we skip compound pages here at an early stage.
 *
 * Note that this code is very hard to test under normal circumstances because
 * direct-io pins the pages with get_user_pages().  This makes
 * is_page_cache_freeable return false, and the VM will not clean the pages.
1615
 * But other code (eg, flusher threads) could clean the pages if they are mapped
L
Linus Torvalds 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
 * pagecache.
 *
 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 * deferred bio dirtying paths.
 */

/*
 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 */
void bio_set_pages_dirty(struct bio *bio)
{
1627
	struct bio_vec *bvec;
L
Linus Torvalds 已提交
1628 1629
	int i;

1630 1631
	bio_for_each_segment_all(bvec, bio, i) {
		struct page *page = bvec->bv_page;
L
Linus Torvalds 已提交
1632 1633 1634 1635 1636 1637

		if (page && !PageCompound(page))
			set_page_dirty_lock(page);
	}
}

1638
static void bio_release_pages(struct bio *bio)
L
Linus Torvalds 已提交
1639
{
1640
	struct bio_vec *bvec;
L
Linus Torvalds 已提交
1641 1642
	int i;

1643 1644
	bio_for_each_segment_all(bvec, bio, i) {
		struct page *page = bvec->bv_page;
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

		if (page)
			put_page(page);
	}
}

/*
 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 * If they are, then fine.  If, however, some pages are clean then they must
 * have been written out during the direct-IO read.  So we take another ref on
 * the BIO and the offending pages and re-dirty the pages in process context.
 *
 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
 * here on.  It will run one page_cache_release() against each page and will
 * run one bio_put() against the BIO.
 */

1662
static void bio_dirty_fn(struct work_struct *work);
L
Linus Torvalds 已提交
1663

1664
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
L
Linus Torvalds 已提交
1665 1666 1667 1668 1669 1670
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;

/*
 * This runs in process context
 */
1671
static void bio_dirty_fn(struct work_struct *work)
L
Linus Torvalds 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
{
	unsigned long flags;
	struct bio *bio;

	spin_lock_irqsave(&bio_dirty_lock, flags);
	bio = bio_dirty_list;
	bio_dirty_list = NULL;
	spin_unlock_irqrestore(&bio_dirty_lock, flags);

	while (bio) {
		struct bio *next = bio->bi_private;

		bio_set_pages_dirty(bio);
		bio_release_pages(bio);
		bio_put(bio);
		bio = next;
	}
}

void bio_check_pages_dirty(struct bio *bio)
{
1693
	struct bio_vec *bvec;
L
Linus Torvalds 已提交
1694 1695 1696
	int nr_clean_pages = 0;
	int i;

1697 1698
	bio_for_each_segment_all(bvec, bio, i) {
		struct page *page = bvec->bv_page;
L
Linus Torvalds 已提交
1699 1700 1701

		if (PageDirty(page) || PageCompound(page)) {
			page_cache_release(page);
1702
			bvec->bv_page = NULL;
L
Linus Torvalds 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
		} else {
			nr_clean_pages++;
		}
	}

	if (nr_clean_pages) {
		unsigned long flags;

		spin_lock_irqsave(&bio_dirty_lock, flags);
		bio->bi_private = bio_dirty_list;
		bio_dirty_list = bio;
		spin_unlock_irqrestore(&bio_dirty_lock, flags);
		schedule_work(&bio_dirty_work);
	} else {
		bio_put(bio);
	}
}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
void generic_start_io_acct(int rw, unsigned long sectors,
			   struct hd_struct *part)
{
	int cpu = part_stat_lock();

	part_round_stats(cpu, part);
	part_stat_inc(cpu, part, ios[rw]);
	part_stat_add(cpu, part, sectors[rw], sectors);
	part_inc_in_flight(part, rw);

	part_stat_unlock();
}
EXPORT_SYMBOL(generic_start_io_acct);

void generic_end_io_acct(int rw, struct hd_struct *part,
			 unsigned long start_time)
{
	unsigned long duration = jiffies - start_time;
	int cpu = part_stat_lock();

	part_stat_add(cpu, part, ticks[rw], duration);
	part_round_stats(cpu, part);
	part_dec_in_flight(part, rw);

	part_stat_unlock();
}
EXPORT_SYMBOL(generic_end_io_acct);

1749 1750 1751
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
void bio_flush_dcache_pages(struct bio *bi)
{
1752 1753
	struct bio_vec bvec;
	struct bvec_iter iter;
1754

1755 1756
	bio_for_each_segment(bvec, bi, iter)
		flush_dcache_page(bvec.bv_page);
1757 1758 1759 1760
}
EXPORT_SYMBOL(bio_flush_dcache_pages);
#endif

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
static inline bool bio_remaining_done(struct bio *bio)
{
	/*
	 * If we're not chaining, then ->__bi_remaining is always 1 and
	 * we always end io on the first invocation.
	 */
	if (!bio_flagged(bio, BIO_CHAIN))
		return true;

	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);

1772
	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1773
		bio_clear_flag(bio, BIO_CHAIN);
1774
		return true;
1775
	}
1776 1777 1778 1779

	return false;
}

L
Linus Torvalds 已提交
1780 1781 1782 1783 1784
/**
 * bio_endio - end I/O on a bio
 * @bio:	bio
 *
 * Description:
1785 1786 1787
 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
 *   bio unless they own it and thus know that it has an end_io function.
L
Linus Torvalds 已提交
1788
 **/
1789
void bio_endio(struct bio *bio)
L
Linus Torvalds 已提交
1790
{
K
Kent Overstreet 已提交
1791
	while (bio) {
1792 1793
		if (unlikely(!bio_remaining_done(bio)))
			break;
L
Linus Torvalds 已提交
1794

K
Kent Overstreet 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
		/*
		 * Need to have a real endio function for chained bios,
		 * otherwise various corner cases will break (like stacking
		 * block devices that save/restore bi_end_io) - however, we want
		 * to avoid unbounded recursion and blowing the stack. Tail call
		 * optimization would handle this, but compiling with frame
		 * pointers also disables gcc's sibling call optimization.
		 */
		if (bio->bi_end_io == bio_chain_endio) {
			struct bio *parent = bio->bi_private;
1805
			parent->bi_error = bio->bi_error;
K
Kent Overstreet 已提交
1806 1807 1808 1809
			bio_put(bio);
			bio = parent;
		} else {
			if (bio->bi_end_io)
1810
				bio->bi_end_io(bio);
K
Kent Overstreet 已提交
1811 1812 1813
			bio = NULL;
		}
	}
L
Linus Torvalds 已提交
1814
}
1815
EXPORT_SYMBOL(bio_endio);
L
Linus Torvalds 已提交
1816

K
Kent Overstreet 已提交
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
/**
 * bio_split - split a bio
 * @bio:	bio to split
 * @sectors:	number of sectors to split from the front of @bio
 * @gfp:	gfp mask
 * @bs:		bio set to allocate from
 *
 * Allocates and returns a new bio which represents @sectors from the start of
 * @bio, and updates @bio to represent the remaining sectors.
 *
 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
 * responsibility to ensure that @bio is not freed before the split.
 */
struct bio *bio_split(struct bio *bio, int sectors,
		      gfp_t gfp, struct bio_set *bs)
{
	struct bio *split = NULL;

	BUG_ON(sectors <= 0);
	BUG_ON(sectors >= bio_sectors(bio));

	split = bio_clone_fast(bio, gfp, bs);
	if (!split)
		return NULL;

	split->bi_iter.bi_size = sectors << 9;

	if (bio_integrity(split))
		bio_integrity_trim(split, 0, sectors);

	bio_advance(bio, split->bi_iter.bi_size);

	return split;
}
EXPORT_SYMBOL(bio_split);

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
/**
 * bio_trim - trim a bio
 * @bio:	bio to trim
 * @offset:	number of sectors to trim from the front of @bio
 * @size:	size we want to trim @bio to, in sectors
 */
void bio_trim(struct bio *bio, int offset, int size)
{
	/* 'bio' is a cloned bio which we need to trim to match
	 * the given offset and size.
	 */

	size <<= 9;
1866
	if (offset == 0 && size == bio->bi_iter.bi_size)
1867 1868
		return;

1869
	bio_clear_flag(bio, BIO_SEG_VALID);
1870 1871 1872

	bio_advance(bio, offset << 9);

1873
	bio->bi_iter.bi_size = size;
1874 1875 1876
}
EXPORT_SYMBOL_GPL(bio_trim);

L
Linus Torvalds 已提交
1877 1878 1879 1880
/*
 * create memory pools for biovec's in a bio_set.
 * use the global biovec slabs created for general use.
 */
1881
mempool_t *biovec_create_pool(int pool_entries)
L
Linus Torvalds 已提交
1882
{
1883
	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
L
Linus Torvalds 已提交
1884

1885
	return mempool_create_slab_pool(pool_entries, bp->slab);
L
Linus Torvalds 已提交
1886 1887 1888 1889
}

void bioset_free(struct bio_set *bs)
{
1890 1891 1892
	if (bs->rescue_workqueue)
		destroy_workqueue(bs->rescue_workqueue);

L
Linus Torvalds 已提交
1893 1894 1895
	if (bs->bio_pool)
		mempool_destroy(bs->bio_pool);

1896 1897 1898
	if (bs->bvec_pool)
		mempool_destroy(bs->bvec_pool);

1899
	bioset_integrity_free(bs);
1900
	bio_put_slab(bs);
L
Linus Torvalds 已提交
1901 1902 1903

	kfree(bs);
}
1904
EXPORT_SYMBOL(bioset_free);
L
Linus Torvalds 已提交
1905

J
Junichi Nomura 已提交
1906 1907 1908
static struct bio_set *__bioset_create(unsigned int pool_size,
				       unsigned int front_pad,
				       bool create_bvec_pool)
L
Linus Torvalds 已提交
1909
{
1910
	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1911
	struct bio_set *bs;
L
Linus Torvalds 已提交
1912

1913
	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
L
Linus Torvalds 已提交
1914 1915 1916
	if (!bs)
		return NULL;

1917
	bs->front_pad = front_pad;
1918

1919 1920 1921 1922
	spin_lock_init(&bs->rescue_lock);
	bio_list_init(&bs->rescue_list);
	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);

1923
	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1924 1925 1926 1927 1928 1929
	if (!bs->bio_slab) {
		kfree(bs);
		return NULL;
	}

	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
L
Linus Torvalds 已提交
1930 1931 1932
	if (!bs->bio_pool)
		goto bad;

J
Junichi Nomura 已提交
1933 1934 1935 1936 1937
	if (create_bvec_pool) {
		bs->bvec_pool = biovec_create_pool(pool_size);
		if (!bs->bvec_pool)
			goto bad;
	}
1938 1939 1940 1941

	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
	if (!bs->rescue_workqueue)
		goto bad;
L
Linus Torvalds 已提交
1942

1943
	return bs;
L
Linus Torvalds 已提交
1944 1945 1946 1947
bad:
	bioset_free(bs);
	return NULL;
}
J
Junichi Nomura 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965

/**
 * bioset_create  - Create a bio_set
 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 *
 * Description:
 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 *    to ask for a number of bytes to be allocated in front of the bio.
 *    Front pad allocation is useful for embedding the bio inside
 *    another structure, to avoid allocating extra data to go with the bio.
 *    Note that the bio must be embedded at the END of that structure always,
 *    or things will break badly.
 */
struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
{
	return __bioset_create(pool_size, front_pad, true);
}
1966
EXPORT_SYMBOL(bioset_create);
L
Linus Torvalds 已提交
1967

J
Junichi Nomura 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
/**
 * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
 * @pool_size:	Number of bio to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 *
 * Description:
 *    Same functionality as bioset_create() except that mempool is not
 *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
 */
struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
{
	return __bioset_create(pool_size, front_pad, false);
}
EXPORT_SYMBOL(bioset_create_nobvec);

1983
#ifdef CONFIG_BLK_CGROUP
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

/**
 * bio_associate_blkcg - associate a bio with the specified blkcg
 * @bio: target bio
 * @blkcg_css: css of the blkcg to associate
 *
 * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
 * treat @bio as if it were issued by a task which belongs to the blkcg.
 *
 * This function takes an extra reference of @blkcg_css which will be put
 * when @bio is released.  The caller must own @bio and is responsible for
 * synchronizing calls to this function.
 */
int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
{
	if (unlikely(bio->bi_css))
		return -EBUSY;
	css_get(blkcg_css);
	bio->bi_css = blkcg_css;
	return 0;
}

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
/**
 * bio_associate_current - associate a bio with %current
 * @bio: target bio
 *
 * Associate @bio with %current if it hasn't been associated yet.  Block
 * layer will treat @bio as if it were issued by %current no matter which
 * task actually issues it.
 *
 * This function takes an extra reference of @task's io_context and blkcg
 * which will be put when @bio is released.  The caller must own @bio,
 * ensure %current->io_context exists, and is responsible for synchronizing
 * calls to this function.
 */
int bio_associate_current(struct bio *bio)
{
	struct io_context *ioc;

2023
	if (bio->bi_css)
2024 2025 2026 2027 2028 2029 2030 2031
		return -EBUSY;

	ioc = current->io_context;
	if (!ioc)
		return -ENOENT;

	get_io_context_active(ioc);
	bio->bi_ioc = ioc;
2032
	bio->bi_css = task_get_css(current, blkio_cgrp_id);
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	return 0;
}

/**
 * bio_disassociate_task - undo bio_associate_current()
 * @bio: target bio
 */
void bio_disassociate_task(struct bio *bio)
{
	if (bio->bi_ioc) {
		put_io_context(bio->bi_ioc);
		bio->bi_ioc = NULL;
	}
	if (bio->bi_css) {
		css_put(bio->bi_css);
		bio->bi_css = NULL;
	}
}

#endif /* CONFIG_BLK_CGROUP */

L
Linus Torvalds 已提交
2054 2055 2056 2057 2058 2059 2060 2061
static void __init biovec_init_slabs(void)
{
	int i;

	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
		int size;
		struct biovec_slab *bvs = bvec_slabs + i;

2062 2063 2064 2065 2066
		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
			bvs->slab = NULL;
			continue;
		}

L
Linus Torvalds 已提交
2067 2068
		size = bvs->nr_vecs * sizeof(struct bio_vec);
		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2069
                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
L
Linus Torvalds 已提交
2070 2071 2072 2073 2074
	}
}

static int __init init_bio(void)
{
2075 2076 2077 2078 2079
	bio_slab_max = 2;
	bio_slab_nr = 0;
	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
	if (!bio_slabs)
		panic("bio: can't allocate bios\n");
L
Linus Torvalds 已提交
2080

2081
	bio_integrity_init();
L
Linus Torvalds 已提交
2082 2083
	biovec_init_slabs();

2084
	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
L
Linus Torvalds 已提交
2085 2086 2087
	if (!fs_bio_set)
		panic("bio: can't allocate bios\n");

2088 2089 2090
	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
		panic("bio: can't create integrity pool\n");

L
Linus Torvalds 已提交
2091 2092 2093
	return 0;
}
subsys_initcall(init_bio);