bio.c 49.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public Licens
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 *
 */
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
22
#include <linux/uio.h>
23
#include <linux/iocontext.h>
L
Linus Torvalds 已提交
24 25 26
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29
#include <linux/mempool.h>
#include <linux/workqueue.h>
30
#include <linux/cgroup.h>
31
#include <scsi/sg.h>		/* for struct sg_iovec */
L
Linus Torvalds 已提交
32

33
#include <trace/events/block.h>
34

35 36 37 38 39 40
/*
 * Test patch to inline a certain number of bi_io_vec's inside the bio
 * itself, to shrink a bio data allocation from two mempool calls to one
 */
#define BIO_INLINE_VECS		4

L
Linus Torvalds 已提交
41 42 43 44 45 46
/*
 * if you change this list, also change bvec_alloc or things will
 * break badly! cannot be bigger than what you can fit into an
 * unsigned short
 */
#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47
static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55
	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
};
#undef BV

/*
 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
 * IO code that does not need private memory pools.
 */
56
struct bio_set *fs_bio_set;
57
EXPORT_SYMBOL(fs_bio_set);
L
Linus Torvalds 已提交
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/*
 * Our slab pool management
 */
struct bio_slab {
	struct kmem_cache *slab;
	unsigned int slab_ref;
	unsigned int slab_size;
	char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
static struct bio_slab *bio_slabs;
static unsigned int bio_slab_nr, bio_slab_max;

static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
{
	unsigned int sz = sizeof(struct bio) + extra_size;
	struct kmem_cache *slab = NULL;
76
	struct bio_slab *bslab, *new_bio_slabs;
77
	unsigned int new_bio_slab_max;
78 79 80 81 82 83
	unsigned int i, entry = -1;

	mutex_lock(&bio_slab_lock);

	i = 0;
	while (i < bio_slab_nr) {
84
		bslab = &bio_slabs[i];
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

		if (!bslab->slab && entry == -1)
			entry = i;
		else if (bslab->slab_size == sz) {
			slab = bslab->slab;
			bslab->slab_ref++;
			break;
		}
		i++;
	}

	if (slab)
		goto out_unlock;

	if (bio_slab_nr == bio_slab_max && entry == -1) {
100
		new_bio_slab_max = bio_slab_max << 1;
101
		new_bio_slabs = krealloc(bio_slabs,
102
					 new_bio_slab_max * sizeof(struct bio_slab),
103 104
					 GFP_KERNEL);
		if (!new_bio_slabs)
105
			goto out_unlock;
106
		bio_slab_max = new_bio_slab_max;
107
		bio_slabs = new_bio_slabs;
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
	}
	if (entry == -1)
		entry = bio_slab_nr++;

	bslab = &bio_slabs[entry];

	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
	slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
	if (!slab)
		goto out_unlock;

	bslab->slab = slab;
	bslab->slab_ref = 1;
	bslab->slab_size = sz;
out_unlock:
	mutex_unlock(&bio_slab_lock);
	return slab;
}

static void bio_put_slab(struct bio_set *bs)
{
	struct bio_slab *bslab = NULL;
	unsigned int i;

	mutex_lock(&bio_slab_lock);

	for (i = 0; i < bio_slab_nr; i++) {
		if (bs->bio_slab == bio_slabs[i].slab) {
			bslab = &bio_slabs[i];
			break;
		}
	}

	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
		goto out;

	WARN_ON(!bslab->slab_ref);

	if (--bslab->slab_ref)
		goto out;

	kmem_cache_destroy(bslab->slab);
	bslab->slab = NULL;

out:
	mutex_unlock(&bio_slab_lock);
}

156 157 158 159 160
unsigned int bvec_nr_vecs(unsigned short idx)
{
	return bvec_slabs[idx].nr_vecs;
}

161
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162 163 164 165
{
	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);

	if (idx == BIOVEC_MAX_IDX)
166
		mempool_free(bv, pool);
167 168 169 170 171 172 173
	else {
		struct biovec_slab *bvs = bvec_slabs + idx;

		kmem_cache_free(bvs->slab, bv);
	}
}

174 175
struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
			   mempool_t *pool)
L
Linus Torvalds 已提交
176 177 178
{
	struct bio_vec *bvl;

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	/*
	 * see comment near bvec_array define!
	 */
	switch (nr) {
	case 1:
		*idx = 0;
		break;
	case 2 ... 4:
		*idx = 1;
		break;
	case 5 ... 16:
		*idx = 2;
		break;
	case 17 ... 64:
		*idx = 3;
		break;
	case 65 ... 128:
		*idx = 4;
		break;
	case 129 ... BIO_MAX_PAGES:
		*idx = 5;
		break;
	default:
		return NULL;
	}

	/*
	 * idx now points to the pool we want to allocate from. only the
	 * 1-vec entry pool is mempool backed.
	 */
	if (*idx == BIOVEC_MAX_IDX) {
fallback:
211
		bvl = mempool_alloc(pool, gfp_mask);
212 213 214 215
	} else {
		struct biovec_slab *bvs = bvec_slabs + *idx;
		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);

J
Jens Axboe 已提交
216
		/*
217 218 219
		 * Make this allocation restricted and don't dump info on
		 * allocation failures, since we'll fallback to the mempool
		 * in case of failure.
J
Jens Axboe 已提交
220
		 */
221
		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
L
Linus Torvalds 已提交
222

J
Jens Axboe 已提交
223
		/*
224 225
		 * Try a slab allocation. If this fails and __GFP_WAIT
		 * is set, retry with the 1-entry mempool
J
Jens Axboe 已提交
226
		 */
227 228 229 230 231 232 233
		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
			*idx = BIOVEC_MAX_IDX;
			goto fallback;
		}
	}

L
Linus Torvalds 已提交
234 235 236
	return bvl;
}

K
Kent Overstreet 已提交
237
static void __bio_free(struct bio *bio)
L
Linus Torvalds 已提交
238
{
K
Kent Overstreet 已提交
239
	bio_disassociate_task(bio);
L
Linus Torvalds 已提交
240

241
	if (bio_integrity(bio))
242
		bio_integrity_free(bio);
K
Kent Overstreet 已提交
243
}
244

K
Kent Overstreet 已提交
245 246 247 248 249 250 251 252
static void bio_free(struct bio *bio)
{
	struct bio_set *bs = bio->bi_pool;
	void *p;

	__bio_free(bio);

	if (bs) {
253
		if (bio_flagged(bio, BIO_OWNS_VEC))
254
			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
K
Kent Overstreet 已提交
255 256 257 258 259

		/*
		 * If we have front padding, adjust the bio pointer before freeing
		 */
		p = bio;
260 261
		p -= bs->front_pad;

K
Kent Overstreet 已提交
262 263 264 265 266
		mempool_free(p, bs->bio_pool);
	} else {
		/* Bio was allocated by bio_kmalloc() */
		kfree(bio);
	}
P
Peter Osterlund 已提交
267 268
}

269
void bio_init(struct bio *bio)
L
Linus Torvalds 已提交
270
{
J
Jens Axboe 已提交
271
	memset(bio, 0, sizeof(*bio));
L
Linus Torvalds 已提交
272
	bio->bi_flags = 1 << BIO_UPTODATE;
K
Kent Overstreet 已提交
273
	atomic_set(&bio->bi_remaining, 1);
L
Linus Torvalds 已提交
274 275
	atomic_set(&bio->bi_cnt, 1);
}
276
EXPORT_SYMBOL(bio_init);
L
Linus Torvalds 已提交
277

K
Kent Overstreet 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291
/**
 * bio_reset - reinitialize a bio
 * @bio:	bio to reset
 *
 * Description:
 *   After calling bio_reset(), @bio will be in the same state as a freshly
 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 *   comment in struct bio.
 */
void bio_reset(struct bio *bio)
{
	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);

K
Kent Overstreet 已提交
292
	__bio_free(bio);
K
Kent Overstreet 已提交
293 294 295

	memset(bio, 0, BIO_RESET_BYTES);
	bio->bi_flags = flags|(1 << BIO_UPTODATE);
K
Kent Overstreet 已提交
296
	atomic_set(&bio->bi_remaining, 1);
K
Kent Overstreet 已提交
297 298 299
}
EXPORT_SYMBOL(bio_reset);

K
Kent Overstreet 已提交
300 301 302 303 304 305 306 307
static void bio_chain_endio(struct bio *bio, int error)
{
	bio_endio(bio->bi_private, error);
	bio_put(bio);
}

/**
 * bio_chain - chain bio completions
308 309
 * @bio: the target bio
 * @parent: the @bio's parent bio
K
Kent Overstreet 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
 *
 * The caller won't have a bi_end_io called when @bio completes - instead,
 * @parent's bi_end_io won't be called until both @parent and @bio have
 * completed; the chained bio will also be freed when it completes.
 *
 * The caller must not set bi_private or bi_end_io in @bio.
 */
void bio_chain(struct bio *bio, struct bio *parent)
{
	BUG_ON(bio->bi_private || bio->bi_end_io);

	bio->bi_private = parent;
	bio->bi_end_io	= bio_chain_endio;
	atomic_inc(&parent->bi_remaining);
}
EXPORT_SYMBOL(bio_chain);

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
static void bio_alloc_rescue(struct work_struct *work)
{
	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
	struct bio *bio;

	while (1) {
		spin_lock(&bs->rescue_lock);
		bio = bio_list_pop(&bs->rescue_list);
		spin_unlock(&bs->rescue_lock);

		if (!bio)
			break;

		generic_make_request(bio);
	}
}

static void punt_bios_to_rescuer(struct bio_set *bs)
{
	struct bio_list punt, nopunt;
	struct bio *bio;

	/*
	 * In order to guarantee forward progress we must punt only bios that
	 * were allocated from this bio_set; otherwise, if there was a bio on
	 * there for a stacking driver higher up in the stack, processing it
	 * could require allocating bios from this bio_set, and doing that from
	 * our own rescuer would be bad.
	 *
	 * Since bio lists are singly linked, pop them all instead of trying to
	 * remove from the middle of the list:
	 */

	bio_list_init(&punt);
	bio_list_init(&nopunt);

	while ((bio = bio_list_pop(current->bio_list)))
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);

	*current->bio_list = nopunt;

	spin_lock(&bs->rescue_lock);
	bio_list_merge(&bs->rescue_list, &punt);
	spin_unlock(&bs->rescue_lock);

	queue_work(bs->rescue_workqueue, &bs->rescue_work);
}

L
Linus Torvalds 已提交
375 376 377 378
/**
 * bio_alloc_bioset - allocate a bio for I/O
 * @gfp_mask:   the GFP_ mask given to the slab allocator
 * @nr_iovecs:	number of iovecs to pre-allocate
379
 * @bs:		the bio_set to allocate from.
L
Linus Torvalds 已提交
380 381
 *
 * Description:
382 383 384 385 386 387 388 389 390 391
 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 *   backed by the @bs's mempool.
 *
 *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
 *   able to allocate a bio. This is due to the mempool guarantees. To make this
 *   work, callers must never allocate more than 1 bio at a time from this pool.
 *   Callers that need to allocate more than 1 bio must always submit the
 *   previously allocated bio for IO before attempting to allocate a new one.
 *   Failure to do so can cause deadlocks under memory pressure.
 *
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
 *   Note that when running under generic_make_request() (i.e. any block
 *   driver), bios are not submitted until after you return - see the code in
 *   generic_make_request() that converts recursion into iteration, to prevent
 *   stack overflows.
 *
 *   This would normally mean allocating multiple bios under
 *   generic_make_request() would be susceptible to deadlocks, but we have
 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 *   thread.
 *
 *   However, we do not guarantee forward progress for allocations from other
 *   mempools. Doing multiple allocations from the same mempool under
 *   generic_make_request() should be avoided - instead, use bio_set's front_pad
 *   for per bio allocations.
 *
407 408 409
 *   RETURNS:
 *   Pointer to new bio on success, NULL on failure.
 */
A
Al Viro 已提交
410
struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
L
Linus Torvalds 已提交
411
{
412
	gfp_t saved_gfp = gfp_mask;
413 414
	unsigned front_pad;
	unsigned inline_vecs;
T
Tejun Heo 已提交
415
	unsigned long idx = BIO_POOL_NONE;
I
Ingo Molnar 已提交
416
	struct bio_vec *bvl = NULL;
T
Tejun Heo 已提交
417 418 419
	struct bio *bio;
	void *p;

420 421 422 423 424 425 426 427 428 429
	if (!bs) {
		if (nr_iovecs > UIO_MAXIOV)
			return NULL;

		p = kmalloc(sizeof(struct bio) +
			    nr_iovecs * sizeof(struct bio_vec),
			    gfp_mask);
		front_pad = 0;
		inline_vecs = nr_iovecs;
	} else {
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
		/*
		 * generic_make_request() converts recursion to iteration; this
		 * means if we're running beneath it, any bios we allocate and
		 * submit will not be submitted (and thus freed) until after we
		 * return.
		 *
		 * This exposes us to a potential deadlock if we allocate
		 * multiple bios from the same bio_set() while running
		 * underneath generic_make_request(). If we were to allocate
		 * multiple bios (say a stacking block driver that was splitting
		 * bios), we would deadlock if we exhausted the mempool's
		 * reserve.
		 *
		 * We solve this, and guarantee forward progress, with a rescuer
		 * workqueue per bio_set. If we go to allocate and there are
		 * bios on current->bio_list, we first try the allocation
		 * without __GFP_WAIT; if that fails, we punt those bios we
		 * would be blocking to the rescuer workqueue before we retry
		 * with the original gfp_flags.
		 */

		if (current->bio_list && !bio_list_empty(current->bio_list))
			gfp_mask &= ~__GFP_WAIT;

454
		p = mempool_alloc(bs->bio_pool, gfp_mask);
455 456 457 458 459 460
		if (!p && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
			p = mempool_alloc(bs->bio_pool, gfp_mask);
		}

461 462 463 464
		front_pad = bs->front_pad;
		inline_vecs = BIO_INLINE_VECS;
	}

T
Tejun Heo 已提交
465 466
	if (unlikely(!p))
		return NULL;
L
Linus Torvalds 已提交
467

468
	bio = p + front_pad;
I
Ingo Molnar 已提交
469 470
	bio_init(bio);

471
	if (nr_iovecs > inline_vecs) {
472
		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
473 474 475
		if (!bvl && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
476
			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
477 478
		}

I
Ingo Molnar 已提交
479 480
		if (unlikely(!bvl))
			goto err_free;
481 482

		bio->bi_flags |= 1 << BIO_OWNS_VEC;
483 484
	} else if (nr_iovecs) {
		bvl = bio->bi_inline_vecs;
L
Linus Torvalds 已提交
485
	}
486 487

	bio->bi_pool = bs;
I
Ingo Molnar 已提交
488 489 490
	bio->bi_flags |= idx << BIO_POOL_OFFSET;
	bio->bi_max_vecs = nr_iovecs;
	bio->bi_io_vec = bvl;
L
Linus Torvalds 已提交
491
	return bio;
I
Ingo Molnar 已提交
492 493

err_free:
T
Tejun Heo 已提交
494
	mempool_free(p, bs->bio_pool);
I
Ingo Molnar 已提交
495
	return NULL;
L
Linus Torvalds 已提交
496
}
497
EXPORT_SYMBOL(bio_alloc_bioset);
L
Linus Torvalds 已提交
498 499 500 501

void zero_fill_bio(struct bio *bio)
{
	unsigned long flags;
502 503
	struct bio_vec bv;
	struct bvec_iter iter;
L
Linus Torvalds 已提交
504

505 506 507 508
	bio_for_each_segment(bv, bio, iter) {
		char *data = bvec_kmap_irq(&bv, &flags);
		memset(data, 0, bv.bv_len);
		flush_dcache_page(bv.bv_page);
L
Linus Torvalds 已提交
509 510 511 512 513 514 515 516 517 518 519
		bvec_kunmap_irq(data, &flags);
	}
}
EXPORT_SYMBOL(zero_fill_bio);

/**
 * bio_put - release a reference to a bio
 * @bio:   bio to release reference to
 *
 * Description:
 *   Put a reference to a &struct bio, either one you have gotten with
520
 *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
L
Linus Torvalds 已提交
521 522 523 524 525 526 527 528
 **/
void bio_put(struct bio *bio)
{
	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));

	/*
	 * last put frees it
	 */
K
Kent Overstreet 已提交
529 530
	if (atomic_dec_and_test(&bio->bi_cnt))
		bio_free(bio);
L
Linus Torvalds 已提交
531
}
532
EXPORT_SYMBOL(bio_put);
L
Linus Torvalds 已提交
533

534
inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
L
Linus Torvalds 已提交
535 536 537 538 539 540
{
	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
		blk_recount_segments(q, bio);

	return bio->bi_phys_segments;
}
541
EXPORT_SYMBOL(bio_phys_segments);
L
Linus Torvalds 已提交
542

K
Kent Overstreet 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
/**
 * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
 * 	@bio: destination bio
 * 	@bio_src: bio to clone
 *
 *	Clone a &bio. Caller will own the returned bio, but not
 *	the actual data it points to. Reference count of returned
 * 	bio will be one.
 *
 * 	Caller must ensure that @bio_src is not freed before @bio.
 */
void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
{
	BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);

	/*
	 * most users will be overriding ->bi_bdev with a new target,
	 * so we don't set nor calculate new physical/hw segment counts here
	 */
	bio->bi_bdev = bio_src->bi_bdev;
	bio->bi_flags |= 1 << BIO_CLONED;
	bio->bi_rw = bio_src->bi_rw;
	bio->bi_iter = bio_src->bi_iter;
	bio->bi_io_vec = bio_src->bi_io_vec;
}
EXPORT_SYMBOL(__bio_clone_fast);

/**
 *	bio_clone_fast - clone a bio that shares the original bio's biovec
 *	@bio: bio to clone
 *	@gfp_mask: allocation priority
 *	@bs: bio_set to allocate from
 *
 * 	Like __bio_clone_fast, only also allocates the returned bio
 */
struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
{
	struct bio *b;

	b = bio_alloc_bioset(gfp_mask, 0, bs);
	if (!b)
		return NULL;

	__bio_clone_fast(b, bio);

	if (bio_integrity(bio)) {
		int ret;

		ret = bio_integrity_clone(b, bio, gfp_mask);

		if (ret < 0) {
			bio_put(b);
			return NULL;
		}
	}

	return b;
}
EXPORT_SYMBOL(bio_clone_fast);

L
Linus Torvalds 已提交
603
/**
604 605
 * 	bio_clone_bioset - clone a bio
 * 	@bio_src: bio to clone
L
Linus Torvalds 已提交
606
 *	@gfp_mask: allocation priority
607
 *	@bs: bio_set to allocate from
L
Linus Torvalds 已提交
608
 *
609 610
 *	Clone bio. Caller will own the returned bio, but not the actual data it
 *	points to. Reference count of returned bio will be one.
L
Linus Torvalds 已提交
611
 */
612
struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
613
			     struct bio_set *bs)
L
Linus Torvalds 已提交
614
{
615 616 617
	struct bvec_iter iter;
	struct bio_vec bv;
	struct bio *bio;
L
Linus Torvalds 已提交
618

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
	/*
	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
	 * bio_src->bi_io_vec to bio->bi_io_vec.
	 *
	 * We can't do that anymore, because:
	 *
	 *  - The point of cloning the biovec is to produce a bio with a biovec
	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
	 *
	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
	 *    But the clone should succeed as long as the number of biovecs we
	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
	 *
	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
	 *    that does not own the bio - reason being drivers don't use it for
	 *    iterating over the biovec anymore, so expecting it to be kept up
	 *    to date (i.e. for clones that share the parent biovec) is just
	 *    asking for trouble and would force extra work on
	 *    __bio_clone_fast() anyways.
	 */

641
	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
642
	if (!bio)
643 644
		return NULL;

645 646 647 648
	bio->bi_bdev		= bio_src->bi_bdev;
	bio->bi_rw		= bio_src->bi_rw;
	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
649

650 651 652 653 654 655 656 657
	if (bio->bi_rw & REQ_DISCARD)
		goto integrity_clone;

	if (bio->bi_rw & REQ_WRITE_SAME) {
		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
		goto integrity_clone;
	}

658 659
	bio_for_each_segment(bv, bio_src, iter)
		bio->bi_io_vec[bio->bi_vcnt++] = bv;
660

661
integrity_clone:
662 663
	if (bio_integrity(bio_src)) {
		int ret;
664

665
		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
L
Li Zefan 已提交
666
		if (ret < 0) {
667
			bio_put(bio);
668
			return NULL;
L
Li Zefan 已提交
669
		}
P
Peter Osterlund 已提交
670
	}
L
Linus Torvalds 已提交
671

672
	return bio;
L
Linus Torvalds 已提交
673
}
674
EXPORT_SYMBOL(bio_clone_bioset);
L
Linus Torvalds 已提交
675 676 677 678 679 680 681 682 683 684 685 686

/**
 *	bio_get_nr_vecs		- return approx number of vecs
 *	@bdev:  I/O target
 *
 *	Return the approximate number of pages we can send to this target.
 *	There's no guarantee that you will be able to fit this number of pages
 *	into a bio, it does not account for dynamic restrictions that vary
 *	on offset.
 */
int bio_get_nr_vecs(struct block_device *bdev)
{
687
	struct request_queue *q = bdev_get_queue(bdev);
688 689 690
	int nr_pages;

	nr_pages = min_t(unsigned,
691 692
		     queue_max_segments(q),
		     queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
693 694 695

	return min_t(unsigned, nr_pages, BIO_MAX_PAGES);

L
Linus Torvalds 已提交
696
}
697
EXPORT_SYMBOL(bio_get_nr_vecs);
L
Linus Torvalds 已提交
698

699
static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
700
			  *page, unsigned int len, unsigned int offset,
701
			  unsigned int max_sectors)
L
Linus Torvalds 已提交
702 703 704 705 706 707 708 709 710 711
{
	int retried_segments = 0;
	struct bio_vec *bvec;

	/*
	 * cloned bio must not modify vec list
	 */
	if (unlikely(bio_flagged(bio, BIO_CLONED)))
		return 0;

712
	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
L
Linus Torvalds 已提交
713 714
		return 0;

715 716 717 718 719 720 721 722 723 724
	/*
	 * For filesystems with a blocksize smaller than the pagesize
	 * we will often be called with the same page as last time and
	 * a consecutive offset.  Optimize this special case.
	 */
	if (bio->bi_vcnt > 0) {
		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];

		if (page == prev->bv_page &&
		    offset == prev->bv_offset + prev->bv_len) {
725
			unsigned int prev_bv_len = prev->bv_len;
726
			prev->bv_len += len;
727 728 729

			if (q->merge_bvec_fn) {
				struct bvec_merge_data bvm = {
730 731 732 733
					/* prev_bvec is already charged in
					   bi_size, discharge it in order to
					   simulate merging updated prev_bvec
					   as new bvec. */
734
					.bi_bdev = bio->bi_bdev,
735 736 737
					.bi_sector = bio->bi_iter.bi_sector,
					.bi_size = bio->bi_iter.bi_size -
						prev_bv_len,
738 739 740
					.bi_rw = bio->bi_rw,
				};

741
				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
742 743 744
					prev->bv_len -= len;
					return 0;
				}
745 746 747 748
			}

			goto done;
		}
749 750 751 752 753 754 755 756

		/*
		 * If the queue doesn't support SG gaps and adding this
		 * offset would create a gap, disallow it.
		 */
		if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) &&
		    bvec_gap_to_prev(prev, offset))
			return 0;
757 758 759
	}

	if (bio->bi_vcnt >= bio->bi_max_vecs)
L
Linus Torvalds 已提交
760 761 762 763 764 765 766
		return 0;

	/*
	 * we might lose a segment or two here, but rather that than
	 * make this too complex.
	 */

767
	while (bio->bi_phys_segments >= queue_max_segments(q)) {
L
Linus Torvalds 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790

		if (retried_segments)
			return 0;

		retried_segments = 1;
		blk_recount_segments(q, bio);
	}

	/*
	 * setup the new entry, we might clear it again later if we
	 * cannot add the page
	 */
	bvec = &bio->bi_io_vec[bio->bi_vcnt];
	bvec->bv_page = page;
	bvec->bv_len = len;
	bvec->bv_offset = offset;

	/*
	 * if queue has other restrictions (eg varying max sector size
	 * depending on offset), it can specify a merge_bvec_fn in the
	 * queue to get further control
	 */
	if (q->merge_bvec_fn) {
791 792
		struct bvec_merge_data bvm = {
			.bi_bdev = bio->bi_bdev,
793 794
			.bi_sector = bio->bi_iter.bi_sector,
			.bi_size = bio->bi_iter.bi_size,
795 796 797
			.bi_rw = bio->bi_rw,
		};

L
Linus Torvalds 已提交
798 799 800 801
		/*
		 * merge_bvec_fn() returns number of bytes it can accept
		 * at this offset
		 */
802
		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
L
Linus Torvalds 已提交
803 804 805 806 807 808 809 810
			bvec->bv_page = NULL;
			bvec->bv_len = 0;
			bvec->bv_offset = 0;
			return 0;
		}
	}

	/* If we may be able to merge these biovecs, force a recount */
811
	if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
L
Linus Torvalds 已提交
812 813 814 815
		bio->bi_flags &= ~(1 << BIO_SEG_VALID);

	bio->bi_vcnt++;
	bio->bi_phys_segments++;
816
 done:
817
	bio->bi_iter.bi_size += len;
L
Linus Torvalds 已提交
818 819 820
	return len;
}

821 822
/**
 *	bio_add_pc_page	-	attempt to add page to bio
J
Jens Axboe 已提交
823
 *	@q: the target queue
824 825 826 827 828 829
 *	@bio: destination bio
 *	@page: page to add
 *	@len: vec entry length
 *	@offset: vec entry offset
 *
 *	Attempt to add a page to the bio_vec maplist. This can fail for a
830 831 832 833 834
 *	number of reasons, such as the bio being full or target block device
 *	limitations. The target block device must allow bio's up to PAGE_SIZE,
 *	so it is always possible to add a single page to an empty bio.
 *
 *	This should only be used by REQ_PC bios.
835
 */
836
int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
837 838
		    unsigned int len, unsigned int offset)
{
839 840
	return __bio_add_page(q, bio, page, len, offset,
			      queue_max_hw_sectors(q));
841
}
842
EXPORT_SYMBOL(bio_add_pc_page);
843

L
Linus Torvalds 已提交
844 845 846 847 848 849 850 851
/**
 *	bio_add_page	-	attempt to add page to bio
 *	@bio: destination bio
 *	@page: page to add
 *	@len: vec entry length
 *	@offset: vec entry offset
 *
 *	Attempt to add a page to the bio_vec maplist. This can fail for a
852 853 854
 *	number of reasons, such as the bio being full or target block device
 *	limitations. The target block device must allow bio's up to PAGE_SIZE,
 *	so it is always possible to add a single page to an empty bio.
L
Linus Torvalds 已提交
855 856 857 858
 */
int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
		 unsigned int offset)
{
859
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
860
	unsigned int max_sectors;
861

862 863 864 865 866
	max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
	if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size)
		max_sectors = len >> 9;

	return __bio_add_page(q, bio, page, len, offset, max_sectors);
L
Linus Torvalds 已提交
867
}
868
EXPORT_SYMBOL(bio_add_page);
L
Linus Torvalds 已提交
869

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
struct submit_bio_ret {
	struct completion event;
	int error;
};

static void submit_bio_wait_endio(struct bio *bio, int error)
{
	struct submit_bio_ret *ret = bio->bi_private;

	ret->error = error;
	complete(&ret->event);
}

/**
 * submit_bio_wait - submit a bio, and wait until it completes
 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
 * @bio: The &struct bio which describes the I/O
 *
 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 * bio_endio() on failure.
 */
int submit_bio_wait(int rw, struct bio *bio)
{
	struct submit_bio_ret ret;

	rw |= REQ_SYNC;
	init_completion(&ret.event);
	bio->bi_private = &ret;
	bio->bi_end_io = submit_bio_wait_endio;
	submit_bio(rw, bio);
	wait_for_completion(&ret.event);

	return ret.error;
}
EXPORT_SYMBOL(submit_bio_wait);

K
Kent Overstreet 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
/**
 * bio_advance - increment/complete a bio by some number of bytes
 * @bio:	bio to advance
 * @bytes:	number of bytes to complete
 *
 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 * be updated on the last bvec as well.
 *
 * @bio will then represent the remaining, uncompleted portion of the io.
 */
void bio_advance(struct bio *bio, unsigned bytes)
{
	if (bio_integrity(bio))
		bio_integrity_advance(bio, bytes);

K
Kent Overstreet 已提交
922
	bio_advance_iter(bio, &bio->bi_iter, bytes);
K
Kent Overstreet 已提交
923 924 925
}
EXPORT_SYMBOL(bio_advance);

K
Kent Overstreet 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
/**
 * bio_alloc_pages - allocates a single page for each bvec in a bio
 * @bio: bio to allocate pages for
 * @gfp_mask: flags for allocation
 *
 * Allocates pages up to @bio->bi_vcnt.
 *
 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
 * freed.
 */
int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
{
	int i;
	struct bio_vec *bv;

	bio_for_each_segment_all(bv, bio, i) {
		bv->bv_page = alloc_page(gfp_mask);
		if (!bv->bv_page) {
			while (--bv >= bio->bi_io_vec)
				__free_page(bv->bv_page);
			return -ENOMEM;
		}
	}

	return 0;
}
EXPORT_SYMBOL(bio_alloc_pages);

K
Kent Overstreet 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967
/**
 * bio_copy_data - copy contents of data buffers from one chain of bios to
 * another
 * @src: source bio list
 * @dst: destination bio list
 *
 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
 * @src and @dst as linked lists of bios.
 *
 * Stops when it reaches the end of either @src or @dst - that is, copies
 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 */
void bio_copy_data(struct bio *dst, struct bio *src)
{
968 969
	struct bvec_iter src_iter, dst_iter;
	struct bio_vec src_bv, dst_bv;
K
Kent Overstreet 已提交
970
	void *src_p, *dst_p;
971
	unsigned bytes;
K
Kent Overstreet 已提交
972

973 974
	src_iter = src->bi_iter;
	dst_iter = dst->bi_iter;
K
Kent Overstreet 已提交
975 976

	while (1) {
977 978 979 980
		if (!src_iter.bi_size) {
			src = src->bi_next;
			if (!src)
				break;
K
Kent Overstreet 已提交
981

982
			src_iter = src->bi_iter;
K
Kent Overstreet 已提交
983 984
		}

985 986 987 988
		if (!dst_iter.bi_size) {
			dst = dst->bi_next;
			if (!dst)
				break;
K
Kent Overstreet 已提交
989

990
			dst_iter = dst->bi_iter;
K
Kent Overstreet 已提交
991 992
		}

993 994 995 996
		src_bv = bio_iter_iovec(src, src_iter);
		dst_bv = bio_iter_iovec(dst, dst_iter);

		bytes = min(src_bv.bv_len, dst_bv.bv_len);
K
Kent Overstreet 已提交
997

998 999
		src_p = kmap_atomic(src_bv.bv_page);
		dst_p = kmap_atomic(dst_bv.bv_page);
K
Kent Overstreet 已提交
1000

1001 1002
		memcpy(dst_p + dst_bv.bv_offset,
		       src_p + src_bv.bv_offset,
K
Kent Overstreet 已提交
1003 1004 1005 1006 1007
		       bytes);

		kunmap_atomic(dst_p);
		kunmap_atomic(src_p);

1008 1009
		bio_advance_iter(src, &src_iter, bytes);
		bio_advance_iter(dst, &dst_iter, bytes);
K
Kent Overstreet 已提交
1010 1011 1012 1013
	}
}
EXPORT_SYMBOL(bio_copy_data);

L
Linus Torvalds 已提交
1014
struct bio_map_data {
1015 1016
	int nr_sgvecs;
	int is_our_pages;
1017
	struct sg_iovec sgvecs[];
L
Linus Torvalds 已提交
1018 1019
};

1020
static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
1021
			     const struct sg_iovec *iov, int iov_count,
1022
			     int is_our_pages)
L
Linus Torvalds 已提交
1023
{
1024 1025
	memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
	bmd->nr_sgvecs = iov_count;
1026
	bmd->is_our_pages = is_our_pages;
L
Linus Torvalds 已提交
1027 1028 1029
	bio->bi_private = bmd;
}

1030
static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1031
					       gfp_t gfp_mask)
L
Linus Torvalds 已提交
1032
{
1033 1034
	if (iov_count > UIO_MAXIOV)
		return NULL;
L
Linus Torvalds 已提交
1035

1036 1037
	return kmalloc(sizeof(struct bio_map_data) +
		       sizeof(struct sg_iovec) * iov_count, gfp_mask);
L
Linus Torvalds 已提交
1038 1039
}

1040
static int __bio_copy_iov(struct bio *bio, const struct sg_iovec *iov, int iov_count,
1041
			  int to_user, int from_user, int do_free_page)
1042 1043 1044 1045 1046 1047
{
	int ret = 0, i;
	struct bio_vec *bvec;
	int iov_idx = 0;
	unsigned int iov_off = 0;

1048
	bio_for_each_segment_all(bvec, bio, i) {
1049
		char *bv_addr = page_address(bvec->bv_page);
1050
		unsigned int bv_len = bvec->bv_len;
1051 1052 1053

		while (bv_len && iov_idx < iov_count) {
			unsigned int bytes;
1054
			char __user *iov_addr;
1055 1056 1057 1058 1059 1060

			bytes = min_t(unsigned int,
				      iov[iov_idx].iov_len - iov_off, bv_len);
			iov_addr = iov[iov_idx].iov_base + iov_off;

			if (!ret) {
1061
				if (to_user)
1062 1063 1064
					ret = copy_to_user(iov_addr, bv_addr,
							   bytes);

1065 1066 1067 1068
				if (from_user)
					ret = copy_from_user(bv_addr, iov_addr,
							     bytes);

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
				if (ret)
					ret = -EFAULT;
			}

			bv_len -= bytes;
			bv_addr += bytes;
			iov_addr += bytes;
			iov_off += bytes;

			if (iov[iov_idx].iov_len == iov_off) {
				iov_idx++;
				iov_off = 0;
			}
		}

1084
		if (do_free_page)
1085 1086 1087 1088 1089 1090
			__free_page(bvec->bv_page);
	}

	return ret;
}

L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/**
 *	bio_uncopy_user	-	finish previously mapped bio
 *	@bio: bio being terminated
 *
 *	Free pages allocated from bio_copy_user() and write back data
 *	to user space in case of a read.
 */
int bio_uncopy_user(struct bio *bio)
{
	struct bio_map_data *bmd = bio->bi_private;
1101 1102
	struct bio_vec *bvec;
	int ret = 0, i;
L
Linus Torvalds 已提交
1103

1104 1105 1106 1107 1108 1109
	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
		/*
		 * if we're in a workqueue, the request is orphaned, so
		 * don't copy into a random user address space, just free.
		 */
		if (current->mm)
1110 1111
			ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs,
					     bio_data_dir(bio) == READ,
1112 1113 1114 1115 1116
					     0, bmd->is_our_pages);
		else if (bmd->is_our_pages)
			bio_for_each_segment_all(bvec, bio, i)
				__free_page(bvec->bv_page);
	}
1117
	kfree(bmd);
L
Linus Torvalds 已提交
1118 1119 1120
	bio_put(bio);
	return ret;
}
1121
EXPORT_SYMBOL(bio_uncopy_user);
L
Linus Torvalds 已提交
1122 1123

/**
1124
 *	bio_copy_user_iov	-	copy user data to bio
L
Linus Torvalds 已提交
1125
 *	@q: destination block queue
1126
 *	@map_data: pointer to the rq_map_data holding pages (if necessary)
1127 1128
 *	@iov:	the iovec.
 *	@iov_count: number of elements in the iovec
L
Linus Torvalds 已提交
1129
 *	@write_to_vm: bool indicating writing to pages or not
1130
 *	@gfp_mask: memory allocation flags
L
Linus Torvalds 已提交
1131 1132 1133 1134 1135
 *
 *	Prepares and returns a bio for indirect user io, bouncing data
 *	to/from kernel pages as necessary. Must be paired with
 *	call bio_uncopy_user() on io completion.
 */
1136 1137
struct bio *bio_copy_user_iov(struct request_queue *q,
			      struct rq_map_data *map_data,
1138
			      const struct sg_iovec *iov, int iov_count,
1139
			      int write_to_vm, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1140 1141 1142 1143 1144 1145
{
	struct bio_map_data *bmd;
	struct bio_vec *bvec;
	struct page *page;
	struct bio *bio;
	int i, ret;
1146 1147
	int nr_pages = 0;
	unsigned int len = 0;
1148
	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
L
Linus Torvalds 已提交
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158
	for (i = 0; i < iov_count; i++) {
		unsigned long uaddr;
		unsigned long end;
		unsigned long start;

		uaddr = (unsigned long)iov[i].iov_base;
		end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
		start = uaddr >> PAGE_SHIFT;

1159 1160 1161 1162 1163 1164
		/*
		 * Overflow, abort
		 */
		if (end < start)
			return ERR_PTR(-EINVAL);

1165 1166 1167 1168
		nr_pages += end - start;
		len += iov[i].iov_len;
	}

1169 1170 1171
	if (offset)
		nr_pages++;

1172
	bmd = bio_alloc_map_data(iov_count, gfp_mask);
L
Linus Torvalds 已提交
1173 1174 1175 1176
	if (!bmd)
		return ERR_PTR(-ENOMEM);

	ret = -ENOMEM;
1177
	bio = bio_kmalloc(gfp_mask, nr_pages);
L
Linus Torvalds 已提交
1178 1179 1180
	if (!bio)
		goto out_bmd;

1181 1182
	if (!write_to_vm)
		bio->bi_rw |= REQ_WRITE;
L
Linus Torvalds 已提交
1183 1184

	ret = 0;
1185 1186

	if (map_data) {
1187
		nr_pages = 1 << map_data->page_order;
1188 1189
		i = map_data->offset / PAGE_SIZE;
	}
L
Linus Torvalds 已提交
1190
	while (len) {
1191
		unsigned int bytes = PAGE_SIZE;
L
Linus Torvalds 已提交
1192

1193 1194
		bytes -= offset;

L
Linus Torvalds 已提交
1195 1196 1197
		if (bytes > len)
			bytes = len;

1198
		if (map_data) {
1199
			if (i == map_data->nr_entries * nr_pages) {
1200 1201 1202
				ret = -ENOMEM;
				break;
			}
1203 1204 1205 1206 1207 1208

			page = map_data->pages[i / nr_pages];
			page += (i % nr_pages);

			i++;
		} else {
1209
			page = alloc_page(q->bounce_gfp | gfp_mask);
1210 1211 1212 1213
			if (!page) {
				ret = -ENOMEM;
				break;
			}
L
Linus Torvalds 已提交
1214 1215
		}

1216
		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
L
Linus Torvalds 已提交
1217 1218 1219
			break;

		len -= bytes;
1220
		offset = 0;
L
Linus Torvalds 已提交
1221 1222 1223 1224 1225 1226 1227 1228
	}

	if (ret)
		goto cleanup;

	/*
	 * success
	 */
1229 1230
	if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
	    (map_data && map_data->from_user)) {
1231
		ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0);
1232 1233
		if (ret)
			goto cleanup;
L
Linus Torvalds 已提交
1234 1235
	}

1236
	bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
L
Linus Torvalds 已提交
1237 1238
	return bio;
cleanup:
1239
	if (!map_data)
1240
		bio_for_each_segment_all(bvec, bio, i)
1241
			__free_page(bvec->bv_page);
L
Linus Torvalds 已提交
1242 1243 1244

	bio_put(bio);
out_bmd:
1245
	kfree(bmd);
L
Linus Torvalds 已提交
1246 1247 1248
	return ERR_PTR(ret);
}

1249 1250 1251
/**
 *	bio_copy_user	-	copy user data to bio
 *	@q: destination block queue
1252
 *	@map_data: pointer to the rq_map_data holding pages (if necessary)
1253 1254 1255
 *	@uaddr: start of user address
 *	@len: length in bytes
 *	@write_to_vm: bool indicating writing to pages or not
1256
 *	@gfp_mask: memory allocation flags
1257 1258 1259 1260 1261
 *
 *	Prepares and returns a bio for indirect user io, bouncing data
 *	to/from kernel pages as necessary. Must be paired with
 *	call bio_uncopy_user() on io completion.
 */
1262 1263 1264
struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
			  unsigned long uaddr, unsigned int len,
			  int write_to_vm, gfp_t gfp_mask)
1265 1266 1267 1268 1269 1270
{
	struct sg_iovec iov;

	iov.iov_base = (void __user *)uaddr;
	iov.iov_len = len;

1271
	return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1272
}
1273
EXPORT_SYMBOL(bio_copy_user);
1274

1275
static struct bio *__bio_map_user_iov(struct request_queue *q,
1276
				      struct block_device *bdev,
1277
				      const struct sg_iovec *iov, int iov_count,
1278
				      int write_to_vm, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1279
{
1280 1281
	int i, j;
	int nr_pages = 0;
L
Linus Torvalds 已提交
1282 1283
	struct page **pages;
	struct bio *bio;
1284 1285
	int cur_page = 0;
	int ret, offset;
L
Linus Torvalds 已提交
1286

1287 1288 1289 1290 1291 1292
	for (i = 0; i < iov_count; i++) {
		unsigned long uaddr = (unsigned long)iov[i].iov_base;
		unsigned long len = iov[i].iov_len;
		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
		unsigned long start = uaddr >> PAGE_SHIFT;

1293 1294 1295 1296 1297 1298
		/*
		 * Overflow, abort
		 */
		if (end < start)
			return ERR_PTR(-EINVAL);

1299 1300
		nr_pages += end - start;
		/*
1301
		 * buffer must be aligned to at least hardsector size for now
1302
		 */
1303
		if (uaddr & queue_dma_alignment(q))
1304 1305 1306 1307
			return ERR_PTR(-EINVAL);
	}

	if (!nr_pages)
L
Linus Torvalds 已提交
1308 1309
		return ERR_PTR(-EINVAL);

1310
	bio = bio_kmalloc(gfp_mask, nr_pages);
L
Linus Torvalds 已提交
1311 1312 1313 1314
	if (!bio)
		return ERR_PTR(-ENOMEM);

	ret = -ENOMEM;
1315
	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
L
Linus Torvalds 已提交
1316 1317 1318
	if (!pages)
		goto out;

1319 1320 1321 1322 1323 1324 1325
	for (i = 0; i < iov_count; i++) {
		unsigned long uaddr = (unsigned long)iov[i].iov_base;
		unsigned long len = iov[i].iov_len;
		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
		unsigned long start = uaddr >> PAGE_SHIFT;
		const int local_nr_pages = end - start;
		const int page_limit = cur_page + local_nr_pages;
1326

N
Nick Piggin 已提交
1327 1328
		ret = get_user_pages_fast(uaddr, local_nr_pages,
				write_to_vm, &pages[cur_page]);
1329 1330
		if (ret < local_nr_pages) {
			ret = -EFAULT;
1331
			goto out_unmap;
1332
		}
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346

		offset = uaddr & ~PAGE_MASK;
		for (j = cur_page; j < page_limit; j++) {
			unsigned int bytes = PAGE_SIZE - offset;

			if (len <= 0)
				break;
			
			if (bytes > len)
				bytes = len;

			/*
			 * sorry...
			 */
1347 1348
			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
					    bytes)
1349 1350 1351 1352 1353
				break;

			len -= bytes;
			offset = 0;
		}
L
Linus Torvalds 已提交
1354

1355
		cur_page = j;
L
Linus Torvalds 已提交
1356
		/*
1357
		 * release the pages we didn't map into the bio, if any
L
Linus Torvalds 已提交
1358
		 */
1359 1360
		while (j < page_limit)
			page_cache_release(pages[j++]);
L
Linus Torvalds 已提交
1361 1362 1363 1364 1365 1366 1367 1368
	}

	kfree(pages);

	/*
	 * set data direction, and check if mapped pages need bouncing
	 */
	if (!write_to_vm)
1369
		bio->bi_rw |= REQ_WRITE;
L
Linus Torvalds 已提交
1370

1371
	bio->bi_bdev = bdev;
L
Linus Torvalds 已提交
1372 1373
	bio->bi_flags |= (1 << BIO_USER_MAPPED);
	return bio;
1374 1375 1376 1377 1378 1379 1380 1381

 out_unmap:
	for (i = 0; i < nr_pages; i++) {
		if(!pages[i])
			break;
		page_cache_release(pages[i]);
	}
 out:
L
Linus Torvalds 已提交
1382 1383 1384 1385 1386 1387 1388
	kfree(pages);
	bio_put(bio);
	return ERR_PTR(ret);
}

/**
 *	bio_map_user	-	map user address into bio
1389
 *	@q: the struct request_queue for the bio
L
Linus Torvalds 已提交
1390 1391 1392 1393
 *	@bdev: destination block device
 *	@uaddr: start of user address
 *	@len: length in bytes
 *	@write_to_vm: bool indicating writing to pages or not
1394
 *	@gfp_mask: memory allocation flags
L
Linus Torvalds 已提交
1395 1396 1397 1398
 *
 *	Map the user space address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
1399
struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1400 1401
			 unsigned long uaddr, unsigned int len, int write_to_vm,
			 gfp_t gfp_mask)
1402 1403 1404
{
	struct sg_iovec iov;

1405
	iov.iov_base = (void __user *)uaddr;
1406 1407
	iov.iov_len = len;

1408
	return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1409
}
1410
EXPORT_SYMBOL(bio_map_user);
1411 1412 1413

/**
 *	bio_map_user_iov - map user sg_iovec table into bio
1414
 *	@q: the struct request_queue for the bio
1415 1416 1417 1418
 *	@bdev: destination block device
 *	@iov:	the iovec.
 *	@iov_count: number of elements in the iovec
 *	@write_to_vm: bool indicating writing to pages or not
1419
 *	@gfp_mask: memory allocation flags
1420 1421 1422 1423
 *
 *	Map the user space address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
1424
struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1425
			     const struct sg_iovec *iov, int iov_count,
1426
			     int write_to_vm, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1427 1428 1429
{
	struct bio *bio;

1430 1431
	bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
				 gfp_mask);
L
Linus Torvalds 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	if (IS_ERR(bio))
		return bio;

	/*
	 * subtle -- if __bio_map_user() ended up bouncing a bio,
	 * it would normally disappear when its bi_end_io is run.
	 * however, we need it for the unmap, so grab an extra
	 * reference to it
	 */
	bio_get(bio);

1443
	return bio;
L
Linus Torvalds 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
}

static void __bio_unmap_user(struct bio *bio)
{
	struct bio_vec *bvec;
	int i;

	/*
	 * make sure we dirty pages we wrote to
	 */
1454
	bio_for_each_segment_all(bvec, bio, i) {
L
Linus Torvalds 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
		if (bio_data_dir(bio) == READ)
			set_page_dirty_lock(bvec->bv_page);

		page_cache_release(bvec->bv_page);
	}

	bio_put(bio);
}

/**
 *	bio_unmap_user	-	unmap a bio
 *	@bio:		the bio being unmapped
 *
 *	Unmap a bio previously mapped by bio_map_user(). Must be called with
 *	a process context.
 *
 *	bio_unmap_user() may sleep.
 */
void bio_unmap_user(struct bio *bio)
{
	__bio_unmap_user(bio);
	bio_put(bio);
}
1478
EXPORT_SYMBOL(bio_unmap_user);
L
Linus Torvalds 已提交
1479

1480
static void bio_map_kern_endio(struct bio *bio, int err)
1481 1482 1483 1484
{
	bio_put(bio);
}

1485
static struct bio *__bio_map_kern(struct request_queue *q, void *data,
A
Al Viro 已提交
1486
				  unsigned int len, gfp_t gfp_mask)
M
Mike Christie 已提交
1487 1488 1489 1490 1491 1492 1493 1494
{
	unsigned long kaddr = (unsigned long)data;
	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	unsigned long start = kaddr >> PAGE_SHIFT;
	const int nr_pages = end - start;
	int offset, i;
	struct bio *bio;

1495
	bio = bio_kmalloc(gfp_mask, nr_pages);
M
Mike Christie 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	if (!bio)
		return ERR_PTR(-ENOMEM);

	offset = offset_in_page(kaddr);
	for (i = 0; i < nr_pages; i++) {
		unsigned int bytes = PAGE_SIZE - offset;

		if (len <= 0)
			break;

		if (bytes > len)
			bytes = len;

1509 1510
		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
				    offset) < bytes)
M
Mike Christie 已提交
1511 1512 1513 1514 1515 1516 1517
			break;

		data += bytes;
		len -= bytes;
		offset = 0;
	}

1518
	bio->bi_end_io = bio_map_kern_endio;
M
Mike Christie 已提交
1519 1520 1521 1522 1523
	return bio;
}

/**
 *	bio_map_kern	-	map kernel address into bio
1524
 *	@q: the struct request_queue for the bio
M
Mike Christie 已提交
1525 1526 1527 1528 1529 1530 1531
 *	@data: pointer to buffer to map
 *	@len: length in bytes
 *	@gfp_mask: allocation flags for bio allocation
 *
 *	Map the kernel address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
1532
struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
A
Al Viro 已提交
1533
			 gfp_t gfp_mask)
M
Mike Christie 已提交
1534 1535 1536 1537 1538 1539 1540
{
	struct bio *bio;

	bio = __bio_map_kern(q, data, len, gfp_mask);
	if (IS_ERR(bio))
		return bio;

1541
	if (bio->bi_iter.bi_size == len)
M
Mike Christie 已提交
1542 1543 1544 1545 1546 1547 1548 1549
		return bio;

	/*
	 * Don't support partial mappings.
	 */
	bio_put(bio);
	return ERR_PTR(-EINVAL);
}
1550
EXPORT_SYMBOL(bio_map_kern);
M
Mike Christie 已提交
1551

1552 1553 1554 1555
static void bio_copy_kern_endio(struct bio *bio, int err)
{
	struct bio_vec *bvec;
	const int read = bio_data_dir(bio) == READ;
1556
	struct bio_map_data *bmd = bio->bi_private;
1557
	int i;
1558
	char *p = bmd->sgvecs[0].iov_base;
1559

1560
	bio_for_each_segment_all(bvec, bio, i) {
1561 1562
		char *addr = page_address(bvec->bv_page);

1563
		if (read)
1564
			memcpy(p, addr, bvec->bv_len);
1565 1566

		__free_page(bvec->bv_page);
1567
		p += bvec->bv_len;
1568 1569
	}

1570
	kfree(bmd);
1571 1572 1573 1574 1575 1576 1577 1578 1579
	bio_put(bio);
}

/**
 *	bio_copy_kern	-	copy kernel address into bio
 *	@q: the struct request_queue for the bio
 *	@data: pointer to buffer to copy
 *	@len: length in bytes
 *	@gfp_mask: allocation flags for bio and page allocation
1580
 *	@reading: data direction is READ
1581 1582 1583 1584 1585 1586 1587 1588 1589
 *
 *	copy the kernel address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
			  gfp_t gfp_mask, int reading)
{
	struct bio *bio;
	struct bio_vec *bvec;
1590
	int i;
1591

1592 1593 1594
	bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
	if (IS_ERR(bio))
		return bio;
1595 1596 1597 1598

	if (!reading) {
		void *p = data;

1599
		bio_for_each_segment_all(bvec, bio, i) {
1600 1601 1602 1603 1604 1605 1606 1607
			char *addr = page_address(bvec->bv_page);

			memcpy(addr, p, bvec->bv_len);
			p += bvec->bv_len;
		}
	}

	bio->bi_end_io = bio_copy_kern_endio;
1608

1609 1610
	return bio;
}
1611
EXPORT_SYMBOL(bio_copy_kern);
1612

L
Linus Torvalds 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
/*
 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 * for performing direct-IO in BIOs.
 *
 * The problem is that we cannot run set_page_dirty() from interrupt context
 * because the required locks are not interrupt-safe.  So what we can do is to
 * mark the pages dirty _before_ performing IO.  And in interrupt context,
 * check that the pages are still dirty.   If so, fine.  If not, redirty them
 * in process context.
 *
 * We special-case compound pages here: normally this means reads into hugetlb
 * pages.  The logic in here doesn't really work right for compound pages
 * because the VM does not uniformly chase down the head page in all cases.
 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 * handle them at all.  So we skip compound pages here at an early stage.
 *
 * Note that this code is very hard to test under normal circumstances because
 * direct-io pins the pages with get_user_pages().  This makes
 * is_page_cache_freeable return false, and the VM will not clean the pages.
1632
 * But other code (eg, flusher threads) could clean the pages if they are mapped
L
Linus Torvalds 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
 * pagecache.
 *
 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 * deferred bio dirtying paths.
 */

/*
 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 */
void bio_set_pages_dirty(struct bio *bio)
{
1644
	struct bio_vec *bvec;
L
Linus Torvalds 已提交
1645 1646
	int i;

1647 1648
	bio_for_each_segment_all(bvec, bio, i) {
		struct page *page = bvec->bv_page;
L
Linus Torvalds 已提交
1649 1650 1651 1652 1653 1654

		if (page && !PageCompound(page))
			set_page_dirty_lock(page);
	}
}

1655
static void bio_release_pages(struct bio *bio)
L
Linus Torvalds 已提交
1656
{
1657
	struct bio_vec *bvec;
L
Linus Torvalds 已提交
1658 1659
	int i;

1660 1661
	bio_for_each_segment_all(bvec, bio, i) {
		struct page *page = bvec->bv_page;
L
Linus Torvalds 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678

		if (page)
			put_page(page);
	}
}

/*
 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 * If they are, then fine.  If, however, some pages are clean then they must
 * have been written out during the direct-IO read.  So we take another ref on
 * the BIO and the offending pages and re-dirty the pages in process context.
 *
 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
 * here on.  It will run one page_cache_release() against each page and will
 * run one bio_put() against the BIO.
 */

1679
static void bio_dirty_fn(struct work_struct *work);
L
Linus Torvalds 已提交
1680

1681
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
L
Linus Torvalds 已提交
1682 1683 1684 1685 1686 1687
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;

/*
 * This runs in process context
 */
1688
static void bio_dirty_fn(struct work_struct *work)
L
Linus Torvalds 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
{
	unsigned long flags;
	struct bio *bio;

	spin_lock_irqsave(&bio_dirty_lock, flags);
	bio = bio_dirty_list;
	bio_dirty_list = NULL;
	spin_unlock_irqrestore(&bio_dirty_lock, flags);

	while (bio) {
		struct bio *next = bio->bi_private;

		bio_set_pages_dirty(bio);
		bio_release_pages(bio);
		bio_put(bio);
		bio = next;
	}
}

void bio_check_pages_dirty(struct bio *bio)
{
1710
	struct bio_vec *bvec;
L
Linus Torvalds 已提交
1711 1712 1713
	int nr_clean_pages = 0;
	int i;

1714 1715
	bio_for_each_segment_all(bvec, bio, i) {
		struct page *page = bvec->bv_page;
L
Linus Torvalds 已提交
1716 1717 1718

		if (PageDirty(page) || PageCompound(page)) {
			page_cache_release(page);
1719
			bvec->bv_page = NULL;
L
Linus Torvalds 已提交
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
		} else {
			nr_clean_pages++;
		}
	}

	if (nr_clean_pages) {
		unsigned long flags;

		spin_lock_irqsave(&bio_dirty_lock, flags);
		bio->bi_private = bio_dirty_list;
		bio_dirty_list = bio;
		spin_unlock_irqrestore(&bio_dirty_lock, flags);
		schedule_work(&bio_dirty_work);
	} else {
		bio_put(bio);
	}
}

1738 1739 1740
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
void bio_flush_dcache_pages(struct bio *bi)
{
1741 1742
	struct bio_vec bvec;
	struct bvec_iter iter;
1743

1744 1745
	bio_for_each_segment(bvec, bi, iter)
		flush_dcache_page(bvec.bv_page);
1746 1747 1748 1749
}
EXPORT_SYMBOL(bio_flush_dcache_pages);
#endif

L
Linus Torvalds 已提交
1750 1751 1752 1753 1754 1755
/**
 * bio_endio - end I/O on a bio
 * @bio:	bio
 * @error:	error, if any
 *
 * Description:
1756
 *   bio_endio() will end I/O on the whole bio. bio_endio() is the
N
NeilBrown 已提交
1757 1758 1759
 *   preferred way to end I/O on a bio, it takes care of clearing
 *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
 *   established -Exxxx (-EIO, for instance) error values in case
L
Lucas De Marchi 已提交
1760
 *   something went wrong. No one should call bi_end_io() directly on a
N
NeilBrown 已提交
1761 1762
 *   bio unless they own it and thus know that it has an end_io
 *   function.
L
Linus Torvalds 已提交
1763
 **/
1764
void bio_endio(struct bio *bio, int error)
L
Linus Torvalds 已提交
1765
{
K
Kent Overstreet 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	while (bio) {
		BUG_ON(atomic_read(&bio->bi_remaining) <= 0);

		if (error)
			clear_bit(BIO_UPTODATE, &bio->bi_flags);
		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
			error = -EIO;

		if (!atomic_dec_and_test(&bio->bi_remaining))
			return;
L
Linus Torvalds 已提交
1776

K
Kent Overstreet 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
		/*
		 * Need to have a real endio function for chained bios,
		 * otherwise various corner cases will break (like stacking
		 * block devices that save/restore bi_end_io) - however, we want
		 * to avoid unbounded recursion and blowing the stack. Tail call
		 * optimization would handle this, but compiling with frame
		 * pointers also disables gcc's sibling call optimization.
		 */
		if (bio->bi_end_io == bio_chain_endio) {
			struct bio *parent = bio->bi_private;
			bio_put(bio);
			bio = parent;
		} else {
			if (bio->bi_end_io)
				bio->bi_end_io(bio, error);
			bio = NULL;
		}
	}
L
Linus Torvalds 已提交
1795
}
1796
EXPORT_SYMBOL(bio_endio);
L
Linus Torvalds 已提交
1797

K
Kent Overstreet 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
/**
 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
 * @bio:	bio
 * @error:	error, if any
 *
 * For code that has saved and restored bi_end_io; thing hard before using this
 * function, probably you should've cloned the entire bio.
 **/
void bio_endio_nodec(struct bio *bio, int error)
{
	atomic_inc(&bio->bi_remaining);
	bio_endio(bio, error);
}
EXPORT_SYMBOL(bio_endio_nodec);

K
Kent Overstreet 已提交
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
/**
 * bio_split - split a bio
 * @bio:	bio to split
 * @sectors:	number of sectors to split from the front of @bio
 * @gfp:	gfp mask
 * @bs:		bio set to allocate from
 *
 * Allocates and returns a new bio which represents @sectors from the start of
 * @bio, and updates @bio to represent the remaining sectors.
 *
 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
 * responsibility to ensure that @bio is not freed before the split.
 */
struct bio *bio_split(struct bio *bio, int sectors,
		      gfp_t gfp, struct bio_set *bs)
{
	struct bio *split = NULL;

	BUG_ON(sectors <= 0);
	BUG_ON(sectors >= bio_sectors(bio));

	split = bio_clone_fast(bio, gfp, bs);
	if (!split)
		return NULL;

	split->bi_iter.bi_size = sectors << 9;

	if (bio_integrity(split))
		bio_integrity_trim(split, 0, sectors);

	bio_advance(bio, split->bi_iter.bi_size);

	return split;
}
EXPORT_SYMBOL(bio_split);

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
/**
 * bio_trim - trim a bio
 * @bio:	bio to trim
 * @offset:	number of sectors to trim from the front of @bio
 * @size:	size we want to trim @bio to, in sectors
 */
void bio_trim(struct bio *bio, int offset, int size)
{
	/* 'bio' is a cloned bio which we need to trim to match
	 * the given offset and size.
	 */

	size <<= 9;
1862
	if (offset == 0 && size == bio->bi_iter.bi_size)
1863 1864 1865 1866 1867 1868
		return;

	clear_bit(BIO_SEG_VALID, &bio->bi_flags);

	bio_advance(bio, offset << 9);

1869
	bio->bi_iter.bi_size = size;
1870 1871 1872
}
EXPORT_SYMBOL_GPL(bio_trim);

L
Linus Torvalds 已提交
1873 1874 1875 1876
/*
 * create memory pools for biovec's in a bio_set.
 * use the global biovec slabs created for general use.
 */
1877
mempool_t *biovec_create_pool(int pool_entries)
L
Linus Torvalds 已提交
1878
{
1879
	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
L
Linus Torvalds 已提交
1880

1881
	return mempool_create_slab_pool(pool_entries, bp->slab);
L
Linus Torvalds 已提交
1882 1883 1884 1885
}

void bioset_free(struct bio_set *bs)
{
1886 1887 1888
	if (bs->rescue_workqueue)
		destroy_workqueue(bs->rescue_workqueue);

L
Linus Torvalds 已提交
1889 1890 1891
	if (bs->bio_pool)
		mempool_destroy(bs->bio_pool);

1892 1893 1894
	if (bs->bvec_pool)
		mempool_destroy(bs->bvec_pool);

1895
	bioset_integrity_free(bs);
1896
	bio_put_slab(bs);
L
Linus Torvalds 已提交
1897 1898 1899

	kfree(bs);
}
1900
EXPORT_SYMBOL(bioset_free);
L
Linus Torvalds 已提交
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
/**
 * bioset_create  - Create a bio_set
 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 *
 * Description:
 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 *    to ask for a number of bytes to be allocated in front of the bio.
 *    Front pad allocation is useful for embedding the bio inside
 *    another structure, to avoid allocating extra data to go with the bio.
 *    Note that the bio must be embedded at the END of that structure always,
 *    or things will break badly.
 */
struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
L
Linus Torvalds 已提交
1916
{
1917
	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1918
	struct bio_set *bs;
L
Linus Torvalds 已提交
1919

1920
	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
L
Linus Torvalds 已提交
1921 1922 1923
	if (!bs)
		return NULL;

1924
	bs->front_pad = front_pad;
1925

1926 1927 1928 1929
	spin_lock_init(&bs->rescue_lock);
	bio_list_init(&bs->rescue_list);
	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);

1930
	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1931 1932 1933 1934 1935 1936
	if (!bs->bio_slab) {
		kfree(bs);
		return NULL;
	}

	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
L
Linus Torvalds 已提交
1937 1938 1939
	if (!bs->bio_pool)
		goto bad;

1940
	bs->bvec_pool = biovec_create_pool(pool_size);
1941
	if (!bs->bvec_pool)
1942 1943 1944 1945 1946
		goto bad;

	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
	if (!bs->rescue_workqueue)
		goto bad;
L
Linus Torvalds 已提交
1947

1948
	return bs;
L
Linus Torvalds 已提交
1949 1950 1951 1952
bad:
	bioset_free(bs);
	return NULL;
}
1953
EXPORT_SYMBOL(bioset_create);
L
Linus Torvalds 已提交
1954

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
#ifdef CONFIG_BLK_CGROUP
/**
 * bio_associate_current - associate a bio with %current
 * @bio: target bio
 *
 * Associate @bio with %current if it hasn't been associated yet.  Block
 * layer will treat @bio as if it were issued by %current no matter which
 * task actually issues it.
 *
 * This function takes an extra reference of @task's io_context and blkcg
 * which will be put when @bio is released.  The caller must own @bio,
 * ensure %current->io_context exists, and is responsible for synchronizing
 * calls to this function.
 */
int bio_associate_current(struct bio *bio)
{
	struct io_context *ioc;
	struct cgroup_subsys_state *css;

	if (bio->bi_ioc)
		return -EBUSY;

	ioc = current->io_context;
	if (!ioc)
		return -ENOENT;

	/* acquire active ref on @ioc and associate */
	get_io_context_active(ioc);
	bio->bi_ioc = ioc;

	/* associate blkcg if exists */
	rcu_read_lock();
1987
	css = task_css(current, blkio_cgrp_id);
1988
	if (css && css_tryget_online(css))
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
		bio->bi_css = css;
	rcu_read_unlock();

	return 0;
}

/**
 * bio_disassociate_task - undo bio_associate_current()
 * @bio: target bio
 */
void bio_disassociate_task(struct bio *bio)
{
	if (bio->bi_ioc) {
		put_io_context(bio->bi_ioc);
		bio->bi_ioc = NULL;
	}
	if (bio->bi_css) {
		css_put(bio->bi_css);
		bio->bi_css = NULL;
	}
}

#endif /* CONFIG_BLK_CGROUP */

L
Linus Torvalds 已提交
2013 2014 2015 2016 2017 2018 2019 2020
static void __init biovec_init_slabs(void)
{
	int i;

	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
		int size;
		struct biovec_slab *bvs = bvec_slabs + i;

2021 2022 2023 2024 2025
		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
			bvs->slab = NULL;
			continue;
		}

L
Linus Torvalds 已提交
2026 2027
		size = bvs->nr_vecs * sizeof(struct bio_vec);
		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2028
                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
L
Linus Torvalds 已提交
2029 2030 2031 2032 2033
	}
}

static int __init init_bio(void)
{
2034 2035 2036 2037 2038
	bio_slab_max = 2;
	bio_slab_nr = 0;
	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
	if (!bio_slabs)
		panic("bio: can't allocate bios\n");
L
Linus Torvalds 已提交
2039

2040
	bio_integrity_init();
L
Linus Torvalds 已提交
2041 2042
	biovec_init_slabs();

2043
	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
L
Linus Torvalds 已提交
2044 2045 2046
	if (!fs_bio_set)
		panic("bio: can't allocate bios\n");

2047 2048 2049
	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
		panic("bio: can't create integrity pool\n");

L
Linus Torvalds 已提交
2050 2051 2052
	return 0;
}
subsys_initcall(init_bio);