tree_plugin.h 87.0 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
17 18
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
19 20 21 22 23 24 25 26
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
P
Paul E. McKenney 已提交
28
#include <linux/gfp.h>
29
#include <linux/oom.h>
30
#include <linux/smpboot.h>
31
#include "../time/tick-internal.h"
32

33
#ifdef CONFIG_RCU_BOOST
34

35
#include "../locking/rtmutex_common.h"
36

37 38 39 40 41 42 43 44 45
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
DEFINE_PER_CPU(char, rcu_cpu_has_work);

46 47 48 49 50 51 52 53 54 55 56
#else /* #ifdef CONFIG_RCU_BOOST */

/*
 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
 * all uses are in dead code.  Provide a definition to keep the compiler
 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
 * This probably needs to be excluded from -rt builds.
 */
#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })

#endif /* #else #ifdef CONFIG_RCU_BOOST */
57

P
Paul E. McKenney 已提交
58 59 60
#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
61
static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
P
Paul E. McKenney 已提交
62 63
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */

64 65
/*
 * Check the RCU kernel configuration parameters and print informative
66
 * messages about anything out of the ordinary.
67 68 69
 */
static void __init rcu_bootup_announce_oddness(void)
{
70 71
	if (IS_ENABLED(CONFIG_RCU_TRACE))
		pr_info("\tRCU debugfs-based tracing is enabled.\n");
72 73
	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
74
		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
75
		       RCU_FANOUT);
76
	if (rcu_fanout_exact)
77 78 79 80 81
		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
	if (IS_ENABLED(CONFIG_PROVE_RCU))
		pr_info("\tRCU lockdep checking is enabled.\n");
82 83
	if (RCU_NUM_LVLS >= 4)
		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
84
	if (RCU_FANOUT_LEAF != 16)
85
		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
86 87
			RCU_FANOUT_LEAF);
	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
88
		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
89
	if (nr_cpu_ids != NR_CPUS)
90
		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
91 92
	if (IS_ENABLED(CONFIG_RCU_BOOST))
		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
93 94
}

95
#ifdef CONFIG_PREEMPT_RCU
96

97
RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
98
static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
99
static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
100

101 102
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake);
103

104 105 106
/*
 * Tell them what RCU they are running.
 */
107
static void __init rcu_bootup_announce(void)
108
{
109
	pr_info("Preemptible hierarchical RCU implementation.\n");
110
	rcu_bootup_announce_oddness();
111 112
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/* Flags for rcu_preempt_ctxt_queue() decision table. */
#define RCU_GP_TASKS	0x8
#define RCU_EXP_TASKS	0x4
#define RCU_GP_BLKD	0x2
#define RCU_EXP_BLKD	0x1

/*
 * Queues a task preempted within an RCU-preempt read-side critical
 * section into the appropriate location within the ->blkd_tasks list,
 * depending on the states of any ongoing normal and expedited grace
 * periods.  The ->gp_tasks pointer indicates which element the normal
 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 * indicates which element the expedited grace period is waiting on (again,
 * NULL if none).  If a grace period is waiting on a given element in the
 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 * adding a task to the tail of the list blocks any grace period that is
 * already waiting on one of the elements.  In contrast, adding a task
 * to the head of the list won't block any grace period that is already
 * waiting on one of the elements.
 *
 * This queuing is imprecise, and can sometimes make an ongoing grace
 * period wait for a task that is not strictly speaking blocking it.
 * Given the choice, we needlessly block a normal grace period rather than
 * blocking an expedited grace period.
 *
 * Note that an endless sequence of expedited grace periods still cannot
 * indefinitely postpone a normal grace period.  Eventually, all of the
 * fixed number of preempted tasks blocking the normal grace period that are
 * not also blocking the expedited grace period will resume and complete
 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 * pointer will equal the ->exp_tasks pointer, at which point the end of
 * the corresponding expedited grace period will also be the end of the
 * normal grace period.
 */
147 148
static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
	__releases(rnp->lock) /* But leaves rrupts disabled. */
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
{
	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
	struct task_struct *t = current;

	/*
	 * Decide where to queue the newly blocked task.  In theory,
	 * this could be an if-statement.  In practice, when I tried
	 * that, it was quite messy.
	 */
	switch (blkd_state) {
	case 0:
	case                RCU_EXP_TASKS:
	case                RCU_EXP_TASKS + RCU_GP_BLKD:
	case RCU_GP_TASKS:
	case RCU_GP_TASKS + RCU_EXP_TASKS:

		/*
		 * Blocking neither GP, or first task blocking the normal
		 * GP but not blocking the already-waiting expedited GP.
		 * Queue at the head of the list to avoid unnecessarily
		 * blocking the already-waiting GPs.
		 */
		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
		break;

	case                                              RCU_EXP_BLKD:
	case                                RCU_GP_BLKD:
	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:

		/*
		 * First task arriving that blocks either GP, or first task
		 * arriving that blocks the expedited GP (with the normal
		 * GP already waiting), or a task arriving that blocks
		 * both GPs with both GPs already waiting.  Queue at the
		 * tail of the list to avoid any GP waiting on any of the
		 * already queued tasks that are not blocking it.
		 */
		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
		break;

	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:

		/*
		 * Second or subsequent task blocking the expedited GP.
		 * The task either does not block the normal GP, or is the
		 * first task blocking the normal GP.  Queue just after
		 * the first task blocking the expedited GP.
		 */
		list_add(&t->rcu_node_entry, rnp->exp_tasks);
		break;

	case RCU_GP_TASKS +                 RCU_GP_BLKD:
	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:

		/*
		 * Second or subsequent task blocking the normal GP.
		 * The task does not block the expedited GP. Queue just
		 * after the first task blocking the normal GP.
		 */
		list_add(&t->rcu_node_entry, rnp->gp_tasks);
		break;

	default:

		/* Yet another exercise in excessive paranoia. */
		WARN_ON_ONCE(1);
		break;
	}

	/*
	 * We have now queued the task.  If it was the first one to
	 * block either grace period, update the ->gp_tasks and/or
	 * ->exp_tasks pointers, respectively, to reference the newly
	 * blocked tasks.
	 */
	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
		rnp->gp_tasks = &t->rcu_node_entry;
	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
		rnp->exp_tasks = &t->rcu_node_entry;
B
Boqun Feng 已提交
236
	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

	/*
	 * Report the quiescent state for the expedited GP.  This expedited
	 * GP should not be able to end until we report, so there should be
	 * no need to check for a subsequent expedited GP.  (Though we are
	 * still in a quiescent state in any case.)
	 */
	if (blkd_state & RCU_EXP_BLKD &&
	    t->rcu_read_unlock_special.b.exp_need_qs) {
		t->rcu_read_unlock_special.b.exp_need_qs = false;
		rcu_report_exp_rdp(rdp->rsp, rdp, true);
	} else {
		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
	}
}

253
/*
P
Paul E. McKenney 已提交
254
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
255 256 257
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
258
 *
259 260
 * As with the other rcu_*_qs() functions, callers to this function
 * must disable preemption.
261
 */
262
static void rcu_preempt_qs(void)
263
{
264
	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
265
		trace_rcu_grace_period(TPS("rcu_preempt"),
266
				       __this_cpu_read(rcu_data_p->gpnum),
267
				       TPS("cpuqs"));
268
		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
269 270 271
		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
		current->rcu_read_unlock_special.b.need_qs = false;
	}
272 273 274
}

/*
275 276 277
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
278 279 280 281 282 283
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
284
 *
285
 * Caller must disable interrupts.
286
 */
287
static void rcu_preempt_note_context_switch(void)
288 289 290 291 292
{
	struct task_struct *t = current;
	struct rcu_data *rdp;
	struct rcu_node *rnp;

293
	if (t->rcu_read_lock_nesting > 0 &&
294
	    !t->rcu_read_unlock_special.b.blocked) {
295 296

		/* Possibly blocking in an RCU read-side critical section. */
297
		rdp = this_cpu_ptr(rcu_state_p->rda);
298
		rnp = rdp->mynode;
299
		raw_spin_lock_rcu_node(rnp);
300
		t->rcu_read_unlock_special.b.blocked = true;
301
		t->rcu_blocked_node = rnp;
302 303

		/*
304 305 306
		 * Verify the CPU's sanity, trace the preemption, and
		 * then queue the task as required based on the states
		 * of any ongoing and expedited grace periods.
307
		 */
308
		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
309
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
310 311 312 313 314
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
315
		rcu_preempt_ctxt_queue(rnp, rdp);
316
	} else if (t->rcu_read_lock_nesting < 0 &&
317
		   t->rcu_read_unlock_special.s) {
318 319 320 321 322 323

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
324 325 326 327 328 329 330 331 332 333 334
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
335
	rcu_preempt_qs();
336 337
}

338 339 340 341 342
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
343
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
344
{
345
	return rnp->gp_tasks != NULL;
346 347
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

363 364 365 366 367 368 369 370 371
/*
 * Return true if the specified rcu_node structure has tasks that were
 * preempted within an RCU read-side critical section.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
{
	return !list_empty(&rnp->blkd_tasks);
}

372 373 374 375 376
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
377
void rcu_read_unlock_special(struct task_struct *t)
378
{
379 380 381
	bool empty_exp;
	bool empty_norm;
	bool empty_exp_now;
382
	unsigned long flags;
383
	struct list_head *np;
384
	bool drop_boost_mutex = false;
385
	struct rcu_data *rdp;
386
	struct rcu_node *rnp;
387
	union rcu_special special;
388 389 390 391 392 393 394 395

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
396 397
	 * If RCU core is waiting for this CPU to exit its critical section,
	 * report the fact that it has exited.  Because irqs are disabled,
398
	 * t->rcu_read_unlock_special cannot change.
399 400
	 */
	special = t->rcu_read_unlock_special;
401
	if (special.b.need_qs) {
402
		rcu_preempt_qs();
403
		t->rcu_read_unlock_special.b.need_qs = false;
404
		if (!t->rcu_read_unlock_special.s) {
405 406 407
			local_irq_restore(flags);
			return;
		}
408 409
	}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	/*
	 * Respond to a request for an expedited grace period, but only if
	 * we were not preempted, meaning that we were running on the same
	 * CPU throughout.  If we were preempted, the exp_need_qs flag
	 * would have been cleared at the time of the first preemption,
	 * and the quiescent state would be reported when we were dequeued.
	 */
	if (special.b.exp_need_qs) {
		WARN_ON_ONCE(special.b.blocked);
		t->rcu_read_unlock_special.b.exp_need_qs = false;
		rdp = this_cpu_ptr(rcu_state_p->rda);
		rcu_report_exp_rdp(rcu_state_p, rdp, true);
		if (!t->rcu_read_unlock_special.s) {
			local_irq_restore(flags);
			return;
		}
	}

428
	/* Hardware IRQ handlers cannot block, complain if they get here. */
429 430 431
	if (in_irq() || in_serving_softirq()) {
		lockdep_rcu_suspicious(__FILE__, __LINE__,
				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
432
		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
433 434
			 t->rcu_read_unlock_special.s,
			 t->rcu_read_unlock_special.b.blocked,
435
			 t->rcu_read_unlock_special.b.exp_need_qs,
436
			 t->rcu_read_unlock_special.b.need_qs);
437 438 439 440 441
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
442 443
	if (special.b.blocked) {
		t->rcu_read_unlock_special.b.blocked = false;
444

445
		/*
446
		 * Remove this task from the list it blocked on.  The task
447 448 449
		 * now remains queued on the rcu_node corresponding to the
		 * CPU it first blocked on, so there is no longer any need
		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
450
		 */
451 452 453
		rnp = t->rcu_blocked_node;
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
454
		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
455
		empty_exp = sync_rcu_preempt_exp_done(rnp);
456
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
457
		np = rcu_next_node_entry(t, rnp);
458
		list_del_init(&t->rcu_node_entry);
459
		t->rcu_blocked_node = NULL;
460
		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
461
						rnp->gpnum, t->pid);
462 463 464 465
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
466 467 468 469 470 471
		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
			if (&t->rcu_node_entry == rnp->boost_tasks)
				rnp->boost_tasks = np;
			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
		}
472 473 474 475

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
476 477
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
478
		 */
479
		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
480
		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
481
			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
482 483 484 485 486 487
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
488
			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
489
		} else {
B
Boqun Feng 已提交
490
			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
491
		}
492

493
		/* Unboost if we were boosted. */
494
		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
495
			rt_mutex_unlock(&rnp->boost_mtx);
496

497 498 499 500
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
501
		if (!empty_exp && empty_exp_now)
502
			rcu_report_exp_rnp(rcu_state_p, rnp, true);
503 504
	} else {
		local_irq_restore(flags);
505 506 507
	}
}

508 509 510 511 512 513 514 515 516
/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

517
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
518
	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
B
Boqun Feng 已提交
519
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
520 521
		return;
	}
522
	t = list_entry(rnp->gp_tasks->prev,
523 524 525
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
B
Boqun Feng 已提交
526
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

542 543
static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
544
	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
545 546 547 548 549
	       rnp->level, rnp->grplo, rnp->grphi);
}

static void rcu_print_task_stall_end(void)
{
550
	pr_cont("\n");
551 552
}

553 554 555 556
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
557
static int rcu_print_task_stall(struct rcu_node *rnp)
558 559
{
	struct task_struct *t;
560
	int ndetected = 0;
561

562
	if (!rcu_preempt_blocked_readers_cgp(rnp))
563
		return 0;
564
	rcu_print_task_stall_begin(rnp);
565
	t = list_entry(rnp->gp_tasks->prev,
566
		       struct task_struct, rcu_node_entry);
567
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
568
		pr_cont(" P%d", t->pid);
569 570
		ndetected++;
	}
571
	rcu_print_task_stall_end();
572
	return ndetected;
573 574
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each that is blocking the current
 * expedited grace period.
 */
static int rcu_print_task_exp_stall(struct rcu_node *rnp)
{
	struct task_struct *t;
	int ndetected = 0;

	if (!rnp->exp_tasks)
		return 0;
	t = list_entry(rnp->exp_tasks->prev,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
		pr_cont(" P%d", t->pid);
		ndetected++;
	}
	return ndetected;
}

596 597 598 599 600 601
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
602 603 604
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
605 606 607
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
608
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
609
	if (rcu_preempt_has_tasks(rnp))
610
		rnp->gp_tasks = rnp->blkd_tasks.next;
611
	WARN_ON_ONCE(rnp->qsmask);
612 613
}

614 615 616 617 618 619 620
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
621
static void rcu_preempt_check_callbacks(void)
622 623 624 625
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
626
		rcu_preempt_qs();
627 628
		return;
	}
629
	if (t->rcu_read_lock_nesting > 0 &&
630
	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
631
	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
632
		t->rcu_read_unlock_special.b.need_qs = true;
633 634
}

635 636
#ifdef CONFIG_RCU_BOOST

637 638
static void rcu_preempt_do_callbacks(void)
{
639
	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
640 641
}

642 643
#endif /* #ifdef CONFIG_RCU_BOOST */

644
/*
P
Paul E. McKenney 已提交
645
 * Queue a preemptible-RCU callback for invocation after a grace period.
646
 */
647
void call_rcu(struct rcu_head *head, rcu_callback_t func)
648
{
649
	__call_rcu(head, func, rcu_state_p, -1, 0);
650 651 652
}
EXPORT_SYMBOL_GPL(call_rcu);

653 654 655 656 657
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
658 659 660 661 662
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
663 664 665
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
666 667 668
 */
void synchronize_rcu(void)
{
669 670 671 672
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu() in RCU read-side critical section");
673 674
	if (!rcu_scheduler_active)
		return;
675
	if (rcu_gp_is_expedited())
676 677 678
		synchronize_rcu_expedited();
	else
		wait_rcu_gp(call_rcu);
679 680 681
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

682 683
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
684 685 686 687 688
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
689 690 691
 */
void rcu_barrier(void)
{
692
	_rcu_barrier(rcu_state_p);
693 694 695
}
EXPORT_SYMBOL_GPL(rcu_barrier);

696
/*
P
Paul E. McKenney 已提交
697
 * Initialize preemptible RCU's state structures.
698 699 700
 */
static void __init __rcu_init_preempt(void)
{
701
	rcu_init_one(rcu_state_p);
702 703
}

704 705 706 707 708 709 710 711 712 713 714 715 716 717
/*
 * Check for a task exiting while in a preemptible-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (likely(list_empty(&current->rcu_node_entry)))
		return;
	t->rcu_read_lock_nesting = 1;
	barrier();
718
	t->rcu_read_unlock_special.b.blocked = true;
719 720 721
	__rcu_read_unlock();
}

722
#else /* #ifdef CONFIG_PREEMPT_RCU */
723

724
static struct rcu_state *const rcu_state_p = &rcu_sched_state;
725

726 727 728
/*
 * Tell them what RCU they are running.
 */
729
static void __init rcu_bootup_announce(void)
730
{
731
	pr_info("Hierarchical RCU implementation.\n");
732
	rcu_bootup_announce_oddness();
733 734
}

735 736 737 738
/*
 * Because preemptible RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
739
static void rcu_preempt_note_context_switch(void)
740 741 742
{
}

743
/*
P
Paul E. McKenney 已提交
744
 * Because preemptible RCU does not exist, there are never any preempted
745 746
 * RCU readers.
 */
747
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
748 749 750 751
{
	return 0;
}

752 753 754 755
/*
 * Because there is no preemptible RCU, there can be no readers blocked.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
756
{
757
	return false;
758 759
}

760
/*
P
Paul E. McKenney 已提交
761
 * Because preemptible RCU does not exist, we never have to check for
762 763 764 765 766 767
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

768
/*
P
Paul E. McKenney 已提交
769
 * Because preemptible RCU does not exist, we never have to check for
770 771
 * tasks blocked within RCU read-side critical sections.
 */
772
static int rcu_print_task_stall(struct rcu_node *rnp)
773
{
774
	return 0;
775 776
}

777 778 779 780 781 782 783 784 785 786
/*
 * Because preemptible RCU does not exist, we never have to check for
 * tasks blocked within RCU read-side critical sections that are
 * blocking the current expedited grace period.
 */
static int rcu_print_task_exp_stall(struct rcu_node *rnp)
{
	return 0;
}

787
/*
P
Paul E. McKenney 已提交
788
 * Because there is no preemptible RCU, there can be no readers blocked,
789 790
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
791 792 793
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
794
	WARN_ON_ONCE(rnp->qsmask);
795 796
}

797
/*
P
Paul E. McKenney 已提交
798
 * Because preemptible RCU does not exist, it never has any callbacks
799 800
 * to check.
 */
801
static void rcu_preempt_check_callbacks(void)
802 803 804
{
}

805
/*
P
Paul E. McKenney 已提交
806
 * Because preemptible RCU does not exist, rcu_barrier() is just
807 808 809 810 811 812 813 814
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

815
/*
P
Paul E. McKenney 已提交
816
 * Because preemptible RCU does not exist, it need not be initialized.
817 818 819 820 821
 */
static void __init __rcu_init_preempt(void)
{
}

822 823 824 825 826 827 828 829
/*
 * Because preemptible RCU does not exist, tasks cannot possibly exit
 * while in preemptible RCU read-side critical sections.
 */
void exit_rcu(void)
{
}

830
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
831

832 833
#ifdef CONFIG_RCU_BOOST

834
#include "../locking/rtmutex_common.h"
835

836 837 838 839
#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
840
	if (!rcu_preempt_has_tasks(rnp))
841 842 843 844 845 846 847 848
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
849
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
850 851 852 853 854 855 856 857 858 859 860 861 862
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

T
Thomas Gleixner 已提交
863 864 865 866 867 868 869 870 871 872
static void rcu_wake_cond(struct task_struct *t, int status)
{
	/*
	 * If the thread is yielding, only wake it when this
	 * is invoked from idle
	 */
	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
		wake_up_process(t);
}

873 874 875 876 877 878 879 880 881 882 883 884 885 886
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;
	struct list_head *tb;

887 888
	if (READ_ONCE(rnp->exp_tasks) == NULL &&
	    READ_ONCE(rnp->boost_tasks) == NULL)
889 890
		return 0;  /* Nothing left to boost. */

891
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
892 893 894 895 896 897

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
B
Boqun Feng 已提交
898
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
899 900 901 902 903 904 905 906 907
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
908
	if (rnp->exp_tasks != NULL) {
909
		tb = rnp->exp_tasks;
910 911
		rnp->n_exp_boosts++;
	} else {
912
		tb = rnp->boost_tasks;
913 914 915
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
934
	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
B
Boqun Feng 已提交
935
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
936 937 938
	/* Lock only for side effect: boosts task t's priority. */
	rt_mutex_lock(&rnp->boost_mtx);
	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
939

940 941
	return READ_ONCE(rnp->exp_tasks) != NULL ||
	       READ_ONCE(rnp->boost_tasks) != NULL;
942 943 944
}

/*
945
 * Priority-boosting kthread, one per leaf rcu_node.
946 947 948 949 950 951 952
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

953
	trace_rcu_utilization(TPS("Start boost kthread@init"));
954
	for (;;) {
955
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
956
		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
957
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
958
		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
959
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
960 961 962 963 964 965
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
T
Thomas Gleixner 已提交
966
			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
967
			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
T
Thomas Gleixner 已提交
968
			schedule_timeout_interruptible(2);
969
			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
970 971 972
			spincnt = 0;
		}
	}
973
	/* NOTREACHED */
974
	trace_rcu_utilization(TPS("End boost kthread@notreached"));
975 976 977 978 979 980 981 982 983
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
984 985 986
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
987
 */
988
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
989
	__releases(rnp->lock)
990 991 992
{
	struct task_struct *t;

993 994
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
B
Boqun Feng 已提交
995
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
996
		return;
997
	}
998 999 1000 1001 1002 1003 1004
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
B
Boqun Feng 已提交
1005
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1006
		t = rnp->boost_kthread_task;
T
Thomas Gleixner 已提交
1007 1008
		if (t)
			rcu_wake_cond(t, rnp->boost_kthread_status);
1009
	} else {
1010
		rcu_initiate_boost_trace(rnp);
B
Boqun Feng 已提交
1011
		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1012
	}
1013 1014
}

1015 1016 1017 1018 1019 1020 1021 1022 1023
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
1024
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
T
Thomas Gleixner 已提交
1025 1026 1027 1028
	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
			      __this_cpu_read(rcu_cpu_kthread_status));
	}
1029 1030 1031
	local_irq_restore(flags);
}

1032 1033 1034 1035 1036 1037
/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
1038
	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1039 1040
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
1056
static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1057
				       struct rcu_node *rnp)
1058
{
T
Thomas Gleixner 已提交
1059
	int rnp_index = rnp - &rsp->node[0];
1060 1061 1062 1063
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

1064
	if (rcu_state_p != rsp)
1065
		return 0;
T
Thomas Gleixner 已提交
1066

1067
	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
T
Thomas Gleixner 已提交
1068 1069
		return 0;

1070
	rsp->boost = 1;
1071 1072 1073
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1074
			   "rcub/%d", rnp_index);
1075 1076
	if (IS_ERR(t))
		return PTR_ERR(t);
1077
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1078
	rnp->boost_kthread_task = t;
B
Boqun Feng 已提交
1079
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1080
	sp.sched_priority = kthread_prio;
1081
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1082
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1083 1084 1085
	return 0;
}

1086 1087
static void rcu_kthread_do_work(void)
{
1088 1089
	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1090 1091 1092
	rcu_preempt_do_callbacks();
}

1093
static void rcu_cpu_kthread_setup(unsigned int cpu)
1094 1095 1096
{
	struct sched_param sp;

1097
	sp.sched_priority = kthread_prio;
1098
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1099 1100
}

1101
static void rcu_cpu_kthread_park(unsigned int cpu)
1102
{
1103
	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1104 1105
}

1106
static int rcu_cpu_kthread_should_run(unsigned int cpu)
1107
{
1108
	return __this_cpu_read(rcu_cpu_has_work);
1109 1110 1111 1112
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1113 1114
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
1115
 */
1116
static void rcu_cpu_kthread(unsigned int cpu)
1117
{
1118 1119
	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1120
	int spincnt;
1121

1122
	for (spincnt = 0; spincnt < 10; spincnt++) {
1123
		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1124 1125
		local_bh_disable();
		*statusp = RCU_KTHREAD_RUNNING;
1126 1127
		this_cpu_inc(rcu_cpu_kthread_loops);
		local_irq_disable();
1128 1129
		work = *workp;
		*workp = 0;
1130
		local_irq_enable();
1131 1132 1133
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
1134
		if (*workp == 0) {
1135
			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1136 1137
			*statusp = RCU_KTHREAD_WAITING;
			return;
1138 1139
		}
	}
1140
	*statusp = RCU_KTHREAD_YIELDING;
1141
	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1142
	schedule_timeout_interruptible(2);
1143
	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1144
	*statusp = RCU_KTHREAD_WAITING;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
T
Thomas Gleixner 已提交
1156
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1157
{
T
Thomas Gleixner 已提交
1158
	struct task_struct *t = rnp->boost_kthread_task;
1159
	unsigned long mask = rcu_rnp_online_cpus(rnp);
1160 1161 1162
	cpumask_var_t cm;
	int cpu;

T
Thomas Gleixner 已提交
1163
	if (!t)
1164
		return;
T
Thomas Gleixner 已提交
1165
	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1166
		return;
1167 1168 1169
	for_each_leaf_node_possible_cpu(rnp, cpu)
		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
		    cpu != outgoingcpu)
1170
			cpumask_set_cpu(cpu, cm);
1171
	if (cpumask_weight(cm) == 0)
1172
		cpumask_setall(cm);
T
Thomas Gleixner 已提交
1173
	set_cpus_allowed_ptr(t, cm);
1174 1175 1176
	free_cpumask_var(cm);
}

1177 1178 1179 1180 1181 1182 1183 1184
static struct smp_hotplug_thread rcu_cpu_thread_spec = {
	.store			= &rcu_cpu_kthread_task,
	.thread_should_run	= rcu_cpu_kthread_should_run,
	.thread_fn		= rcu_cpu_kthread,
	.thread_comm		= "rcuc/%u",
	.setup			= rcu_cpu_kthread_setup,
	.park			= rcu_cpu_kthread_park,
};
1185 1186

/*
1187
 * Spawn boost kthreads -- called as soon as the scheduler is running.
1188
 */
1189
static void __init rcu_spawn_boost_kthreads(void)
1190 1191
{
	struct rcu_node *rnp;
T
Thomas Gleixner 已提交
1192
	int cpu;
1193

1194
	for_each_possible_cpu(cpu)
1195
		per_cpu(rcu_cpu_has_work, cpu) = 0;
1196
	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1197 1198
	rcu_for_each_leaf_node(rcu_state_p, rnp)
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1199 1200
}

1201
static void rcu_prepare_kthreads(int cpu)
1202
{
1203
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1204 1205 1206
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1207
	if (rcu_scheduler_fully_active)
1208
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1209 1210
}

1211 1212
#else /* #ifdef CONFIG_RCU_BOOST */

1213
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1214
	__releases(rnp->lock)
1215
{
B
Boqun Feng 已提交
1216
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1217 1218
}

1219
static void invoke_rcu_callbacks_kthread(void)
1220
{
1221
	WARN_ON_ONCE(1);
1222 1223
}

1224 1225 1226 1227 1228
static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

1229 1230 1231 1232
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

T
Thomas Gleixner 已提交
1233
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1234 1235 1236
{
}

1237
static void __init rcu_spawn_boost_kthreads(void)
1238 1239 1240
{
}

1241
static void rcu_prepare_kthreads(int cpu)
1242 1243 1244
{
}

1245 1246
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1247 1248 1249 1250 1251 1252 1253 1254
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
1255 1256
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
1257
 */
1258
int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1259
{
1260
	*nextevt = KTIME_MAX;
1261 1262
	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
	       ? 0 : rcu_cpu_has_callbacks(NULL);
1263 1264 1265 1266 1267 1268
}

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
1269
static void rcu_cleanup_after_idle(void)
1270 1271 1272
{
}

1273
/*
1274
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1275 1276
 * is nothing.
 */
1277
static void rcu_prepare_for_idle(void)
1278 1279 1280
{
}

1281 1282 1283 1284 1285 1286 1287 1288
/*
 * Don't bother keeping a running count of the number of RCU callbacks
 * posted because CONFIG_RCU_FAST_NO_HZ=n.
 */
static void rcu_idle_count_callbacks_posted(void)
{
}

1289 1290
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
1306 1307 1308
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
1309 1310 1311 1312 1313
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
1314
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1315
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1316

1317 1318 1319 1320
static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
module_param(rcu_idle_gp_delay, int, 0644);
static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
module_param(rcu_idle_lazy_gp_delay, int, 0644);
1321 1322

/*
1323 1324 1325
 * Try to advance callbacks for all flavors of RCU on the current CPU, but
 * only if it has been awhile since the last time we did so.  Afterwards,
 * if there are any callbacks ready for immediate invocation, return true.
1326
 */
1327
static bool __maybe_unused rcu_try_advance_all_cbs(void)
1328
{
1329 1330
	bool cbs_ready = false;
	struct rcu_data *rdp;
1331
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1332 1333
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1334

1335 1336
	/* Exit early if we advanced recently. */
	if (jiffies == rdtp->last_advance_all)
1337
		return false;
1338 1339
	rdtp->last_advance_all = jiffies;

1340 1341 1342
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		rnp = rdp->mynode;
1343

1344 1345 1346 1347 1348
		/*
		 * Don't bother checking unless a grace period has
		 * completed since we last checked and there are
		 * callbacks not yet ready to invoke.
		 */
1349
		if ((rdp->completed != rnp->completed ||
1350
		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1351
		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1352
			note_gp_changes(rsp, rdp);
1353

1354 1355 1356 1357
		if (cpu_has_callbacks_ready_to_invoke(rdp))
			cbs_ready = true;
	}
	return cbs_ready;
1358 1359
}

1360
/*
1361 1362 1363 1364
 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
 * caller to set the timeout based on whether or not there are non-lazy
 * callbacks.
1365
 *
1366
 * The caller must have disabled interrupts.
1367
 */
1368
int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1369
{
1370
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1371
	unsigned long dj;
1372

1373
	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1374
		*nextevt = KTIME_MAX;
1375 1376 1377
		return 0;
	}

1378 1379 1380
	/* Snapshot to detect later posting of non-lazy callback. */
	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;

1381
	/* If no callbacks, RCU doesn't need the CPU. */
1382
	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1383
		*nextevt = KTIME_MAX;
1384 1385
		return 0;
	}
1386 1387 1388 1389 1390

	/* Attempt to advance callbacks. */
	if (rcu_try_advance_all_cbs()) {
		/* Some ready to invoke, so initiate later invocation. */
		invoke_rcu_core();
1391 1392
		return 1;
	}
1393 1394 1395
	rdtp->last_accelerate = jiffies;

	/* Request timer delay depending on laziness, and round. */
1396
	if (!rdtp->all_lazy) {
1397
		dj = round_up(rcu_idle_gp_delay + jiffies,
1398
			       rcu_idle_gp_delay) - jiffies;
1399
	} else {
1400
		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1401
	}
1402
	*nextevt = basemono + dj * TICK_NSEC;
1403 1404 1405
	return 0;
}

1406
/*
1407 1408 1409 1410 1411 1412
 * Prepare a CPU for idle from an RCU perspective.  The first major task
 * is to sense whether nohz mode has been enabled or disabled via sysfs.
 * The second major task is to check to see if a non-lazy callback has
 * arrived at a CPU that previously had only lazy callbacks.  The third
 * major task is to accelerate (that is, assign grace-period numbers to)
 * any recently arrived callbacks.
1413 1414
 *
 * The caller must have disabled interrupts.
1415
 */
1416
static void rcu_prepare_for_idle(void)
1417
{
1418
	bool needwake;
1419
	struct rcu_data *rdp;
1420
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1421 1422
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1423 1424
	int tne;

1425 1426
	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
	    rcu_is_nocb_cpu(smp_processor_id()))
1427 1428
		return;

1429
	/* Handle nohz enablement switches conservatively. */
1430
	tne = READ_ONCE(tick_nohz_active);
1431
	if (tne != rdtp->tick_nohz_enabled_snap) {
1432
		if (rcu_cpu_has_callbacks(NULL))
1433 1434 1435 1436 1437 1438
			invoke_rcu_core(); /* force nohz to see update. */
		rdtp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;
1439

1440
	/*
1441 1442 1443
	 * If a non-lazy callback arrived at a CPU having only lazy
	 * callbacks, invoke RCU core for the side-effect of recalculating
	 * idle duration on re-entry to idle.
1444
	 */
1445 1446
	if (rdtp->all_lazy &&
	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1447 1448
		rdtp->all_lazy = false;
		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1449
		invoke_rcu_core();
1450 1451 1452
		return;
	}

1453
	/*
1454 1455
	 * If we have not yet accelerated this jiffy, accelerate all
	 * callbacks on this CPU.
1456
	 */
1457
	if (rdtp->last_accelerate == jiffies)
1458
		return;
1459 1460
	rdtp->last_accelerate = jiffies;
	for_each_rcu_flavor(rsp) {
1461
		rdp = this_cpu_ptr(rsp->rda);
1462 1463 1464
		if (!*rdp->nxttail[RCU_DONE_TAIL])
			continue;
		rnp = rdp->mynode;
1465
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1466
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
B
Boqun Feng 已提交
1467
		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1468 1469
		if (needwake)
			rcu_gp_kthread_wake(rsp);
1470
	}
1471
}
1472

1473 1474 1475 1476 1477
/*
 * Clean up for exit from idle.  Attempt to advance callbacks based on
 * any grace periods that elapsed while the CPU was idle, and if any
 * callbacks are now ready to invoke, initiate invocation.
 */
1478
static void rcu_cleanup_after_idle(void)
1479
{
1480 1481
	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
	    rcu_is_nocb_cpu(smp_processor_id()))
1482
		return;
1483 1484
	if (rcu_try_advance_all_cbs())
		invoke_rcu_core();
1485 1486
}

1487
/*
1488 1489 1490 1491 1492 1493
 * Keep a running count of the number of non-lazy callbacks posted
 * on this CPU.  This running counter (which is never decremented) allows
 * rcu_prepare_for_idle() to detect when something out of the idle loop
 * posts a callback, even if an equal number of callbacks are invoked.
 * Of course, callbacks should only be posted from within a trace event
 * designed to be called from idle or from within RCU_NONIDLE().
1494 1495 1496
 */
static void rcu_idle_count_callbacks_posted(void)
{
1497
	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1498 1499
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
/*
 * Data for flushing lazy RCU callbacks at OOM time.
 */
static atomic_t oom_callback_count;
static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);

/*
 * RCU OOM callback -- decrement the outstanding count and deliver the
 * wake-up if we are the last one.
 */
static void rcu_oom_callback(struct rcu_head *rhp)
{
	if (atomic_dec_and_test(&oom_callback_count))
		wake_up(&oom_callback_wq);
}

/*
 * Post an rcu_oom_notify callback on the current CPU if it has at
 * least one lazy callback.  This will unnecessarily post callbacks
 * to CPUs that already have a non-lazy callback at the end of their
 * callback list, but this is an infrequent operation, so accept some
 * extra overhead to keep things simple.
 */
static void rcu_oom_notify_cpu(void *unused)
{
	struct rcu_state *rsp;
	struct rcu_data *rdp;

	for_each_rcu_flavor(rsp) {
1529
		rdp = raw_cpu_ptr(rsp->rda);
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
		if (rdp->qlen_lazy != 0) {
			atomic_inc(&oom_callback_count);
			rsp->call(&rdp->oom_head, rcu_oom_callback);
		}
	}
}

/*
 * If low on memory, ensure that each CPU has a non-lazy callback.
 * This will wake up CPUs that have only lazy callbacks, in turn
 * ensuring that they free up the corresponding memory in a timely manner.
 * Because an uncertain amount of memory will be freed in some uncertain
 * timeframe, we do not claim to have freed anything.
 */
static int rcu_oom_notify(struct notifier_block *self,
			  unsigned long notused, void *nfreed)
{
	int cpu;

	/* Wait for callbacks from earlier instance to complete. */
	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1551
	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1552 1553 1554 1555 1556 1557 1558 1559 1560

	/*
	 * Prevent premature wakeup: ensure that all increments happen
	 * before there is a chance of the counter reaching zero.
	 */
	atomic_set(&oom_callback_count, 1);

	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1561
		cond_resched_rcu_qs();
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	}

	/* Unconditionally decrement: no need to wake ourselves up. */
	atomic_dec(&oom_callback_count);

	return NOTIFY_OK;
}

static struct notifier_block rcu_oom_nb = {
	.notifier_call = rcu_oom_notify
};

static int __init rcu_register_oom_notifier(void)
{
	register_oom_notifier(&rcu_oom_nb);
	return 0;
}
early_initcall(rcu_register_oom_notifier);

1581
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1582 1583 1584 1585 1586

#ifdef CONFIG_RCU_FAST_NO_HZ

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1587
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1588
	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1589

1590 1591 1592 1593 1594
	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
		ulong2long(nlpd),
		rdtp->all_lazy ? 'L' : '.',
		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1595 1596 1597 1598 1599 1600
}

#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1601
	*cp = '\0';
1602 1603 1604 1605 1606 1607 1608
}

#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */

/* Initiate the stall-info list. */
static void print_cpu_stall_info_begin(void)
{
1609
	pr_cont("\n");
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
}

/*
 * Print out diagnostic information for the specified stalled CPU.
 *
 * If the specified CPU is aware of the current RCU grace period
 * (flavor specified by rsp), then print the number of scheduling
 * clock interrupts the CPU has taken during the time that it has
 * been aware.  Otherwise, print the number of RCU grace periods
 * that this CPU is ignorant of, for example, "1" if the CPU was
 * aware of the previous grace period.
 *
 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 */
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	char fast_no_hz[72];
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_dynticks *rdtp = rdp->dynticks;
	char *ticks_title;
	unsigned long ticks_value;

	if (rsp->gpnum == rdp->gpnum) {
		ticks_title = "ticks this GP";
		ticks_value = rdp->ticks_this_gp;
	} else {
		ticks_title = "GPs behind";
		ticks_value = rsp->gpnum - rdp->gpnum;
	}
	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1640 1641 1642 1643 1644 1645
	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
	       cpu,
	       "O."[!!cpu_online(cpu)],
	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
	       ticks_value, ticks_title,
1646 1647
	       atomic_read(&rdtp->dynticks) & 0xfff,
	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1648
	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1649
	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1650 1651 1652 1653 1654 1655
	       fast_no_hz);
}

/* Terminate the stall-info list. */
static void print_cpu_stall_info_end(void)
{
1656
	pr_err("\t");
1657 1658 1659 1660 1661 1662
}

/* Zero ->ticks_this_gp for all flavors of RCU. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
	rdp->ticks_this_gp = 0;
1663
	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1664 1665 1666 1667 1668
}

/* Increment ->ticks_this_gp for all flavors of RCU. */
static void increment_cpu_stall_ticks(void)
{
1669 1670 1671
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1672
		raw_cpu_inc(rsp->rda->ticks_this_gp);
1673 1674
}

P
Paul E. McKenney 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
#ifdef CONFIG_RCU_NOCB_CPU

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
 * kthread created that pulls the callbacks from the corresponding CPU,
 * waits for a grace period to elapse, and invokes the callbacks.
 * The no-CBs CPUs do a wake_up() on their kthread when they insert
 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
 * has been specified, in which case each kthread actively polls its
 * CPU.  (Which isn't so great for energy efficiency, but which does
 * reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callback processing could also in theory be used as
 * an energy-efficiency measure because CPUs with no RCU callbacks
 * queued are more aggressive about entering dyntick-idle mode.
 */


/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
static int __init rcu_nocb_setup(char *str)
{
	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
	have_rcu_nocb_mask = true;
	cpulist_parse(str, rcu_nocb_mask);
	return 1;
}
__setup("rcu_nocbs=", rcu_nocb_setup);

1708 1709 1710 1711 1712 1713 1714
static int __init parse_rcu_nocb_poll(char *arg)
{
	rcu_nocb_poll = 1;
	return 0;
}
early_param("rcu_nocb_poll", parse_rcu_nocb_poll);

1715
/*
1716 1717
 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 * grace period.
1718
 */
1719
static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1720
{
1721
	swake_up_all(sq);
1722 1723 1724
}

/*
1725
 * Set the root rcu_node structure's ->need_future_gp field
1726 1727 1728 1729 1730
 * based on the sum of those of all rcu_node structures.  This does
 * double-count the root rcu_node structure's requests, but this
 * is necessary to handle the possibility of a rcu_nocb_kthread()
 * having awakened during the time that the rcu_node structures
 * were being updated for the end of the previous grace period.
1731
 */
1732 1733
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
1734
	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1735 1736
}

1737
static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1738 1739 1740 1741
{
	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
}

1742
static void rcu_init_one_nocb(struct rcu_node *rnp)
1743
{
1744 1745
	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1746 1747
}

1748
#ifndef CONFIG_RCU_NOCB_CPU_ALL
L
Liu Ping Fan 已提交
1749
/* Is the specified CPU a no-CBs CPU? */
1750
bool rcu_is_nocb_cpu(int cpu)
P
Paul E. McKenney 已提交
1751 1752 1753 1754 1755
{
	if (have_rcu_nocb_mask)
		return cpumask_test_cpu(cpu, rcu_nocb_mask);
	return false;
}
1756
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
P
Paul E. McKenney 已提交
1757

1758 1759 1760 1761 1762 1763 1764
/*
 * Kick the leader kthread for this NOCB group.
 */
static void wake_nocb_leader(struct rcu_data *rdp, bool force)
{
	struct rcu_data *rdp_leader = rdp->nocb_leader;

1765
	if (!READ_ONCE(rdp_leader->nocb_kthread))
1766
		return;
1767
	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1768
		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1769
		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1770
		swake_up(&rdp_leader->nocb_wq);
1771 1772 1773
	}
}

1774 1775 1776 1777 1778 1779 1780
/*
 * Does the specified CPU need an RCU callback for the specified flavor
 * of rcu_barrier()?
 */
static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1781 1782
	unsigned long ret;
#ifdef CONFIG_PROVE_RCU
1783
	struct rcu_head *rhp;
1784
#endif /* #ifdef CONFIG_PROVE_RCU */
1785

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	/*
	 * Check count of all no-CBs callbacks awaiting invocation.
	 * There needs to be a barrier before this function is called,
	 * but associated with a prior determination that no more
	 * callbacks would be posted.  In the worst case, the first
	 * barrier in _rcu_barrier() suffices (but the caller cannot
	 * necessarily rely on this, not a substitute for the caller
	 * getting the concurrency design right!).  There must also be
	 * a barrier between the following load an posting of a callback
	 * (if a callback is in fact needed).  This is associated with an
	 * atomic_inc() in the caller.
	 */
	ret = atomic_long_read(&rdp->nocb_q_count);
1799

1800
#ifdef CONFIG_PROVE_RCU
1801
	rhp = READ_ONCE(rdp->nocb_head);
1802
	if (!rhp)
1803
		rhp = READ_ONCE(rdp->nocb_gp_head);
1804
	if (!rhp)
1805
		rhp = READ_ONCE(rdp->nocb_follower_head);
1806 1807

	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1808
	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1809
	    rcu_scheduler_fully_active) {
1810 1811 1812 1813 1814
		/* RCU callback enqueued before CPU first came online??? */
		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
		       cpu, rhp->func);
		WARN_ON_ONCE(1);
	}
1815
#endif /* #ifdef CONFIG_PROVE_RCU */
1816

1817
	return !!ret;
1818 1819
}

P
Paul E. McKenney 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
/*
 * Enqueue the specified string of rcu_head structures onto the specified
 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
 * counts are supplied by rhcount and rhcount_lazy.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
				    struct rcu_head *rhp,
				    struct rcu_head **rhtp,
1831 1832
				    int rhcount, int rhcount_lazy,
				    unsigned long flags)
P
Paul E. McKenney 已提交
1833 1834 1835 1836 1837 1838
{
	int len;
	struct rcu_head **old_rhpp;
	struct task_struct *t;

	/* Enqueue the callback on the nocb list and update counts. */
1839 1840
	atomic_long_add(rhcount, &rdp->nocb_q_count);
	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
P
Paul E. McKenney 已提交
1841
	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1842
	WRITE_ONCE(*old_rhpp, rhp);
P
Paul E. McKenney 已提交
1843
	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1844
	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
P
Paul E. McKenney 已提交
1845 1846

	/* If we are not being polled and there is a kthread, awaken it ... */
1847
	t = READ_ONCE(rdp->nocb_kthread);
1848
	if (rcu_nocb_poll || !t) {
1849 1850
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
				    TPS("WakeNotPoll"));
P
Paul E. McKenney 已提交
1851
		return;
1852
	}
P
Paul E. McKenney 已提交
1853 1854
	len = atomic_long_read(&rdp->nocb_q_count);
	if (old_rhpp == &rdp->nocb_head) {
1855
		if (!irqs_disabled_flags(flags)) {
1856 1857
			/* ... if queue was empty ... */
			wake_nocb_leader(rdp, false);
1858 1859 1860
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmpty"));
		} else {
1861
			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1862 1863 1864
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmptyIsDeferred"));
		}
P
Paul E. McKenney 已提交
1865 1866
		rdp->qlen_last_fqs_check = 0;
	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1867
		/* ... or if many callbacks queued. */
1868 1869 1870 1871 1872 1873 1874 1875 1876
		if (!irqs_disabled_flags(flags)) {
			wake_nocb_leader(rdp, true);
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeOvf"));
		} else {
			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeOvfIsDeferred"));
		}
P
Paul E. McKenney 已提交
1877
		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1878 1879
	} else {
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
P
Paul E. McKenney 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	}
	return;
}

/*
 * This is a helper for __call_rcu(), which invokes this when the normal
 * callback queue is inoperable.  If this is not a no-CBs CPU, this
 * function returns failure back to __call_rcu(), which can complain
 * appropriately.
 *
 * Otherwise, this function queues the callback where the corresponding
 * "rcuo" kthread can find it.
 */
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1894
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
1895 1896
{

1897
	if (!rcu_is_nocb_cpu(rdp->cpu))
1898
		return false;
1899
	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1900 1901 1902
	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
					 (unsigned long)rhp->func,
1903 1904
					 -atomic_long_read(&rdp->nocb_q_count_lazy),
					 -atomic_long_read(&rdp->nocb_q_count));
1905 1906
	else
		trace_rcu_callback(rdp->rsp->name, rhp,
1907 1908
				   -atomic_long_read(&rdp->nocb_q_count_lazy),
				   -atomic_long_read(&rdp->nocb_q_count));
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

	/*
	 * If called from an extended quiescent state with interrupts
	 * disabled, invoke the RCU core in order to allow the idle-entry
	 * deferred-wakeup check to function.
	 */
	if (irqs_disabled_flags(flags) &&
	    !rcu_is_watching() &&
	    cpu_online(smp_processor_id()))
		invoke_rcu_core();

1920
	return true;
P
Paul E. McKenney 已提交
1921 1922 1923 1924 1925 1926 1927
}

/*
 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
 * not a no-CBs CPU.
 */
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1928 1929
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
1930 1931 1932 1933 1934
{
	long ql = rsp->qlen;
	long qll = rsp->qlen_lazy;

	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1935
	if (!rcu_is_nocb_cpu(smp_processor_id()))
1936
		return false;
P
Paul E. McKenney 已提交
1937 1938 1939 1940 1941 1942
	rsp->qlen = 0;
	rsp->qlen_lazy = 0;

	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
	if (rsp->orphan_donelist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
1943
					rsp->orphan_donetail, ql, qll, flags);
P
Paul E. McKenney 已提交
1944 1945 1946 1947 1948 1949
		ql = qll = 0;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}
	if (rsp->orphan_nxtlist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
1950
					rsp->orphan_nxttail, ql, qll, flags);
P
Paul E. McKenney 已提交
1951 1952 1953 1954
		ql = qll = 0;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
1955
	return true;
P
Paul E. McKenney 已提交
1956 1957 1958
}

/*
1959 1960
 * If necessary, kick off a new grace period, and either way wait
 * for a subsequent grace period to complete.
P
Paul E. McKenney 已提交
1961
 */
1962
static void rcu_nocb_wait_gp(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
1963
{
1964
	unsigned long c;
1965
	bool d;
1966
	unsigned long flags;
1967
	bool needwake;
1968 1969
	struct rcu_node *rnp = rdp->mynode;

1970
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1971
	needwake = rcu_start_future_gp(rnp, rdp, &c);
B
Boqun Feng 已提交
1972
	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1973 1974
	if (needwake)
		rcu_gp_kthread_wake(rdp->rsp);
P
Paul E. McKenney 已提交
1975 1976

	/*
1977 1978
	 * Wait for the grace period.  Do so interruptibly to avoid messing
	 * up the load average.
P
Paul E. McKenney 已提交
1979
	 */
1980
	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
1981
	for (;;) {
1982
		swait_event_interruptible(
1983
			rnp->nocb_gp_wq[c & 0x1],
1984
			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
1985
		if (likely(d))
1986
			break;
1987
		WARN_ON(signal_pending(current));
1988
		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
1989
	}
1990
	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
1991
	smp_mb(); /* Ensure that CB invocation happens after GP end. */
P
Paul E. McKenney 已提交
1992 1993
}

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
/*
 * Leaders come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_leader_wait(struct rcu_data *my_rdp)
{
	bool firsttime = true;
	bool gotcbs;
	struct rcu_data *rdp;
	struct rcu_head **tail;

wait_again:

	/* Wait for callbacks to appear. */
	if (!rcu_nocb_poll) {
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2010
		swait_event_interruptible(my_rdp->nocb_wq,
2011
				!READ_ONCE(my_rdp->nocb_leader_sleep));
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
		/* Memory barrier handled by smp_mb() calls below and repoll. */
	} else if (firsttime) {
		firsttime = false; /* Don't drown trace log with "Poll"! */
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
	}

	/*
	 * Each pass through the following loop checks a follower for CBs.
	 * We are our own first follower.  Any CBs found are moved to
	 * nocb_gp_head, where they await a grace period.
	 */
	gotcbs = false;
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2025
		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2026 2027 2028 2029
		if (!rdp->nocb_gp_head)
			continue;  /* No CBs here, try next follower. */

		/* Move callbacks to wait-for-GP list, which is empty. */
2030
		WRITE_ONCE(rdp->nocb_head, NULL);
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
		gotcbs = true;
	}

	/*
	 * If there were no callbacks, sleep a bit, rescan after a
	 * memory barrier, and go retry.
	 */
	if (unlikely(!gotcbs)) {
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
					    "WokeEmpty");
2043
		WARN_ON(signal_pending(current));
2044 2045 2046
		schedule_timeout_interruptible(1);

		/* Rescan in case we were a victim of memory ordering. */
2047 2048
		my_rdp->nocb_leader_sleep = true;
		smp_mb();  /* Ensure _sleep true before scan. */
2049
		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2050
			if (READ_ONCE(rdp->nocb_head)) {
2051
				/* Found CB, so short-circuit next wait. */
2052
				my_rdp->nocb_leader_sleep = false;
2053 2054 2055 2056 2057 2058 2059 2060 2061
				break;
			}
		goto wait_again;
	}

	/* Wait for one grace period. */
	rcu_nocb_wait_gp(my_rdp);

	/*
2062 2063
	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
	 * We set it now, but recheck for new callbacks while
2064 2065
	 * traversing our follower list.
	 */
2066 2067
	my_rdp->nocb_leader_sleep = true;
	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2068 2069 2070

	/* Each pass through the following loop wakes a follower, if needed. */
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2071
		if (READ_ONCE(rdp->nocb_head))
2072
			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2073 2074 2075 2076 2077 2078
		if (!rdp->nocb_gp_head)
			continue; /* No CBs, so no need to wake follower. */

		/* Append callbacks to follower's "done" list. */
		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
		*tail = rdp->nocb_gp_head;
2079
		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2080 2081 2082 2083 2084
		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
			/*
			 * List was empty, wake up the follower.
			 * Memory barriers supplied by atomic_long_add().
			 */
2085
			swake_up(&rdp->nocb_wq);
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
		}
	}

	/* If we (the leader) don't have CBs, go wait some more. */
	if (!my_rdp->nocb_follower_head)
		goto wait_again;
}

/*
 * Followers come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_follower_wait(struct rcu_data *rdp)
{
	bool firsttime = true;

	for (;;) {
		if (!rcu_nocb_poll) {
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "FollowerSleep");
2106
			swait_event_interruptible(rdp->nocb_wq,
2107
						 READ_ONCE(rdp->nocb_follower_head));
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
		} else if (firsttime) {
			/* Don't drown trace log with "Poll"! */
			firsttime = false;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
		}
		if (smp_load_acquire(&rdp->nocb_follower_head)) {
			/* ^^^ Ensure CB invocation follows _head test. */
			return;
		}
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "WokeEmpty");
2120
		WARN_ON(signal_pending(current));
2121 2122 2123 2124
		schedule_timeout_interruptible(1);
	}
}

P
Paul E. McKenney 已提交
2125 2126
/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2127 2128 2129
 * callbacks queued by the corresponding no-CBs CPU, however, there is
 * an optional leader-follower relationship so that the grace-period
 * kthreads don't have to do quite so many wakeups.
P
Paul E. McKenney 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
 */
static int rcu_nocb_kthread(void *arg)
{
	int c, cl;
	struct rcu_head *list;
	struct rcu_head *next;
	struct rcu_head **tail;
	struct rcu_data *rdp = arg;

	/* Each pass through this loop invokes one batch of callbacks */
	for (;;) {
2141 2142 2143 2144 2145 2146 2147
		/* Wait for callbacks. */
		if (rdp->nocb_leader == rdp)
			nocb_leader_wait(rdp);
		else
			nocb_follower_wait(rdp);

		/* Pull the ready-to-invoke callbacks onto local list. */
2148
		list = READ_ONCE(rdp->nocb_follower_head);
2149 2150
		BUG_ON(!list);
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2151
		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2152
		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
P
Paul E. McKenney 已提交
2153 2154

		/* Each pass through the following loop invokes a callback. */
2155 2156 2157
		trace_rcu_batch_start(rdp->rsp->name,
				      atomic_long_read(&rdp->nocb_q_count_lazy),
				      atomic_long_read(&rdp->nocb_q_count), -1);
P
Paul E. McKenney 已提交
2158 2159 2160 2161 2162
		c = cl = 0;
		while (list) {
			next = list->next;
			/* Wait for enqueuing to complete, if needed. */
			while (next == NULL && &list->next != tail) {
2163 2164
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WaitQueue"));
P
Paul E. McKenney 已提交
2165
				schedule_timeout_interruptible(1);
2166 2167
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WokeQueue"));
P
Paul E. McKenney 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
				next = list->next;
			}
			debug_rcu_head_unqueue(list);
			local_bh_disable();
			if (__rcu_reclaim(rdp->rsp->name, list))
				cl++;
			c++;
			local_bh_enable();
			list = next;
		}
		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2179 2180 2181
		smp_mb__before_atomic();  /* _add after CB invocation. */
		atomic_long_add(-c, &rdp->nocb_q_count);
		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2182
		rdp->n_nocbs_invoked += c;
P
Paul E. McKenney 已提交
2183 2184 2185 2186
	}
	return 0;
}

2187
/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2188
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2189
{
2190
	return READ_ONCE(rdp->nocb_defer_wakeup);
2191 2192 2193 2194 2195
}

/* Do a deferred wakeup of rcu_nocb_kthread(). */
static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
2196 2197
	int ndw;

2198 2199
	if (!rcu_nocb_need_deferred_wakeup(rdp))
		return;
2200 2201
	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2202 2203
	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2204 2205
}

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
void __init rcu_init_nohz(void)
{
	int cpu;
	bool need_rcu_nocb_mask = true;
	struct rcu_state *rsp;

#ifdef CONFIG_RCU_NOCB_CPU_NONE
	need_rcu_nocb_mask = false;
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */

#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
		need_rcu_nocb_mask = true;
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2222 2223 2224 2225
		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
			return;
		}
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
		have_rcu_nocb_mask = true;
	}
	if (!have_rcu_nocb_mask)
		return;

#ifdef CONFIG_RCU_NOCB_CPU_ZERO
	pr_info("\tOffload RCU callbacks from CPU 0\n");
	cpumask_set_cpu(0, rcu_nocb_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
#ifdef CONFIG_RCU_NOCB_CPU_ALL
	pr_info("\tOffload RCU callbacks from all CPUs\n");
	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running)
		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
			    rcu_nocb_mask);
	}
2249 2250
	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
		cpumask_pr_args(rcu_nocb_mask));
2251 2252 2253 2254
	if (rcu_nocb_poll)
		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");

	for_each_rcu_flavor(rsp) {
2255 2256
		for_each_cpu(cpu, rcu_nocb_mask)
			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2257
		rcu_organize_nocb_kthreads(rsp);
2258
	}
2259 2260
}

P
Paul E. McKenney 已提交
2261 2262 2263 2264
/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
	rdp->nocb_tail = &rdp->nocb_head;
2265
	init_swait_queue_head(&rdp->nocb_wq);
2266
	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
P
Paul E. McKenney 已提交
2267 2268
}

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
 * brought online out of order, this can require re-organizing the
 * leader-follower relationships.
 */
static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
{
	struct rcu_data *rdp;
	struct rcu_data *rdp_last;
	struct rcu_data *rdp_old_leader;
	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
	struct task_struct *t;

	/*
	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
	 * then nothing to do.
	 */
	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
		return;

	/* If we didn't spawn the leader first, reorganize! */
	rdp_old_leader = rdp_spawn->nocb_leader;
	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
		rdp_last = NULL;
		rdp = rdp_old_leader;
		do {
			rdp->nocb_leader = rdp_spawn;
			if (rdp_last && rdp != rdp_spawn)
				rdp_last->nocb_next_follower = rdp;
2299 2300 2301 2302 2303 2304 2305
			if (rdp == rdp_spawn) {
				rdp = rdp->nocb_next_follower;
			} else {
				rdp_last = rdp;
				rdp = rdp->nocb_next_follower;
				rdp_last->nocb_next_follower = NULL;
			}
2306 2307 2308 2309 2310 2311 2312 2313
		} while (rdp);
		rdp_spawn->nocb_next_follower = rdp_old_leader;
	}

	/* Spawn the kthread for this CPU and RCU flavor. */
	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
			"rcuo%c/%d", rsp->abbr, cpu);
	BUG_ON(IS_ERR(t));
2314
	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
}

/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthreads, spawn them.
 */
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
	struct rcu_state *rsp;

	if (rcu_scheduler_fully_active)
		for_each_rcu_flavor(rsp)
			rcu_spawn_one_nocb_kthread(rsp, cpu);
}

/*
 * Once the scheduler is running, spawn rcuo kthreads for all online
 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
 * non-boot CPUs come online -- if this changes, we will need to add
 * some mutual exclusion.
 */
static void __init rcu_spawn_nocb_kthreads(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		rcu_spawn_all_nocb_kthreads(cpu);
}

2344 2345 2346 2347 2348
/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
static int rcu_nocb_leader_stride = -1;
module_param(rcu_nocb_leader_stride, int, 0444);

/*
2349
 * Initialize leader-follower relationships for all no-CBs CPU.
2350
 */
2351
static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
P
Paul E. McKenney 已提交
2352 2353
{
	int cpu;
2354 2355
	int ls = rcu_nocb_leader_stride;
	int nl = 0;  /* Next leader. */
P
Paul E. McKenney 已提交
2356
	struct rcu_data *rdp;
2357 2358
	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
	struct rcu_data *rdp_prev = NULL;
P
Paul E. McKenney 已提交
2359

2360
	if (!have_rcu_nocb_mask)
P
Paul E. McKenney 已提交
2361
		return;
2362 2363 2364 2365 2366 2367 2368 2369 2370
	if (ls == -1) {
		ls = int_sqrt(nr_cpu_ids);
		rcu_nocb_leader_stride = ls;
	}

	/*
	 * Each pass through this loop sets up one rcu_data structure and
	 * spawns one rcu_nocb_kthread().
	 */
P
Paul E. McKenney 已提交
2371 2372
	for_each_cpu(cpu, rcu_nocb_mask) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
		if (rdp->cpu >= nl) {
			/* New leader, set up for followers & next leader. */
			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
			rdp->nocb_leader = rdp;
			rdp_leader = rdp;
		} else {
			/* Another follower, link to previous leader. */
			rdp->nocb_leader = rdp_leader;
			rdp_prev->nocb_next_follower = rdp;
		}
		rdp_prev = rdp;
P
Paul E. McKenney 已提交
2384 2385 2386 2387
	}
}

/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2388
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2389
{
2390
	if (!rcu_is_nocb_cpu(rdp->cpu))
2391
		return false;
2392

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
	/* If there are early-boot callbacks, move them to nocb lists. */
	if (rdp->nxtlist) {
		rdp->nocb_head = rdp->nxtlist;
		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
		rdp->nxtlist = NULL;
		rdp->qlen = 0;
		rdp->qlen_lazy = 0;
	}
P
Paul E. McKenney 已提交
2403
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2404
	return true;
P
Paul E. McKenney 已提交
2405 2406
}

2407 2408
#else /* #ifdef CONFIG_RCU_NOCB_CPU */

2409 2410 2411 2412 2413 2414
static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
{
	WARN_ON_ONCE(1); /* Should be dead code. */
	return false;
}

2415
static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
P
Paul E. McKenney 已提交
2416 2417 2418
{
}

2419 2420 2421 2422
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
}

2423
static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2424 2425 2426 2427
{
	return NULL;
}

2428 2429 2430
static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}
P
Paul E. McKenney 已提交
2431 2432

static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2433
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
2434
{
2435
	return false;
P
Paul E. McKenney 已提交
2436 2437 2438
}

static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2439 2440
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2441
{
2442
	return false;
P
Paul E. McKenney 已提交
2443 2444 2445 2446 2447 2448
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

2449
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2450 2451 2452 2453 2454 2455 2456 2457
{
	return false;
}

static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
}

2458 2459 2460 2461 2462
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
}

static void __init rcu_spawn_nocb_kthreads(void)
P
Paul E. McKenney 已提交
2463 2464 2465
{
}

2466
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2467
{
2468
	return false;
P
Paul E. McKenney 已提交
2469 2470 2471
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481

/*
 * An adaptive-ticks CPU can potentially execute in kernel mode for an
 * arbitrarily long period of time with the scheduling-clock tick turned
 * off.  RCU will be paying attention to this CPU because it is in the
 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
 * machine because the scheduling-clock tick has been disabled.  Therefore,
 * if an adaptive-ticks CPU is failing to respond to the current grace
 * period and has not be idle from an RCU perspective, kick it.
 */
2482
static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2483 2484 2485 2486 2487 2488
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(cpu))
		smp_send_reschedule(cpu);
#endif /* #ifdef CONFIG_NO_HZ_FULL */
}
2489 2490 2491 2492


#ifdef CONFIG_NO_HZ_FULL_SYSIDLE

2493
static int full_sysidle_state;		/* Current system-idle state. */
2494 2495 2496 2497 2498 2499
#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */

2500 2501 2502 2503 2504 2505
/*
 * Invoked to note exit from irq or task transition to idle.  Note that
 * usermode execution does -not- count as idle here!  After all, we want
 * to detect full-system idle states, not RCU quiescent states and grace
 * periods.  The caller must have disabled interrupts.
 */
2506
static void rcu_sysidle_enter(int irq)
2507 2508
{
	unsigned long j;
2509
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2510

2511 2512 2513 2514
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	/* Adjust nesting, check for fully idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting--;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
		if (rdtp->dynticks_idle_nesting != 0)
			return;  /* Still not fully idle. */
	} else {
		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
		    DYNTICK_TASK_NEST_VALUE) {
			rdtp->dynticks_idle_nesting = 0;
		} else {
			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
			return;  /* Still not fully idle. */
		}
	}

	/* Record start of fully idle period. */
	j = jiffies;
2534
	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2535
	smp_mb__before_atomic();
2536
	atomic_inc(&rdtp->dynticks_idle);
2537
	smp_mb__after_atomic();
2538 2539 2540
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
}

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
/*
 * Unconditionally force exit from full system-idle state.  This is
 * invoked when a normal CPU exits idle, but must be called separately
 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
 * is that the timekeeping CPU is permitted to take scheduling-clock
 * interrupts while the system is in system-idle state, and of course
 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
 * interrupt from any other type of interrupt.
 */
void rcu_sysidle_force_exit(void)
{
2552
	int oldstate = READ_ONCE(full_sysidle_state);
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
	int newoldstate;

	/*
	 * Each pass through the following loop attempts to exit full
	 * system-idle state.  If contention proves to be a problem,
	 * a trylock-based contention tree could be used here.
	 */
	while (oldstate > RCU_SYSIDLE_SHORT) {
		newoldstate = cmpxchg(&full_sysidle_state,
				      oldstate, RCU_SYSIDLE_NOT);
		if (oldstate == newoldstate &&
		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
			rcu_kick_nohz_cpu(tick_do_timer_cpu);
			return; /* We cleared it, done! */
		}
		oldstate = newoldstate;
	}
	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
}

2573 2574 2575 2576 2577
/*
 * Invoked to note entry to irq or task transition from idle.  Note that
 * usermode execution does -not- count as idle here!  The caller must
 * have disabled interrupts.
 */
2578
static void rcu_sysidle_exit(int irq)
2579
{
2580 2581
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

2582 2583 2584 2585
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
	/* Adjust nesting, check for already non-idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting++;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
		if (rdtp->dynticks_idle_nesting != 1)
			return; /* Already non-idle. */
	} else {
		/*
		 * Allow for irq misnesting.  Yes, it really is possible
		 * to enter an irq handler then never leave it, and maybe
		 * also vice versa.  Handle both possibilities.
		 */
		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
			return; /* Already non-idle. */
		} else {
			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
		}
	}

	/* Record end of idle period. */
2608
	smp_mb__before_atomic();
2609
	atomic_inc(&rdtp->dynticks_idle);
2610
	smp_mb__after_atomic();
2611
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630

	/*
	 * If we are the timekeeping CPU, we are permitted to be non-idle
	 * during a system-idle state.  This must be the case, because
	 * the timekeeping CPU has to take scheduling-clock interrupts
	 * during the time that the system is transitioning to full
	 * system-idle state.  This means that the timekeeping CPU must
	 * invoke rcu_sysidle_force_exit() directly if it does anything
	 * more than take a scheduling-clock interrupt.
	 */
	if (smp_processor_id() == tick_do_timer_cpu)
		return;

	/* Update system-idle state: We are clearly no longer fully idle! */
	rcu_sysidle_force_exit();
}

/*
 * Check to see if the current CPU is idle.  Note that usermode execution
2631 2632
 * does not count as idle.  The caller must have disabled interrupts,
 * and must be running on tick_do_timer_cpu.
2633 2634 2635 2636 2637 2638 2639 2640
 */
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
	int cur;
	unsigned long j;
	struct rcu_dynticks *rdtp = rdp->dynticks;

2641 2642 2643 2644
	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
	if (!tick_nohz_full_enabled())
		return;

2645 2646 2647 2648 2649
	/*
	 * If some other CPU has already reported non-idle, if this is
	 * not the flavor of RCU that tracks sysidle state, or if this
	 * is an offline or the timekeeping CPU, nothing to do.
	 */
2650
	if (!*isidle || rdp->rsp != rcu_state_p ||
2651 2652
	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
		return;
2653 2654
	/* Verify affinity of current kthread. */
	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664

	/* Pick up current idle and NMI-nesting counter and check. */
	cur = atomic_read(&rdtp->dynticks_idle);
	if (cur & 0x1) {
		*isidle = false; /* We are not idle! */
		return;
	}
	smp_mb(); /* Read counters before timestamps. */

	/* Pick up timestamps. */
2665
	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	/* If this CPU entered idle more recently, update maxj timestamp. */
	if (ULONG_CMP_LT(*maxj, j))
		*maxj = j;
}

/*
 * Is this the flavor of RCU that is handling full-system idle?
 */
static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
2676
	return rsp == rcu_state_p;
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
}

/*
 * Return a delay in jiffies based on the number of CPUs, rcu_node
 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
 * systems more time to transition to full-idle state in order to
 * avoid the cache thrashing that otherwise occur on the state variable.
 * Really small systems (less than a couple of tens of CPUs) should
 * instead use a single global atomically incremented counter, and later
 * versions of this will automatically reconfigure themselves accordingly.
 */
static unsigned long rcu_sysidle_delay(void)
{
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return 0;
	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
}

/*
 * Advance the full-system-idle state.  This is invoked when all of
 * the non-timekeeping CPUs are idle.
 */
static void rcu_sysidle(unsigned long j)
{
	/* Check the current state. */
2702
	switch (READ_ONCE(full_sysidle_state)) {
2703 2704 2705
	case RCU_SYSIDLE_NOT:

		/* First time all are idle, so note a short idle period. */
2706
		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
		break;

	case RCU_SYSIDLE_SHORT:

		/*
		 * Idle for a bit, time to advance to next state?
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
		break;

	case RCU_SYSIDLE_LONG:

		/*
		 * Do an additional check pass before advancing to full.
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
		break;

	default:
		break;
	}
}

/*
 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
 * back to the beginning.
 */
static void rcu_sysidle_cancel(void)
{
	smp_mb();
2743
	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2744
		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2745 2746 2747 2748 2749 2750 2751 2752 2753
}

/*
 * Update the sysidle state based on the results of a force-quiescent-state
 * scan of the CPUs' dyntick-idle state.
 */
static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
			       unsigned long maxj, bool gpkt)
{
2754
	if (rsp != rcu_state_p)
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
		return;  /* Wrong flavor, ignore. */
	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return;  /* Running state machine from timekeeping CPU. */
	if (isidle)
		rcu_sysidle(maxj);    /* More idle! */
	else
		rcu_sysidle_cancel(); /* Idle is over. */
}

/*
 * Wrapper for rcu_sysidle_report() when called from the grace-period
 * kthread's context.
 */
static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
2771 2772 2773 2774
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
	rcu_sysidle_report(rsp, isidle, maxj, true);
}

/* Callback and function for forcing an RCU grace period. */
struct rcu_sysidle_head {
	struct rcu_head rh;
	int inuse;
};

static void rcu_sysidle_cb(struct rcu_head *rhp)
{
	struct rcu_sysidle_head *rshp;

	/*
	 * The following memory barrier is needed to replace the
	 * memory barriers that would normally be in the memory
	 * allocator.
	 */
	smp_mb();  /* grace period precedes setting inuse. */

	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2796
	WRITE_ONCE(rshp->inuse, 0);
2797 2798 2799 2800
}

/*
 * Check to see if the system is fully idle, other than the timekeeping CPU.
2801 2802
 * The caller must have disabled interrupts.  This is not intended to be
 * called unless tick_nohz_full_enabled().
2803 2804 2805 2806
 */
bool rcu_sys_is_idle(void)
{
	static struct rcu_sysidle_head rsh;
2807
	int rss = READ_ONCE(full_sysidle_state);
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827

	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
		return false;

	/* Handle small-system case by doing a full scan of CPUs. */
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
		int oldrss = rss - 1;

		/*
		 * One pass to advance to each state up to _FULL.
		 * Give up if any pass fails to advance the state.
		 */
		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
			int cpu;
			bool isidle = true;
			unsigned long maxj = jiffies - ULONG_MAX / 4;
			struct rcu_data *rdp;

			/* Scan all the CPUs looking for nonidle CPUs. */
			for_each_possible_cpu(cpu) {
2828
				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2829 2830 2831 2832
				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
				if (!isidle)
					break;
			}
2833
			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2834
			oldrss = rss;
2835
			rss = READ_ONCE(full_sysidle_state);
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
		}
	}

	/* If this is the first observation of an idle period, record it. */
	if (rss == RCU_SYSIDLE_FULL) {
		rss = cmpxchg(&full_sysidle_state,
			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
		return rss == RCU_SYSIDLE_FULL;
	}

	smp_mb(); /* ensure rss load happens before later caller actions. */

	/* If already fully idle, tell the caller (in case of races). */
	if (rss == RCU_SYSIDLE_FULL_NOTED)
		return true;

	/*
	 * If we aren't there yet, and a grace period is not in flight,
	 * initiate a grace period.  Either way, tell the caller that
	 * we are not there yet.  We use an xchg() rather than an assignment
	 * to make up for the memory barriers that would otherwise be
	 * provided by the memory allocator.
	 */
	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2860
	    !rcu_gp_in_progress(rcu_state_p) &&
2861 2862 2863
	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
		call_rcu(&rsh.rh, rcu_sysidle_cb);
	return false;
2864 2865
}

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
/*
 * Initialize dynticks sysidle state for CPUs coming online.
 */
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
}

#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */

2876
static void rcu_sysidle_enter(int irq)
2877 2878 2879
{
}

2880
static void rcu_sysidle_exit(int irq)
2881 2882 2883
{
}

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
}

static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
	return false;
}

static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
}

2899 2900 2901 2902 2903
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
}

#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2904 2905 2906 2907 2908 2909 2910 2911

/*
 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
 * grace-period kthread will do force_quiescent_state() processing?
 * The idea is to avoid waking up RCU core processing on such a
 * CPU unless the grace period has extended for too long.
 *
 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2912
 * CONFIG_RCU_NOCB_CPU CPUs.
2913 2914 2915 2916 2917 2918
 */
static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(smp_processor_id()) &&
	    (!rcu_gp_in_progress(rsp) ||
2919
	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2920
		return true;
2921
#endif /* #ifdef CONFIG_NO_HZ_FULL */
2922
	return false;
2923
}
2924 2925 2926 2927 2928 2929 2930

/*
 * Bind the grace-period kthread for the sysidle flavor of RCU to the
 * timekeeping CPU.
 */
static void rcu_bind_gp_kthread(void)
{
2931
	int __maybe_unused cpu;
2932

2933
	if (!tick_nohz_full_enabled())
2934
		return;
2935 2936
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	cpu = tick_do_timer_cpu;
2937
	if (cpu >= 0 && cpu < nr_cpu_ids)
2938
		set_cpus_allowed_ptr(current, cpumask_of(cpu));
2939
#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2940
	housekeeping_affine(current);
2941
#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2942
}
2943 2944 2945 2946 2947

/* Record the current task on dyntick-idle entry. */
static void rcu_dynticks_task_enter(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2948
	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2949 2950 2951 2952 2953 2954 2955
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}

/* Record no current task on dyntick-idle exit. */
static void rcu_dynticks_task_exit(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2956
	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2957 2958
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}