bio.c 49.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public Licens
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 *
 */
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
22
#include <linux/uio.h>
23
#include <linux/iocontext.h>
L
Linus Torvalds 已提交
24 25 26
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29
#include <linux/mempool.h>
#include <linux/workqueue.h>
30
#include <linux/cgroup.h>
31
#include <scsi/sg.h>		/* for struct sg_iovec */
L
Linus Torvalds 已提交
32

33
#include <trace/events/block.h>
34

35 36 37 38 39 40
/*
 * Test patch to inline a certain number of bi_io_vec's inside the bio
 * itself, to shrink a bio data allocation from two mempool calls to one
 */
#define BIO_INLINE_VECS		4

L
Linus Torvalds 已提交
41 42 43 44 45 46
/*
 * if you change this list, also change bvec_alloc or things will
 * break badly! cannot be bigger than what you can fit into an
 * unsigned short
 */
#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
47
static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55
	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
};
#undef BV

/*
 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
 * IO code that does not need private memory pools.
 */
56
struct bio_set *fs_bio_set;
57
EXPORT_SYMBOL(fs_bio_set);
L
Linus Torvalds 已提交
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/*
 * Our slab pool management
 */
struct bio_slab {
	struct kmem_cache *slab;
	unsigned int slab_ref;
	unsigned int slab_size;
	char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
static struct bio_slab *bio_slabs;
static unsigned int bio_slab_nr, bio_slab_max;

static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
{
	unsigned int sz = sizeof(struct bio) + extra_size;
	struct kmem_cache *slab = NULL;
76
	struct bio_slab *bslab, *new_bio_slabs;
77
	unsigned int new_bio_slab_max;
78 79 80 81 82 83
	unsigned int i, entry = -1;

	mutex_lock(&bio_slab_lock);

	i = 0;
	while (i < bio_slab_nr) {
84
		bslab = &bio_slabs[i];
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

		if (!bslab->slab && entry == -1)
			entry = i;
		else if (bslab->slab_size == sz) {
			slab = bslab->slab;
			bslab->slab_ref++;
			break;
		}
		i++;
	}

	if (slab)
		goto out_unlock;

	if (bio_slab_nr == bio_slab_max && entry == -1) {
100
		new_bio_slab_max = bio_slab_max << 1;
101
		new_bio_slabs = krealloc(bio_slabs,
102
					 new_bio_slab_max * sizeof(struct bio_slab),
103 104
					 GFP_KERNEL);
		if (!new_bio_slabs)
105
			goto out_unlock;
106
		bio_slab_max = new_bio_slab_max;
107
		bio_slabs = new_bio_slabs;
108 109 110 111 112 113 114
	}
	if (entry == -1)
		entry = bio_slab_nr++;

	bslab = &bio_slabs[entry];

	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
115 116
	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
				 SLAB_HWCACHE_ALIGN, NULL);
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	if (!slab)
		goto out_unlock;

	bslab->slab = slab;
	bslab->slab_ref = 1;
	bslab->slab_size = sz;
out_unlock:
	mutex_unlock(&bio_slab_lock);
	return slab;
}

static void bio_put_slab(struct bio_set *bs)
{
	struct bio_slab *bslab = NULL;
	unsigned int i;

	mutex_lock(&bio_slab_lock);

	for (i = 0; i < bio_slab_nr; i++) {
		if (bs->bio_slab == bio_slabs[i].slab) {
			bslab = &bio_slabs[i];
			break;
		}
	}

	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
		goto out;

	WARN_ON(!bslab->slab_ref);

	if (--bslab->slab_ref)
		goto out;

	kmem_cache_destroy(bslab->slab);
	bslab->slab = NULL;

out:
	mutex_unlock(&bio_slab_lock);
}

157 158 159 160 161
unsigned int bvec_nr_vecs(unsigned short idx)
{
	return bvec_slabs[idx].nr_vecs;
}

162
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
163 164 165 166
{
	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);

	if (idx == BIOVEC_MAX_IDX)
167
		mempool_free(bv, pool);
168 169 170 171 172 173 174
	else {
		struct biovec_slab *bvs = bvec_slabs + idx;

		kmem_cache_free(bvs->slab, bv);
	}
}

175 176
struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
			   mempool_t *pool)
L
Linus Torvalds 已提交
177 178 179
{
	struct bio_vec *bvl;

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
	/*
	 * see comment near bvec_array define!
	 */
	switch (nr) {
	case 1:
		*idx = 0;
		break;
	case 2 ... 4:
		*idx = 1;
		break;
	case 5 ... 16:
		*idx = 2;
		break;
	case 17 ... 64:
		*idx = 3;
		break;
	case 65 ... 128:
		*idx = 4;
		break;
	case 129 ... BIO_MAX_PAGES:
		*idx = 5;
		break;
	default:
		return NULL;
	}

	/*
	 * idx now points to the pool we want to allocate from. only the
	 * 1-vec entry pool is mempool backed.
	 */
	if (*idx == BIOVEC_MAX_IDX) {
fallback:
212
		bvl = mempool_alloc(pool, gfp_mask);
213 214 215 216
	} else {
		struct biovec_slab *bvs = bvec_slabs + *idx;
		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);

J
Jens Axboe 已提交
217
		/*
218 219 220
		 * Make this allocation restricted and don't dump info on
		 * allocation failures, since we'll fallback to the mempool
		 * in case of failure.
J
Jens Axboe 已提交
221
		 */
222
		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
L
Linus Torvalds 已提交
223

J
Jens Axboe 已提交
224
		/*
225 226
		 * Try a slab allocation. If this fails and __GFP_WAIT
		 * is set, retry with the 1-entry mempool
J
Jens Axboe 已提交
227
		 */
228 229 230 231 232 233 234
		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
			*idx = BIOVEC_MAX_IDX;
			goto fallback;
		}
	}

L
Linus Torvalds 已提交
235 236 237
	return bvl;
}

K
Kent Overstreet 已提交
238
static void __bio_free(struct bio *bio)
L
Linus Torvalds 已提交
239
{
K
Kent Overstreet 已提交
240
	bio_disassociate_task(bio);
L
Linus Torvalds 已提交
241

242
	if (bio_integrity(bio))
243
		bio_integrity_free(bio);
K
Kent Overstreet 已提交
244
}
245

K
Kent Overstreet 已提交
246 247 248 249 250 251 252 253
static void bio_free(struct bio *bio)
{
	struct bio_set *bs = bio->bi_pool;
	void *p;

	__bio_free(bio);

	if (bs) {
254
		if (bio_flagged(bio, BIO_OWNS_VEC))
255
			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
K
Kent Overstreet 已提交
256 257 258 259 260

		/*
		 * If we have front padding, adjust the bio pointer before freeing
		 */
		p = bio;
261 262
		p -= bs->front_pad;

K
Kent Overstreet 已提交
263 264 265 266 267
		mempool_free(p, bs->bio_pool);
	} else {
		/* Bio was allocated by bio_kmalloc() */
		kfree(bio);
	}
P
Peter Osterlund 已提交
268 269
}

270
void bio_init(struct bio *bio)
L
Linus Torvalds 已提交
271
{
J
Jens Axboe 已提交
272
	memset(bio, 0, sizeof(*bio));
L
Linus Torvalds 已提交
273
	bio->bi_flags = 1 << BIO_UPTODATE;
K
Kent Overstreet 已提交
274
	atomic_set(&bio->bi_remaining, 1);
L
Linus Torvalds 已提交
275 276
	atomic_set(&bio->bi_cnt, 1);
}
277
EXPORT_SYMBOL(bio_init);
L
Linus Torvalds 已提交
278

K
Kent Overstreet 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292
/**
 * bio_reset - reinitialize a bio
 * @bio:	bio to reset
 *
 * Description:
 *   After calling bio_reset(), @bio will be in the same state as a freshly
 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 *   comment in struct bio.
 */
void bio_reset(struct bio *bio)
{
	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);

K
Kent Overstreet 已提交
293
	__bio_free(bio);
K
Kent Overstreet 已提交
294 295 296

	memset(bio, 0, BIO_RESET_BYTES);
	bio->bi_flags = flags|(1 << BIO_UPTODATE);
K
Kent Overstreet 已提交
297
	atomic_set(&bio->bi_remaining, 1);
K
Kent Overstreet 已提交
298 299 300
}
EXPORT_SYMBOL(bio_reset);

K
Kent Overstreet 已提交
301 302 303 304 305 306 307 308
static void bio_chain_endio(struct bio *bio, int error)
{
	bio_endio(bio->bi_private, error);
	bio_put(bio);
}

/**
 * bio_chain - chain bio completions
309 310
 * @bio: the target bio
 * @parent: the @bio's parent bio
K
Kent Overstreet 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
 *
 * The caller won't have a bi_end_io called when @bio completes - instead,
 * @parent's bi_end_io won't be called until both @parent and @bio have
 * completed; the chained bio will also be freed when it completes.
 *
 * The caller must not set bi_private or bi_end_io in @bio.
 */
void bio_chain(struct bio *bio, struct bio *parent)
{
	BUG_ON(bio->bi_private || bio->bi_end_io);

	bio->bi_private = parent;
	bio->bi_end_io	= bio_chain_endio;
	atomic_inc(&parent->bi_remaining);
}
EXPORT_SYMBOL(bio_chain);

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
static void bio_alloc_rescue(struct work_struct *work)
{
	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
	struct bio *bio;

	while (1) {
		spin_lock(&bs->rescue_lock);
		bio = bio_list_pop(&bs->rescue_list);
		spin_unlock(&bs->rescue_lock);

		if (!bio)
			break;

		generic_make_request(bio);
	}
}

static void punt_bios_to_rescuer(struct bio_set *bs)
{
	struct bio_list punt, nopunt;
	struct bio *bio;

	/*
	 * In order to guarantee forward progress we must punt only bios that
	 * were allocated from this bio_set; otherwise, if there was a bio on
	 * there for a stacking driver higher up in the stack, processing it
	 * could require allocating bios from this bio_set, and doing that from
	 * our own rescuer would be bad.
	 *
	 * Since bio lists are singly linked, pop them all instead of trying to
	 * remove from the middle of the list:
	 */

	bio_list_init(&punt);
	bio_list_init(&nopunt);

	while ((bio = bio_list_pop(current->bio_list)))
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);

	*current->bio_list = nopunt;

	spin_lock(&bs->rescue_lock);
	bio_list_merge(&bs->rescue_list, &punt);
	spin_unlock(&bs->rescue_lock);

	queue_work(bs->rescue_workqueue, &bs->rescue_work);
}

L
Linus Torvalds 已提交
376 377 378 379
/**
 * bio_alloc_bioset - allocate a bio for I/O
 * @gfp_mask:   the GFP_ mask given to the slab allocator
 * @nr_iovecs:	number of iovecs to pre-allocate
380
 * @bs:		the bio_set to allocate from.
L
Linus Torvalds 已提交
381 382
 *
 * Description:
383 384 385 386 387 388 389 390 391 392
 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 *   backed by the @bs's mempool.
 *
 *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
 *   able to allocate a bio. This is due to the mempool guarantees. To make this
 *   work, callers must never allocate more than 1 bio at a time from this pool.
 *   Callers that need to allocate more than 1 bio must always submit the
 *   previously allocated bio for IO before attempting to allocate a new one.
 *   Failure to do so can cause deadlocks under memory pressure.
 *
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
 *   Note that when running under generic_make_request() (i.e. any block
 *   driver), bios are not submitted until after you return - see the code in
 *   generic_make_request() that converts recursion into iteration, to prevent
 *   stack overflows.
 *
 *   This would normally mean allocating multiple bios under
 *   generic_make_request() would be susceptible to deadlocks, but we have
 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 *   thread.
 *
 *   However, we do not guarantee forward progress for allocations from other
 *   mempools. Doing multiple allocations from the same mempool under
 *   generic_make_request() should be avoided - instead, use bio_set's front_pad
 *   for per bio allocations.
 *
408 409 410
 *   RETURNS:
 *   Pointer to new bio on success, NULL on failure.
 */
A
Al Viro 已提交
411
struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
L
Linus Torvalds 已提交
412
{
413
	gfp_t saved_gfp = gfp_mask;
414 415
	unsigned front_pad;
	unsigned inline_vecs;
T
Tejun Heo 已提交
416
	unsigned long idx = BIO_POOL_NONE;
I
Ingo Molnar 已提交
417
	struct bio_vec *bvl = NULL;
T
Tejun Heo 已提交
418 419 420
	struct bio *bio;
	void *p;

421 422 423 424 425 426 427 428 429 430
	if (!bs) {
		if (nr_iovecs > UIO_MAXIOV)
			return NULL;

		p = kmalloc(sizeof(struct bio) +
			    nr_iovecs * sizeof(struct bio_vec),
			    gfp_mask);
		front_pad = 0;
		inline_vecs = nr_iovecs;
	} else {
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
		/*
		 * generic_make_request() converts recursion to iteration; this
		 * means if we're running beneath it, any bios we allocate and
		 * submit will not be submitted (and thus freed) until after we
		 * return.
		 *
		 * This exposes us to a potential deadlock if we allocate
		 * multiple bios from the same bio_set() while running
		 * underneath generic_make_request(). If we were to allocate
		 * multiple bios (say a stacking block driver that was splitting
		 * bios), we would deadlock if we exhausted the mempool's
		 * reserve.
		 *
		 * We solve this, and guarantee forward progress, with a rescuer
		 * workqueue per bio_set. If we go to allocate and there are
		 * bios on current->bio_list, we first try the allocation
		 * without __GFP_WAIT; if that fails, we punt those bios we
		 * would be blocking to the rescuer workqueue before we retry
		 * with the original gfp_flags.
		 */

		if (current->bio_list && !bio_list_empty(current->bio_list))
			gfp_mask &= ~__GFP_WAIT;

455
		p = mempool_alloc(bs->bio_pool, gfp_mask);
456 457 458 459 460 461
		if (!p && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
			p = mempool_alloc(bs->bio_pool, gfp_mask);
		}

462 463 464 465
		front_pad = bs->front_pad;
		inline_vecs = BIO_INLINE_VECS;
	}

T
Tejun Heo 已提交
466 467
	if (unlikely(!p))
		return NULL;
L
Linus Torvalds 已提交
468

469
	bio = p + front_pad;
I
Ingo Molnar 已提交
470 471
	bio_init(bio);

472
	if (nr_iovecs > inline_vecs) {
473
		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
474 475 476
		if (!bvl && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
477
			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
478 479
		}

I
Ingo Molnar 已提交
480 481
		if (unlikely(!bvl))
			goto err_free;
482 483

		bio->bi_flags |= 1 << BIO_OWNS_VEC;
484 485
	} else if (nr_iovecs) {
		bvl = bio->bi_inline_vecs;
L
Linus Torvalds 已提交
486
	}
487 488

	bio->bi_pool = bs;
I
Ingo Molnar 已提交
489 490 491
	bio->bi_flags |= idx << BIO_POOL_OFFSET;
	bio->bi_max_vecs = nr_iovecs;
	bio->bi_io_vec = bvl;
L
Linus Torvalds 已提交
492
	return bio;
I
Ingo Molnar 已提交
493 494

err_free:
T
Tejun Heo 已提交
495
	mempool_free(p, bs->bio_pool);
I
Ingo Molnar 已提交
496
	return NULL;
L
Linus Torvalds 已提交
497
}
498
EXPORT_SYMBOL(bio_alloc_bioset);
L
Linus Torvalds 已提交
499 500 501 502

void zero_fill_bio(struct bio *bio)
{
	unsigned long flags;
503 504
	struct bio_vec bv;
	struct bvec_iter iter;
L
Linus Torvalds 已提交
505

506 507 508 509
	bio_for_each_segment(bv, bio, iter) {
		char *data = bvec_kmap_irq(&bv, &flags);
		memset(data, 0, bv.bv_len);
		flush_dcache_page(bv.bv_page);
L
Linus Torvalds 已提交
510 511 512 513 514 515 516 517 518 519 520
		bvec_kunmap_irq(data, &flags);
	}
}
EXPORT_SYMBOL(zero_fill_bio);

/**
 * bio_put - release a reference to a bio
 * @bio:   bio to release reference to
 *
 * Description:
 *   Put a reference to a &struct bio, either one you have gotten with
521
 *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
L
Linus Torvalds 已提交
522 523 524 525 526 527 528 529
 **/
void bio_put(struct bio *bio)
{
	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));

	/*
	 * last put frees it
	 */
K
Kent Overstreet 已提交
530 531
	if (atomic_dec_and_test(&bio->bi_cnt))
		bio_free(bio);
L
Linus Torvalds 已提交
532
}
533
EXPORT_SYMBOL(bio_put);
L
Linus Torvalds 已提交
534

535
inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
L
Linus Torvalds 已提交
536 537 538 539 540 541
{
	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
		blk_recount_segments(q, bio);

	return bio->bi_phys_segments;
}
542
EXPORT_SYMBOL(bio_phys_segments);
L
Linus Torvalds 已提交
543

K
Kent Overstreet 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/**
 * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
 * 	@bio: destination bio
 * 	@bio_src: bio to clone
 *
 *	Clone a &bio. Caller will own the returned bio, but not
 *	the actual data it points to. Reference count of returned
 * 	bio will be one.
 *
 * 	Caller must ensure that @bio_src is not freed before @bio.
 */
void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
{
	BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);

	/*
	 * most users will be overriding ->bi_bdev with a new target,
	 * so we don't set nor calculate new physical/hw segment counts here
	 */
	bio->bi_bdev = bio_src->bi_bdev;
	bio->bi_flags |= 1 << BIO_CLONED;
	bio->bi_rw = bio_src->bi_rw;
	bio->bi_iter = bio_src->bi_iter;
	bio->bi_io_vec = bio_src->bi_io_vec;
}
EXPORT_SYMBOL(__bio_clone_fast);

/**
 *	bio_clone_fast - clone a bio that shares the original bio's biovec
 *	@bio: bio to clone
 *	@gfp_mask: allocation priority
 *	@bs: bio_set to allocate from
 *
 * 	Like __bio_clone_fast, only also allocates the returned bio
 */
struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
{
	struct bio *b;

	b = bio_alloc_bioset(gfp_mask, 0, bs);
	if (!b)
		return NULL;

	__bio_clone_fast(b, bio);

	if (bio_integrity(bio)) {
		int ret;

		ret = bio_integrity_clone(b, bio, gfp_mask);

		if (ret < 0) {
			bio_put(b);
			return NULL;
		}
	}

	return b;
}
EXPORT_SYMBOL(bio_clone_fast);

L
Linus Torvalds 已提交
604
/**
605 606
 * 	bio_clone_bioset - clone a bio
 * 	@bio_src: bio to clone
L
Linus Torvalds 已提交
607
 *	@gfp_mask: allocation priority
608
 *	@bs: bio_set to allocate from
L
Linus Torvalds 已提交
609
 *
610 611
 *	Clone bio. Caller will own the returned bio, but not the actual data it
 *	points to. Reference count of returned bio will be one.
L
Linus Torvalds 已提交
612
 */
613
struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
614
			     struct bio_set *bs)
L
Linus Torvalds 已提交
615
{
616 617 618
	struct bvec_iter iter;
	struct bio_vec bv;
	struct bio *bio;
L
Linus Torvalds 已提交
619

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
	/*
	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
	 * bio_src->bi_io_vec to bio->bi_io_vec.
	 *
	 * We can't do that anymore, because:
	 *
	 *  - The point of cloning the biovec is to produce a bio with a biovec
	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
	 *
	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
	 *    But the clone should succeed as long as the number of biovecs we
	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
	 *
	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
	 *    that does not own the bio - reason being drivers don't use it for
	 *    iterating over the biovec anymore, so expecting it to be kept up
	 *    to date (i.e. for clones that share the parent biovec) is just
	 *    asking for trouble and would force extra work on
	 *    __bio_clone_fast() anyways.
	 */

642
	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
643
	if (!bio)
644 645
		return NULL;

646 647 648 649
	bio->bi_bdev		= bio_src->bi_bdev;
	bio->bi_rw		= bio_src->bi_rw;
	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
650

651 652 653 654 655 656 657 658
	if (bio->bi_rw & REQ_DISCARD)
		goto integrity_clone;

	if (bio->bi_rw & REQ_WRITE_SAME) {
		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
		goto integrity_clone;
	}

659 660
	bio_for_each_segment(bv, bio_src, iter)
		bio->bi_io_vec[bio->bi_vcnt++] = bv;
661

662
integrity_clone:
663 664
	if (bio_integrity(bio_src)) {
		int ret;
665

666
		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
L
Li Zefan 已提交
667
		if (ret < 0) {
668
			bio_put(bio);
669
			return NULL;
L
Li Zefan 已提交
670
		}
P
Peter Osterlund 已提交
671
	}
L
Linus Torvalds 已提交
672

673
	return bio;
L
Linus Torvalds 已提交
674
}
675
EXPORT_SYMBOL(bio_clone_bioset);
L
Linus Torvalds 已提交
676 677 678 679 680 681 682 683 684 685 686 687

/**
 *	bio_get_nr_vecs		- return approx number of vecs
 *	@bdev:  I/O target
 *
 *	Return the approximate number of pages we can send to this target.
 *	There's no guarantee that you will be able to fit this number of pages
 *	into a bio, it does not account for dynamic restrictions that vary
 *	on offset.
 */
int bio_get_nr_vecs(struct block_device *bdev)
{
688
	struct request_queue *q = bdev_get_queue(bdev);
689 690 691
	int nr_pages;

	nr_pages = min_t(unsigned,
692 693
		     queue_max_segments(q),
		     queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
694 695 696

	return min_t(unsigned, nr_pages, BIO_MAX_PAGES);

L
Linus Torvalds 已提交
697
}
698
EXPORT_SYMBOL(bio_get_nr_vecs);
L
Linus Torvalds 已提交
699

700
static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
701
			  *page, unsigned int len, unsigned int offset,
702
			  unsigned int max_sectors)
L
Linus Torvalds 已提交
703 704 705 706 707 708 709 710 711 712
{
	int retried_segments = 0;
	struct bio_vec *bvec;

	/*
	 * cloned bio must not modify vec list
	 */
	if (unlikely(bio_flagged(bio, BIO_CLONED)))
		return 0;

713
	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
L
Linus Torvalds 已提交
714 715
		return 0;

716 717 718 719 720 721 722 723 724 725
	/*
	 * For filesystems with a blocksize smaller than the pagesize
	 * we will often be called with the same page as last time and
	 * a consecutive offset.  Optimize this special case.
	 */
	if (bio->bi_vcnt > 0) {
		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];

		if (page == prev->bv_page &&
		    offset == prev->bv_offset + prev->bv_len) {
726
			unsigned int prev_bv_len = prev->bv_len;
727
			prev->bv_len += len;
728 729 730

			if (q->merge_bvec_fn) {
				struct bvec_merge_data bvm = {
731 732 733 734
					/* prev_bvec is already charged in
					   bi_size, discharge it in order to
					   simulate merging updated prev_bvec
					   as new bvec. */
735
					.bi_bdev = bio->bi_bdev,
736 737 738
					.bi_sector = bio->bi_iter.bi_sector,
					.bi_size = bio->bi_iter.bi_size -
						prev_bv_len,
739 740 741
					.bi_rw = bio->bi_rw,
				};

742
				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
743 744 745
					prev->bv_len -= len;
					return 0;
				}
746 747 748 749
			}

			goto done;
		}
750 751 752 753 754 755 756 757

		/*
		 * If the queue doesn't support SG gaps and adding this
		 * offset would create a gap, disallow it.
		 */
		if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) &&
		    bvec_gap_to_prev(prev, offset))
			return 0;
758 759 760
	}

	if (bio->bi_vcnt >= bio->bi_max_vecs)
L
Linus Torvalds 已提交
761 762 763 764 765 766 767
		return 0;

	/*
	 * we might lose a segment or two here, but rather that than
	 * make this too complex.
	 */

768
	while (bio->bi_phys_segments >= queue_max_segments(q)) {
L
Linus Torvalds 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

		if (retried_segments)
			return 0;

		retried_segments = 1;
		blk_recount_segments(q, bio);
	}

	/*
	 * setup the new entry, we might clear it again later if we
	 * cannot add the page
	 */
	bvec = &bio->bi_io_vec[bio->bi_vcnt];
	bvec->bv_page = page;
	bvec->bv_len = len;
	bvec->bv_offset = offset;

	/*
	 * if queue has other restrictions (eg varying max sector size
	 * depending on offset), it can specify a merge_bvec_fn in the
	 * queue to get further control
	 */
	if (q->merge_bvec_fn) {
792 793
		struct bvec_merge_data bvm = {
			.bi_bdev = bio->bi_bdev,
794 795
			.bi_sector = bio->bi_iter.bi_sector,
			.bi_size = bio->bi_iter.bi_size,
796 797 798
			.bi_rw = bio->bi_rw,
		};

L
Linus Torvalds 已提交
799 800 801 802
		/*
		 * merge_bvec_fn() returns number of bytes it can accept
		 * at this offset
		 */
803
		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
L
Linus Torvalds 已提交
804 805 806 807 808 809 810 811
			bvec->bv_page = NULL;
			bvec->bv_len = 0;
			bvec->bv_offset = 0;
			return 0;
		}
	}

	/* If we may be able to merge these biovecs, force a recount */
812
	if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
L
Linus Torvalds 已提交
813 814 815 816
		bio->bi_flags &= ~(1 << BIO_SEG_VALID);

	bio->bi_vcnt++;
	bio->bi_phys_segments++;
817
 done:
818
	bio->bi_iter.bi_size += len;
L
Linus Torvalds 已提交
819 820 821
	return len;
}

822 823
/**
 *	bio_add_pc_page	-	attempt to add page to bio
J
Jens Axboe 已提交
824
 *	@q: the target queue
825 826 827 828 829 830
 *	@bio: destination bio
 *	@page: page to add
 *	@len: vec entry length
 *	@offset: vec entry offset
 *
 *	Attempt to add a page to the bio_vec maplist. This can fail for a
831 832 833 834 835
 *	number of reasons, such as the bio being full or target block device
 *	limitations. The target block device must allow bio's up to PAGE_SIZE,
 *	so it is always possible to add a single page to an empty bio.
 *
 *	This should only be used by REQ_PC bios.
836
 */
837
int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
838 839
		    unsigned int len, unsigned int offset)
{
840 841
	return __bio_add_page(q, bio, page, len, offset,
			      queue_max_hw_sectors(q));
842
}
843
EXPORT_SYMBOL(bio_add_pc_page);
844

L
Linus Torvalds 已提交
845 846 847 848 849 850 851 852
/**
 *	bio_add_page	-	attempt to add page to bio
 *	@bio: destination bio
 *	@page: page to add
 *	@len: vec entry length
 *	@offset: vec entry offset
 *
 *	Attempt to add a page to the bio_vec maplist. This can fail for a
853 854 855
 *	number of reasons, such as the bio being full or target block device
 *	limitations. The target block device must allow bio's up to PAGE_SIZE,
 *	so it is always possible to add a single page to an empty bio.
L
Linus Torvalds 已提交
856 857 858 859
 */
int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
		 unsigned int offset)
{
860
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
861
	unsigned int max_sectors;
862

863 864 865 866 867
	max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
	if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size)
		max_sectors = len >> 9;

	return __bio_add_page(q, bio, page, len, offset, max_sectors);
L
Linus Torvalds 已提交
868
}
869
EXPORT_SYMBOL(bio_add_page);
L
Linus Torvalds 已提交
870

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
struct submit_bio_ret {
	struct completion event;
	int error;
};

static void submit_bio_wait_endio(struct bio *bio, int error)
{
	struct submit_bio_ret *ret = bio->bi_private;

	ret->error = error;
	complete(&ret->event);
}

/**
 * submit_bio_wait - submit a bio, and wait until it completes
 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
 * @bio: The &struct bio which describes the I/O
 *
 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 * bio_endio() on failure.
 */
int submit_bio_wait(int rw, struct bio *bio)
{
	struct submit_bio_ret ret;

	rw |= REQ_SYNC;
	init_completion(&ret.event);
	bio->bi_private = &ret;
	bio->bi_end_io = submit_bio_wait_endio;
	submit_bio(rw, bio);
	wait_for_completion(&ret.event);

	return ret.error;
}
EXPORT_SYMBOL(submit_bio_wait);

K
Kent Overstreet 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
/**
 * bio_advance - increment/complete a bio by some number of bytes
 * @bio:	bio to advance
 * @bytes:	number of bytes to complete
 *
 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 * be updated on the last bvec as well.
 *
 * @bio will then represent the remaining, uncompleted portion of the io.
 */
void bio_advance(struct bio *bio, unsigned bytes)
{
	if (bio_integrity(bio))
		bio_integrity_advance(bio, bytes);

K
Kent Overstreet 已提交
923
	bio_advance_iter(bio, &bio->bi_iter, bytes);
K
Kent Overstreet 已提交
924 925 926
}
EXPORT_SYMBOL(bio_advance);

K
Kent Overstreet 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
/**
 * bio_alloc_pages - allocates a single page for each bvec in a bio
 * @bio: bio to allocate pages for
 * @gfp_mask: flags for allocation
 *
 * Allocates pages up to @bio->bi_vcnt.
 *
 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
 * freed.
 */
int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
{
	int i;
	struct bio_vec *bv;

	bio_for_each_segment_all(bv, bio, i) {
		bv->bv_page = alloc_page(gfp_mask);
		if (!bv->bv_page) {
			while (--bv >= bio->bi_io_vec)
				__free_page(bv->bv_page);
			return -ENOMEM;
		}
	}

	return 0;
}
EXPORT_SYMBOL(bio_alloc_pages);

K
Kent Overstreet 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967 968
/**
 * bio_copy_data - copy contents of data buffers from one chain of bios to
 * another
 * @src: source bio list
 * @dst: destination bio list
 *
 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
 * @src and @dst as linked lists of bios.
 *
 * Stops when it reaches the end of either @src or @dst - that is, copies
 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 */
void bio_copy_data(struct bio *dst, struct bio *src)
{
969 970
	struct bvec_iter src_iter, dst_iter;
	struct bio_vec src_bv, dst_bv;
K
Kent Overstreet 已提交
971
	void *src_p, *dst_p;
972
	unsigned bytes;
K
Kent Overstreet 已提交
973

974 975
	src_iter = src->bi_iter;
	dst_iter = dst->bi_iter;
K
Kent Overstreet 已提交
976 977

	while (1) {
978 979 980 981
		if (!src_iter.bi_size) {
			src = src->bi_next;
			if (!src)
				break;
K
Kent Overstreet 已提交
982

983
			src_iter = src->bi_iter;
K
Kent Overstreet 已提交
984 985
		}

986 987 988 989
		if (!dst_iter.bi_size) {
			dst = dst->bi_next;
			if (!dst)
				break;
K
Kent Overstreet 已提交
990

991
			dst_iter = dst->bi_iter;
K
Kent Overstreet 已提交
992 993
		}

994 995 996 997
		src_bv = bio_iter_iovec(src, src_iter);
		dst_bv = bio_iter_iovec(dst, dst_iter);

		bytes = min(src_bv.bv_len, dst_bv.bv_len);
K
Kent Overstreet 已提交
998

999 1000
		src_p = kmap_atomic(src_bv.bv_page);
		dst_p = kmap_atomic(dst_bv.bv_page);
K
Kent Overstreet 已提交
1001

1002 1003
		memcpy(dst_p + dst_bv.bv_offset,
		       src_p + src_bv.bv_offset,
K
Kent Overstreet 已提交
1004 1005 1006 1007 1008
		       bytes);

		kunmap_atomic(dst_p);
		kunmap_atomic(src_p);

1009 1010
		bio_advance_iter(src, &src_iter, bytes);
		bio_advance_iter(dst, &dst_iter, bytes);
K
Kent Overstreet 已提交
1011 1012 1013 1014
	}
}
EXPORT_SYMBOL(bio_copy_data);

L
Linus Torvalds 已提交
1015
struct bio_map_data {
1016 1017
	int nr_sgvecs;
	int is_our_pages;
1018
	struct sg_iovec sgvecs[];
L
Linus Torvalds 已提交
1019 1020
};

1021
static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
1022
			     const struct sg_iovec *iov, int iov_count,
1023
			     int is_our_pages)
L
Linus Torvalds 已提交
1024
{
1025 1026
	memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
	bmd->nr_sgvecs = iov_count;
1027
	bmd->is_our_pages = is_our_pages;
L
Linus Torvalds 已提交
1028 1029 1030
	bio->bi_private = bmd;
}

1031
static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1032
					       gfp_t gfp_mask)
L
Linus Torvalds 已提交
1033
{
1034 1035
	if (iov_count > UIO_MAXIOV)
		return NULL;
L
Linus Torvalds 已提交
1036

1037 1038
	return kmalloc(sizeof(struct bio_map_data) +
		       sizeof(struct sg_iovec) * iov_count, gfp_mask);
L
Linus Torvalds 已提交
1039 1040
}

1041
static int __bio_copy_iov(struct bio *bio, const struct sg_iovec *iov, int iov_count,
1042
			  int to_user, int from_user, int do_free_page)
1043 1044 1045 1046 1047 1048
{
	int ret = 0, i;
	struct bio_vec *bvec;
	int iov_idx = 0;
	unsigned int iov_off = 0;

1049
	bio_for_each_segment_all(bvec, bio, i) {
1050
		char *bv_addr = page_address(bvec->bv_page);
1051
		unsigned int bv_len = bvec->bv_len;
1052 1053 1054

		while (bv_len && iov_idx < iov_count) {
			unsigned int bytes;
1055
			char __user *iov_addr;
1056 1057 1058 1059 1060 1061

			bytes = min_t(unsigned int,
				      iov[iov_idx].iov_len - iov_off, bv_len);
			iov_addr = iov[iov_idx].iov_base + iov_off;

			if (!ret) {
1062
				if (to_user)
1063 1064 1065
					ret = copy_to_user(iov_addr, bv_addr,
							   bytes);

1066 1067 1068 1069
				if (from_user)
					ret = copy_from_user(bv_addr, iov_addr,
							     bytes);

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
				if (ret)
					ret = -EFAULT;
			}

			bv_len -= bytes;
			bv_addr += bytes;
			iov_addr += bytes;
			iov_off += bytes;

			if (iov[iov_idx].iov_len == iov_off) {
				iov_idx++;
				iov_off = 0;
			}
		}

1085
		if (do_free_page)
1086 1087 1088 1089 1090 1091
			__free_page(bvec->bv_page);
	}

	return ret;
}

L
Linus Torvalds 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
/**
 *	bio_uncopy_user	-	finish previously mapped bio
 *	@bio: bio being terminated
 *
 *	Free pages allocated from bio_copy_user() and write back data
 *	to user space in case of a read.
 */
int bio_uncopy_user(struct bio *bio)
{
	struct bio_map_data *bmd = bio->bi_private;
1102 1103
	struct bio_vec *bvec;
	int ret = 0, i;
L
Linus Torvalds 已提交
1104

1105 1106 1107 1108 1109 1110
	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
		/*
		 * if we're in a workqueue, the request is orphaned, so
		 * don't copy into a random user address space, just free.
		 */
		if (current->mm)
1111 1112
			ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs,
					     bio_data_dir(bio) == READ,
1113 1114 1115 1116 1117
					     0, bmd->is_our_pages);
		else if (bmd->is_our_pages)
			bio_for_each_segment_all(bvec, bio, i)
				__free_page(bvec->bv_page);
	}
1118
	kfree(bmd);
L
Linus Torvalds 已提交
1119 1120 1121
	bio_put(bio);
	return ret;
}
1122
EXPORT_SYMBOL(bio_uncopy_user);
L
Linus Torvalds 已提交
1123 1124

/**
1125
 *	bio_copy_user_iov	-	copy user data to bio
L
Linus Torvalds 已提交
1126
 *	@q: destination block queue
1127
 *	@map_data: pointer to the rq_map_data holding pages (if necessary)
1128 1129
 *	@iov:	the iovec.
 *	@iov_count: number of elements in the iovec
L
Linus Torvalds 已提交
1130
 *	@write_to_vm: bool indicating writing to pages or not
1131
 *	@gfp_mask: memory allocation flags
L
Linus Torvalds 已提交
1132 1133 1134 1135 1136
 *
 *	Prepares and returns a bio for indirect user io, bouncing data
 *	to/from kernel pages as necessary. Must be paired with
 *	call bio_uncopy_user() on io completion.
 */
1137 1138
struct bio *bio_copy_user_iov(struct request_queue *q,
			      struct rq_map_data *map_data,
1139
			      const struct sg_iovec *iov, int iov_count,
1140
			      int write_to_vm, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1141 1142 1143 1144 1145 1146
{
	struct bio_map_data *bmd;
	struct bio_vec *bvec;
	struct page *page;
	struct bio *bio;
	int i, ret;
1147 1148
	int nr_pages = 0;
	unsigned int len = 0;
1149
	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
L
Linus Torvalds 已提交
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159
	for (i = 0; i < iov_count; i++) {
		unsigned long uaddr;
		unsigned long end;
		unsigned long start;

		uaddr = (unsigned long)iov[i].iov_base;
		end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
		start = uaddr >> PAGE_SHIFT;

1160 1161 1162 1163 1164 1165
		/*
		 * Overflow, abort
		 */
		if (end < start)
			return ERR_PTR(-EINVAL);

1166 1167 1168 1169
		nr_pages += end - start;
		len += iov[i].iov_len;
	}

1170 1171 1172
	if (offset)
		nr_pages++;

1173
	bmd = bio_alloc_map_data(iov_count, gfp_mask);
L
Linus Torvalds 已提交
1174 1175 1176 1177
	if (!bmd)
		return ERR_PTR(-ENOMEM);

	ret = -ENOMEM;
1178
	bio = bio_kmalloc(gfp_mask, nr_pages);
L
Linus Torvalds 已提交
1179 1180 1181
	if (!bio)
		goto out_bmd;

1182 1183
	if (!write_to_vm)
		bio->bi_rw |= REQ_WRITE;
L
Linus Torvalds 已提交
1184 1185

	ret = 0;
1186 1187

	if (map_data) {
1188
		nr_pages = 1 << map_data->page_order;
1189 1190
		i = map_data->offset / PAGE_SIZE;
	}
L
Linus Torvalds 已提交
1191
	while (len) {
1192
		unsigned int bytes = PAGE_SIZE;
L
Linus Torvalds 已提交
1193

1194 1195
		bytes -= offset;

L
Linus Torvalds 已提交
1196 1197 1198
		if (bytes > len)
			bytes = len;

1199
		if (map_data) {
1200
			if (i == map_data->nr_entries * nr_pages) {
1201 1202 1203
				ret = -ENOMEM;
				break;
			}
1204 1205 1206 1207 1208 1209

			page = map_data->pages[i / nr_pages];
			page += (i % nr_pages);

			i++;
		} else {
1210
			page = alloc_page(q->bounce_gfp | gfp_mask);
1211 1212 1213 1214
			if (!page) {
				ret = -ENOMEM;
				break;
			}
L
Linus Torvalds 已提交
1215 1216
		}

1217
		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
L
Linus Torvalds 已提交
1218 1219 1220
			break;

		len -= bytes;
1221
		offset = 0;
L
Linus Torvalds 已提交
1222 1223 1224 1225 1226 1227 1228 1229
	}

	if (ret)
		goto cleanup;

	/*
	 * success
	 */
1230 1231
	if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
	    (map_data && map_data->from_user)) {
1232
		ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0);
1233 1234
		if (ret)
			goto cleanup;
L
Linus Torvalds 已提交
1235 1236
	}

1237
	bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
L
Linus Torvalds 已提交
1238 1239
	return bio;
cleanup:
1240
	if (!map_data)
1241
		bio_for_each_segment_all(bvec, bio, i)
1242
			__free_page(bvec->bv_page);
L
Linus Torvalds 已提交
1243 1244 1245

	bio_put(bio);
out_bmd:
1246
	kfree(bmd);
L
Linus Torvalds 已提交
1247 1248 1249
	return ERR_PTR(ret);
}

1250 1251 1252
/**
 *	bio_copy_user	-	copy user data to bio
 *	@q: destination block queue
1253
 *	@map_data: pointer to the rq_map_data holding pages (if necessary)
1254 1255 1256
 *	@uaddr: start of user address
 *	@len: length in bytes
 *	@write_to_vm: bool indicating writing to pages or not
1257
 *	@gfp_mask: memory allocation flags
1258 1259 1260 1261 1262
 *
 *	Prepares and returns a bio for indirect user io, bouncing data
 *	to/from kernel pages as necessary. Must be paired with
 *	call bio_uncopy_user() on io completion.
 */
1263 1264 1265
struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
			  unsigned long uaddr, unsigned int len,
			  int write_to_vm, gfp_t gfp_mask)
1266 1267 1268 1269 1270 1271
{
	struct sg_iovec iov;

	iov.iov_base = (void __user *)uaddr;
	iov.iov_len = len;

1272
	return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1273
}
1274
EXPORT_SYMBOL(bio_copy_user);
1275

1276
static struct bio *__bio_map_user_iov(struct request_queue *q,
1277
				      struct block_device *bdev,
1278
				      const struct sg_iovec *iov, int iov_count,
1279
				      int write_to_vm, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1280
{
1281 1282
	int i, j;
	int nr_pages = 0;
L
Linus Torvalds 已提交
1283 1284
	struct page **pages;
	struct bio *bio;
1285 1286
	int cur_page = 0;
	int ret, offset;
L
Linus Torvalds 已提交
1287

1288 1289 1290 1291 1292 1293
	for (i = 0; i < iov_count; i++) {
		unsigned long uaddr = (unsigned long)iov[i].iov_base;
		unsigned long len = iov[i].iov_len;
		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
		unsigned long start = uaddr >> PAGE_SHIFT;

1294 1295 1296 1297 1298 1299
		/*
		 * Overflow, abort
		 */
		if (end < start)
			return ERR_PTR(-EINVAL);

1300 1301
		nr_pages += end - start;
		/*
1302
		 * buffer must be aligned to at least hardsector size for now
1303
		 */
1304
		if (uaddr & queue_dma_alignment(q))
1305 1306 1307 1308
			return ERR_PTR(-EINVAL);
	}

	if (!nr_pages)
L
Linus Torvalds 已提交
1309 1310
		return ERR_PTR(-EINVAL);

1311
	bio = bio_kmalloc(gfp_mask, nr_pages);
L
Linus Torvalds 已提交
1312 1313 1314 1315
	if (!bio)
		return ERR_PTR(-ENOMEM);

	ret = -ENOMEM;
1316
	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
L
Linus Torvalds 已提交
1317 1318 1319
	if (!pages)
		goto out;

1320 1321 1322 1323 1324 1325 1326
	for (i = 0; i < iov_count; i++) {
		unsigned long uaddr = (unsigned long)iov[i].iov_base;
		unsigned long len = iov[i].iov_len;
		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
		unsigned long start = uaddr >> PAGE_SHIFT;
		const int local_nr_pages = end - start;
		const int page_limit = cur_page + local_nr_pages;
1327

N
Nick Piggin 已提交
1328 1329
		ret = get_user_pages_fast(uaddr, local_nr_pages,
				write_to_vm, &pages[cur_page]);
1330 1331
		if (ret < local_nr_pages) {
			ret = -EFAULT;
1332
			goto out_unmap;
1333
		}
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

		offset = uaddr & ~PAGE_MASK;
		for (j = cur_page; j < page_limit; j++) {
			unsigned int bytes = PAGE_SIZE - offset;

			if (len <= 0)
				break;
			
			if (bytes > len)
				bytes = len;

			/*
			 * sorry...
			 */
1348 1349
			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
					    bytes)
1350 1351 1352 1353 1354
				break;

			len -= bytes;
			offset = 0;
		}
L
Linus Torvalds 已提交
1355

1356
		cur_page = j;
L
Linus Torvalds 已提交
1357
		/*
1358
		 * release the pages we didn't map into the bio, if any
L
Linus Torvalds 已提交
1359
		 */
1360 1361
		while (j < page_limit)
			page_cache_release(pages[j++]);
L
Linus Torvalds 已提交
1362 1363 1364 1365 1366 1367 1368 1369
	}

	kfree(pages);

	/*
	 * set data direction, and check if mapped pages need bouncing
	 */
	if (!write_to_vm)
1370
		bio->bi_rw |= REQ_WRITE;
L
Linus Torvalds 已提交
1371

1372
	bio->bi_bdev = bdev;
L
Linus Torvalds 已提交
1373 1374
	bio->bi_flags |= (1 << BIO_USER_MAPPED);
	return bio;
1375 1376 1377 1378 1379 1380 1381 1382

 out_unmap:
	for (i = 0; i < nr_pages; i++) {
		if(!pages[i])
			break;
		page_cache_release(pages[i]);
	}
 out:
L
Linus Torvalds 已提交
1383 1384 1385 1386 1387 1388 1389
	kfree(pages);
	bio_put(bio);
	return ERR_PTR(ret);
}

/**
 *	bio_map_user	-	map user address into bio
1390
 *	@q: the struct request_queue for the bio
L
Linus Torvalds 已提交
1391 1392 1393 1394
 *	@bdev: destination block device
 *	@uaddr: start of user address
 *	@len: length in bytes
 *	@write_to_vm: bool indicating writing to pages or not
1395
 *	@gfp_mask: memory allocation flags
L
Linus Torvalds 已提交
1396 1397 1398 1399
 *
 *	Map the user space address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
1400
struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1401 1402
			 unsigned long uaddr, unsigned int len, int write_to_vm,
			 gfp_t gfp_mask)
1403 1404 1405
{
	struct sg_iovec iov;

1406
	iov.iov_base = (void __user *)uaddr;
1407 1408
	iov.iov_len = len;

1409
	return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1410
}
1411
EXPORT_SYMBOL(bio_map_user);
1412 1413 1414

/**
 *	bio_map_user_iov - map user sg_iovec table into bio
1415
 *	@q: the struct request_queue for the bio
1416 1417 1418 1419
 *	@bdev: destination block device
 *	@iov:	the iovec.
 *	@iov_count: number of elements in the iovec
 *	@write_to_vm: bool indicating writing to pages or not
1420
 *	@gfp_mask: memory allocation flags
1421 1422 1423 1424
 *
 *	Map the user space address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
1425
struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1426
			     const struct sg_iovec *iov, int iov_count,
1427
			     int write_to_vm, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1428 1429 1430
{
	struct bio *bio;

1431 1432
	bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
				 gfp_mask);
L
Linus Torvalds 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	if (IS_ERR(bio))
		return bio;

	/*
	 * subtle -- if __bio_map_user() ended up bouncing a bio,
	 * it would normally disappear when its bi_end_io is run.
	 * however, we need it for the unmap, so grab an extra
	 * reference to it
	 */
	bio_get(bio);

1444
	return bio;
L
Linus Torvalds 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
}

static void __bio_unmap_user(struct bio *bio)
{
	struct bio_vec *bvec;
	int i;

	/*
	 * make sure we dirty pages we wrote to
	 */
1455
	bio_for_each_segment_all(bvec, bio, i) {
L
Linus Torvalds 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
		if (bio_data_dir(bio) == READ)
			set_page_dirty_lock(bvec->bv_page);

		page_cache_release(bvec->bv_page);
	}

	bio_put(bio);
}

/**
 *	bio_unmap_user	-	unmap a bio
 *	@bio:		the bio being unmapped
 *
 *	Unmap a bio previously mapped by bio_map_user(). Must be called with
 *	a process context.
 *
 *	bio_unmap_user() may sleep.
 */
void bio_unmap_user(struct bio *bio)
{
	__bio_unmap_user(bio);
	bio_put(bio);
}
1479
EXPORT_SYMBOL(bio_unmap_user);
L
Linus Torvalds 已提交
1480

1481
static void bio_map_kern_endio(struct bio *bio, int err)
1482 1483 1484 1485
{
	bio_put(bio);
}

1486
static struct bio *__bio_map_kern(struct request_queue *q, void *data,
A
Al Viro 已提交
1487
				  unsigned int len, gfp_t gfp_mask)
M
Mike Christie 已提交
1488 1489 1490 1491 1492 1493 1494 1495
{
	unsigned long kaddr = (unsigned long)data;
	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	unsigned long start = kaddr >> PAGE_SHIFT;
	const int nr_pages = end - start;
	int offset, i;
	struct bio *bio;

1496
	bio = bio_kmalloc(gfp_mask, nr_pages);
M
Mike Christie 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	if (!bio)
		return ERR_PTR(-ENOMEM);

	offset = offset_in_page(kaddr);
	for (i = 0; i < nr_pages; i++) {
		unsigned int bytes = PAGE_SIZE - offset;

		if (len <= 0)
			break;

		if (bytes > len)
			bytes = len;

1510 1511
		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
				    offset) < bytes)
M
Mike Christie 已提交
1512 1513 1514 1515 1516 1517 1518
			break;

		data += bytes;
		len -= bytes;
		offset = 0;
	}

1519
	bio->bi_end_io = bio_map_kern_endio;
M
Mike Christie 已提交
1520 1521 1522 1523 1524
	return bio;
}

/**
 *	bio_map_kern	-	map kernel address into bio
1525
 *	@q: the struct request_queue for the bio
M
Mike Christie 已提交
1526 1527 1528 1529 1530 1531 1532
 *	@data: pointer to buffer to map
 *	@len: length in bytes
 *	@gfp_mask: allocation flags for bio allocation
 *
 *	Map the kernel address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
1533
struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
A
Al Viro 已提交
1534
			 gfp_t gfp_mask)
M
Mike Christie 已提交
1535 1536 1537 1538 1539 1540 1541
{
	struct bio *bio;

	bio = __bio_map_kern(q, data, len, gfp_mask);
	if (IS_ERR(bio))
		return bio;

1542
	if (bio->bi_iter.bi_size == len)
M
Mike Christie 已提交
1543 1544 1545 1546 1547 1548 1549 1550
		return bio;

	/*
	 * Don't support partial mappings.
	 */
	bio_put(bio);
	return ERR_PTR(-EINVAL);
}
1551
EXPORT_SYMBOL(bio_map_kern);
M
Mike Christie 已提交
1552

1553 1554 1555 1556
static void bio_copy_kern_endio(struct bio *bio, int err)
{
	struct bio_vec *bvec;
	const int read = bio_data_dir(bio) == READ;
1557
	struct bio_map_data *bmd = bio->bi_private;
1558
	int i;
1559
	char *p = bmd->sgvecs[0].iov_base;
1560

1561
	bio_for_each_segment_all(bvec, bio, i) {
1562 1563
		char *addr = page_address(bvec->bv_page);

1564
		if (read)
1565
			memcpy(p, addr, bvec->bv_len);
1566 1567

		__free_page(bvec->bv_page);
1568
		p += bvec->bv_len;
1569 1570
	}

1571
	kfree(bmd);
1572 1573 1574 1575 1576 1577 1578 1579 1580
	bio_put(bio);
}

/**
 *	bio_copy_kern	-	copy kernel address into bio
 *	@q: the struct request_queue for the bio
 *	@data: pointer to buffer to copy
 *	@len: length in bytes
 *	@gfp_mask: allocation flags for bio and page allocation
1581
 *	@reading: data direction is READ
1582 1583 1584 1585 1586 1587 1588 1589 1590
 *
 *	copy the kernel address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
			  gfp_t gfp_mask, int reading)
{
	struct bio *bio;
	struct bio_vec *bvec;
1591
	int i;
1592

1593 1594 1595
	bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
	if (IS_ERR(bio))
		return bio;
1596 1597 1598 1599

	if (!reading) {
		void *p = data;

1600
		bio_for_each_segment_all(bvec, bio, i) {
1601 1602 1603 1604 1605 1606 1607 1608
			char *addr = page_address(bvec->bv_page);

			memcpy(addr, p, bvec->bv_len);
			p += bvec->bv_len;
		}
	}

	bio->bi_end_io = bio_copy_kern_endio;
1609

1610 1611
	return bio;
}
1612
EXPORT_SYMBOL(bio_copy_kern);
1613

L
Linus Torvalds 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
/*
 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 * for performing direct-IO in BIOs.
 *
 * The problem is that we cannot run set_page_dirty() from interrupt context
 * because the required locks are not interrupt-safe.  So what we can do is to
 * mark the pages dirty _before_ performing IO.  And in interrupt context,
 * check that the pages are still dirty.   If so, fine.  If not, redirty them
 * in process context.
 *
 * We special-case compound pages here: normally this means reads into hugetlb
 * pages.  The logic in here doesn't really work right for compound pages
 * because the VM does not uniformly chase down the head page in all cases.
 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 * handle them at all.  So we skip compound pages here at an early stage.
 *
 * Note that this code is very hard to test under normal circumstances because
 * direct-io pins the pages with get_user_pages().  This makes
 * is_page_cache_freeable return false, and the VM will not clean the pages.
1633
 * But other code (eg, flusher threads) could clean the pages if they are mapped
L
Linus Torvalds 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
 * pagecache.
 *
 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 * deferred bio dirtying paths.
 */

/*
 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 */
void bio_set_pages_dirty(struct bio *bio)
{
1645
	struct bio_vec *bvec;
L
Linus Torvalds 已提交
1646 1647
	int i;

1648 1649
	bio_for_each_segment_all(bvec, bio, i) {
		struct page *page = bvec->bv_page;
L
Linus Torvalds 已提交
1650 1651 1652 1653 1654 1655

		if (page && !PageCompound(page))
			set_page_dirty_lock(page);
	}
}

1656
static void bio_release_pages(struct bio *bio)
L
Linus Torvalds 已提交
1657
{
1658
	struct bio_vec *bvec;
L
Linus Torvalds 已提交
1659 1660
	int i;

1661 1662
	bio_for_each_segment_all(bvec, bio, i) {
		struct page *page = bvec->bv_page;
L
Linus Torvalds 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

		if (page)
			put_page(page);
	}
}

/*
 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 * If they are, then fine.  If, however, some pages are clean then they must
 * have been written out during the direct-IO read.  So we take another ref on
 * the BIO and the offending pages and re-dirty the pages in process context.
 *
 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
 * here on.  It will run one page_cache_release() against each page and will
 * run one bio_put() against the BIO.
 */

1680
static void bio_dirty_fn(struct work_struct *work);
L
Linus Torvalds 已提交
1681

1682
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
L
Linus Torvalds 已提交
1683 1684 1685 1686 1687 1688
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;

/*
 * This runs in process context
 */
1689
static void bio_dirty_fn(struct work_struct *work)
L
Linus Torvalds 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
{
	unsigned long flags;
	struct bio *bio;

	spin_lock_irqsave(&bio_dirty_lock, flags);
	bio = bio_dirty_list;
	bio_dirty_list = NULL;
	spin_unlock_irqrestore(&bio_dirty_lock, flags);

	while (bio) {
		struct bio *next = bio->bi_private;

		bio_set_pages_dirty(bio);
		bio_release_pages(bio);
		bio_put(bio);
		bio = next;
	}
}

void bio_check_pages_dirty(struct bio *bio)
{
1711
	struct bio_vec *bvec;
L
Linus Torvalds 已提交
1712 1713 1714
	int nr_clean_pages = 0;
	int i;

1715 1716
	bio_for_each_segment_all(bvec, bio, i) {
		struct page *page = bvec->bv_page;
L
Linus Torvalds 已提交
1717 1718 1719

		if (PageDirty(page) || PageCompound(page)) {
			page_cache_release(page);
1720
			bvec->bv_page = NULL;
L
Linus Torvalds 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
		} else {
			nr_clean_pages++;
		}
	}

	if (nr_clean_pages) {
		unsigned long flags;

		spin_lock_irqsave(&bio_dirty_lock, flags);
		bio->bi_private = bio_dirty_list;
		bio_dirty_list = bio;
		spin_unlock_irqrestore(&bio_dirty_lock, flags);
		schedule_work(&bio_dirty_work);
	} else {
		bio_put(bio);
	}
}

1739 1740 1741
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
void bio_flush_dcache_pages(struct bio *bi)
{
1742 1743
	struct bio_vec bvec;
	struct bvec_iter iter;
1744

1745 1746
	bio_for_each_segment(bvec, bi, iter)
		flush_dcache_page(bvec.bv_page);
1747 1748 1749 1750
}
EXPORT_SYMBOL(bio_flush_dcache_pages);
#endif

L
Linus Torvalds 已提交
1751 1752 1753 1754 1755 1756
/**
 * bio_endio - end I/O on a bio
 * @bio:	bio
 * @error:	error, if any
 *
 * Description:
1757
 *   bio_endio() will end I/O on the whole bio. bio_endio() is the
N
NeilBrown 已提交
1758 1759 1760
 *   preferred way to end I/O on a bio, it takes care of clearing
 *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
 *   established -Exxxx (-EIO, for instance) error values in case
L
Lucas De Marchi 已提交
1761
 *   something went wrong. No one should call bi_end_io() directly on a
N
NeilBrown 已提交
1762 1763
 *   bio unless they own it and thus know that it has an end_io
 *   function.
L
Linus Torvalds 已提交
1764
 **/
1765
void bio_endio(struct bio *bio, int error)
L
Linus Torvalds 已提交
1766
{
K
Kent Overstreet 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	while (bio) {
		BUG_ON(atomic_read(&bio->bi_remaining) <= 0);

		if (error)
			clear_bit(BIO_UPTODATE, &bio->bi_flags);
		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
			error = -EIO;

		if (!atomic_dec_and_test(&bio->bi_remaining))
			return;
L
Linus Torvalds 已提交
1777

K
Kent Overstreet 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
		/*
		 * Need to have a real endio function for chained bios,
		 * otherwise various corner cases will break (like stacking
		 * block devices that save/restore bi_end_io) - however, we want
		 * to avoid unbounded recursion and blowing the stack. Tail call
		 * optimization would handle this, but compiling with frame
		 * pointers also disables gcc's sibling call optimization.
		 */
		if (bio->bi_end_io == bio_chain_endio) {
			struct bio *parent = bio->bi_private;
			bio_put(bio);
			bio = parent;
		} else {
			if (bio->bi_end_io)
				bio->bi_end_io(bio, error);
			bio = NULL;
		}
	}
L
Linus Torvalds 已提交
1796
}
1797
EXPORT_SYMBOL(bio_endio);
L
Linus Torvalds 已提交
1798

K
Kent Overstreet 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
/**
 * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
 * @bio:	bio
 * @error:	error, if any
 *
 * For code that has saved and restored bi_end_io; thing hard before using this
 * function, probably you should've cloned the entire bio.
 **/
void bio_endio_nodec(struct bio *bio, int error)
{
	atomic_inc(&bio->bi_remaining);
	bio_endio(bio, error);
}
EXPORT_SYMBOL(bio_endio_nodec);

K
Kent Overstreet 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
/**
 * bio_split - split a bio
 * @bio:	bio to split
 * @sectors:	number of sectors to split from the front of @bio
 * @gfp:	gfp mask
 * @bs:		bio set to allocate from
 *
 * Allocates and returns a new bio which represents @sectors from the start of
 * @bio, and updates @bio to represent the remaining sectors.
 *
 * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
 * responsibility to ensure that @bio is not freed before the split.
 */
struct bio *bio_split(struct bio *bio, int sectors,
		      gfp_t gfp, struct bio_set *bs)
{
	struct bio *split = NULL;

	BUG_ON(sectors <= 0);
	BUG_ON(sectors >= bio_sectors(bio));

	split = bio_clone_fast(bio, gfp, bs);
	if (!split)
		return NULL;

	split->bi_iter.bi_size = sectors << 9;

	if (bio_integrity(split))
		bio_integrity_trim(split, 0, sectors);

	bio_advance(bio, split->bi_iter.bi_size);

	return split;
}
EXPORT_SYMBOL(bio_split);

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
/**
 * bio_trim - trim a bio
 * @bio:	bio to trim
 * @offset:	number of sectors to trim from the front of @bio
 * @size:	size we want to trim @bio to, in sectors
 */
void bio_trim(struct bio *bio, int offset, int size)
{
	/* 'bio' is a cloned bio which we need to trim to match
	 * the given offset and size.
	 */

	size <<= 9;
1863
	if (offset == 0 && size == bio->bi_iter.bi_size)
1864 1865 1866 1867 1868 1869
		return;

	clear_bit(BIO_SEG_VALID, &bio->bi_flags);

	bio_advance(bio, offset << 9);

1870
	bio->bi_iter.bi_size = size;
1871 1872 1873
}
EXPORT_SYMBOL_GPL(bio_trim);

L
Linus Torvalds 已提交
1874 1875 1876 1877
/*
 * create memory pools for biovec's in a bio_set.
 * use the global biovec slabs created for general use.
 */
1878
mempool_t *biovec_create_pool(int pool_entries)
L
Linus Torvalds 已提交
1879
{
1880
	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
L
Linus Torvalds 已提交
1881

1882
	return mempool_create_slab_pool(pool_entries, bp->slab);
L
Linus Torvalds 已提交
1883 1884 1885 1886
}

void bioset_free(struct bio_set *bs)
{
1887 1888 1889
	if (bs->rescue_workqueue)
		destroy_workqueue(bs->rescue_workqueue);

L
Linus Torvalds 已提交
1890 1891 1892
	if (bs->bio_pool)
		mempool_destroy(bs->bio_pool);

1893 1894 1895
	if (bs->bvec_pool)
		mempool_destroy(bs->bvec_pool);

1896
	bioset_integrity_free(bs);
1897
	bio_put_slab(bs);
L
Linus Torvalds 已提交
1898 1899 1900

	kfree(bs);
}
1901
EXPORT_SYMBOL(bioset_free);
L
Linus Torvalds 已提交
1902

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
/**
 * bioset_create  - Create a bio_set
 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 *
 * Description:
 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 *    to ask for a number of bytes to be allocated in front of the bio.
 *    Front pad allocation is useful for embedding the bio inside
 *    another structure, to avoid allocating extra data to go with the bio.
 *    Note that the bio must be embedded at the END of that structure always,
 *    or things will break badly.
 */
struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
L
Linus Torvalds 已提交
1917
{
1918
	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1919
	struct bio_set *bs;
L
Linus Torvalds 已提交
1920

1921
	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
L
Linus Torvalds 已提交
1922 1923 1924
	if (!bs)
		return NULL;

1925
	bs->front_pad = front_pad;
1926

1927 1928 1929 1930
	spin_lock_init(&bs->rescue_lock);
	bio_list_init(&bs->rescue_list);
	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);

1931
	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1932 1933 1934 1935 1936 1937
	if (!bs->bio_slab) {
		kfree(bs);
		return NULL;
	}

	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
L
Linus Torvalds 已提交
1938 1939 1940
	if (!bs->bio_pool)
		goto bad;

1941
	bs->bvec_pool = biovec_create_pool(pool_size);
1942
	if (!bs->bvec_pool)
1943 1944 1945 1946 1947
		goto bad;

	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
	if (!bs->rescue_workqueue)
		goto bad;
L
Linus Torvalds 已提交
1948

1949
	return bs;
L
Linus Torvalds 已提交
1950 1951 1952 1953
bad:
	bioset_free(bs);
	return NULL;
}
1954
EXPORT_SYMBOL(bioset_create);
L
Linus Torvalds 已提交
1955

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
#ifdef CONFIG_BLK_CGROUP
/**
 * bio_associate_current - associate a bio with %current
 * @bio: target bio
 *
 * Associate @bio with %current if it hasn't been associated yet.  Block
 * layer will treat @bio as if it were issued by %current no matter which
 * task actually issues it.
 *
 * This function takes an extra reference of @task's io_context and blkcg
 * which will be put when @bio is released.  The caller must own @bio,
 * ensure %current->io_context exists, and is responsible for synchronizing
 * calls to this function.
 */
int bio_associate_current(struct bio *bio)
{
	struct io_context *ioc;
	struct cgroup_subsys_state *css;

	if (bio->bi_ioc)
		return -EBUSY;

	ioc = current->io_context;
	if (!ioc)
		return -ENOENT;

	/* acquire active ref on @ioc and associate */
	get_io_context_active(ioc);
	bio->bi_ioc = ioc;

	/* associate blkcg if exists */
	rcu_read_lock();
1988
	css = task_css(current, blkio_cgrp_id);
1989
	if (css && css_tryget_online(css))
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
		bio->bi_css = css;
	rcu_read_unlock();

	return 0;
}

/**
 * bio_disassociate_task - undo bio_associate_current()
 * @bio: target bio
 */
void bio_disassociate_task(struct bio *bio)
{
	if (bio->bi_ioc) {
		put_io_context(bio->bi_ioc);
		bio->bi_ioc = NULL;
	}
	if (bio->bi_css) {
		css_put(bio->bi_css);
		bio->bi_css = NULL;
	}
}

#endif /* CONFIG_BLK_CGROUP */

L
Linus Torvalds 已提交
2014 2015 2016 2017 2018 2019 2020 2021
static void __init biovec_init_slabs(void)
{
	int i;

	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
		int size;
		struct biovec_slab *bvs = bvec_slabs + i;

2022 2023 2024 2025 2026
		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
			bvs->slab = NULL;
			continue;
		}

L
Linus Torvalds 已提交
2027 2028
		size = bvs->nr_vecs * sizeof(struct bio_vec);
		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2029
                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
L
Linus Torvalds 已提交
2030 2031 2032 2033 2034
	}
}

static int __init init_bio(void)
{
2035 2036 2037 2038 2039
	bio_slab_max = 2;
	bio_slab_nr = 0;
	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
	if (!bio_slabs)
		panic("bio: can't allocate bios\n");
L
Linus Torvalds 已提交
2040

2041
	bio_integrity_init();
L
Linus Torvalds 已提交
2042 2043
	biovec_init_slabs();

2044
	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
L
Linus Torvalds 已提交
2045 2046 2047
	if (!fs_bio_set)
		panic("bio: can't allocate bios\n");

2048 2049 2050
	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
		panic("bio: can't create integrity pool\n");

L
Linus Torvalds 已提交
2051 2052 2053
	return 0;
}
subsys_initcall(init_bio);