tree_plugin.h 90.1 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
17 18
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
19 20 21 22 23 24 25 26
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
P
Paul E. McKenney 已提交
28
#include <linux/gfp.h>
29
#include <linux/oom.h>
30
#include <linux/smpboot.h>
31
#include "../time/tick-internal.h"
32

33
#ifdef CONFIG_RCU_BOOST
34

35
#include "../locking/rtmutex_common.h"
36

37 38 39 40 41 42 43 44 45
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
DEFINE_PER_CPU(char, rcu_cpu_has_work);

46 47 48 49 50 51 52 53 54 55 56
#else /* #ifdef CONFIG_RCU_BOOST */

/*
 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
 * all uses are in dead code.  Provide a definition to keep the compiler
 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
 * This probably needs to be excluded from -rt builds.
 */
#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })

#endif /* #else #ifdef CONFIG_RCU_BOOST */
57

P
Paul E. McKenney 已提交
58 59 60
#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
61
static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
P
Paul E. McKenney 已提交
62 63
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */

64 65 66 67 68 69 70
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
71 72
	if (IS_ENABLED(CONFIG_RCU_TRACE))
		pr_info("\tRCU debugfs-based tracing is enabled.\n");
73 74
	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
75
		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
76
		       RCU_FANOUT);
77
	if (rcu_fanout_exact)
78 79 80 81 82 83 84
		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
	if (IS_ENABLED(CONFIG_PROVE_RCU))
		pr_info("\tRCU lockdep checking is enabled.\n");
	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
		pr_info("\tRCU torture testing starts during boot.\n");
85 86
	if (RCU_NUM_LVLS >= 4)
		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87
	if (RCU_FANOUT_LEAF != 16)
88
		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 90
			RCU_FANOUT_LEAF);
	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91
		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92
	if (nr_cpu_ids != NR_CPUS)
93
		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
94 95
	if (IS_ENABLED(CONFIG_RCU_BOOST))
		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
96 97
}

98
#ifdef CONFIG_PREEMPT_RCU
99

100
RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
101
static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
102
static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
103

104 105
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake);
106

107 108 109
/*
 * Tell them what RCU they are running.
 */
110
static void __init rcu_bootup_announce(void)
111
{
112
	pr_info("Preemptible hierarchical RCU implementation.\n");
113
	rcu_bootup_announce_oddness();
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
/* Flags for rcu_preempt_ctxt_queue() decision table. */
#define RCU_GP_TASKS	0x8
#define RCU_EXP_TASKS	0x4
#define RCU_GP_BLKD	0x2
#define RCU_EXP_BLKD	0x1

/*
 * Queues a task preempted within an RCU-preempt read-side critical
 * section into the appropriate location within the ->blkd_tasks list,
 * depending on the states of any ongoing normal and expedited grace
 * periods.  The ->gp_tasks pointer indicates which element the normal
 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 * indicates which element the expedited grace period is waiting on (again,
 * NULL if none).  If a grace period is waiting on a given element in the
 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 * adding a task to the tail of the list blocks any grace period that is
 * already waiting on one of the elements.  In contrast, adding a task
 * to the head of the list won't block any grace period that is already
 * waiting on one of the elements.
 *
 * This queuing is imprecise, and can sometimes make an ongoing grace
 * period wait for a task that is not strictly speaking blocking it.
 * Given the choice, we needlessly block a normal grace period rather than
 * blocking an expedited grace period.
 *
 * Note that an endless sequence of expedited grace periods still cannot
 * indefinitely postpone a normal grace period.  Eventually, all of the
 * fixed number of preempted tasks blocking the normal grace period that are
 * not also blocking the expedited grace period will resume and complete
 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 * pointer will equal the ->exp_tasks pointer, at which point the end of
 * the corresponding expedited grace period will also be the end of the
 * normal grace period.
 */
static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp,
				   unsigned long flags) __releases(rnp->lock)
{
	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
	struct task_struct *t = current;

	/*
	 * Decide where to queue the newly blocked task.  In theory,
	 * this could be an if-statement.  In practice, when I tried
	 * that, it was quite messy.
	 */
	switch (blkd_state) {
	case 0:
	case                RCU_EXP_TASKS:
	case                RCU_EXP_TASKS + RCU_GP_BLKD:
	case RCU_GP_TASKS:
	case RCU_GP_TASKS + RCU_EXP_TASKS:

		/*
		 * Blocking neither GP, or first task blocking the normal
		 * GP but not blocking the already-waiting expedited GP.
		 * Queue at the head of the list to avoid unnecessarily
		 * blocking the already-waiting GPs.
		 */
		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
		break;

	case                                              RCU_EXP_BLKD:
	case                                RCU_GP_BLKD:
	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:

		/*
		 * First task arriving that blocks either GP, or first task
		 * arriving that blocks the expedited GP (with the normal
		 * GP already waiting), or a task arriving that blocks
		 * both GPs with both GPs already waiting.  Queue at the
		 * tail of the list to avoid any GP waiting on any of the
		 * already queued tasks that are not blocking it.
		 */
		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
		break;

	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:

		/*
		 * Second or subsequent task blocking the expedited GP.
		 * The task either does not block the normal GP, or is the
		 * first task blocking the normal GP.  Queue just after
		 * the first task blocking the expedited GP.
		 */
		list_add(&t->rcu_node_entry, rnp->exp_tasks);
		break;

	case RCU_GP_TASKS +                 RCU_GP_BLKD:
	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:

		/*
		 * Second or subsequent task blocking the normal GP.
		 * The task does not block the expedited GP. Queue just
		 * after the first task blocking the normal GP.
		 */
		list_add(&t->rcu_node_entry, rnp->gp_tasks);
		break;

	default:

		/* Yet another exercise in excessive paranoia. */
		WARN_ON_ONCE(1);
		break;
	}

	/*
	 * We have now queued the task.  If it was the first one to
	 * block either grace period, update the ->gp_tasks and/or
	 * ->exp_tasks pointers, respectively, to reference the newly
	 * blocked tasks.
	 */
	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
		rnp->gp_tasks = &t->rcu_node_entry;
	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
		rnp->exp_tasks = &t->rcu_node_entry;
	raw_spin_unlock(&rnp->lock);

	/*
	 * Report the quiescent state for the expedited GP.  This expedited
	 * GP should not be able to end until we report, so there should be
	 * no need to check for a subsequent expedited GP.  (Though we are
	 * still in a quiescent state in any case.)
	 */
	if (blkd_state & RCU_EXP_BLKD &&
	    t->rcu_read_unlock_special.b.exp_need_qs) {
		t->rcu_read_unlock_special.b.exp_need_qs = false;
		rcu_report_exp_rdp(rdp->rsp, rdp, true);
	} else {
		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
	}
	local_irq_restore(flags);
}

257
/*
P
Paul E. McKenney 已提交
258
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
259 260 261
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
262
 *
263 264
 * As with the other rcu_*_qs() functions, callers to this function
 * must disable preemption.
265
 */
266
static void rcu_preempt_qs(void)
267
{
268
	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
269
		trace_rcu_grace_period(TPS("rcu_preempt"),
270
				       __this_cpu_read(rcu_data_p->gpnum),
271
				       TPS("cpuqs"));
272
		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
273 274 275
		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
		current->rcu_read_unlock_special.b.need_qs = false;
	}
276 277 278
}

/*
279 280 281
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
282 283 284 285 286 287
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
288 289
 *
 * Caller must disable preemption.
290
 */
291
static void rcu_preempt_note_context_switch(void)
292 293
{
	struct task_struct *t = current;
294
	unsigned long flags;
295 296 297
	struct rcu_data *rdp;
	struct rcu_node *rnp;

298
	if (t->rcu_read_lock_nesting > 0 &&
299
	    !t->rcu_read_unlock_special.b.blocked) {
300 301

		/* Possibly blocking in an RCU read-side critical section. */
302
		rdp = this_cpu_ptr(rcu_state_p->rda);
303
		rnp = rdp->mynode;
304
		raw_spin_lock_irqsave_rcu_node(rnp, flags);
305
		t->rcu_read_unlock_special.b.blocked = true;
306
		t->rcu_blocked_node = rnp;
307 308

		/*
309 310 311
		 * Verify the CPU's sanity, trace the preemption, and
		 * then queue the task as required based on the states
		 * of any ongoing and expedited grace periods.
312
		 */
313
		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
314
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
315 316 317 318 319
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
320
		rcu_preempt_ctxt_queue(rnp, rdp, flags);
321
	} else if (t->rcu_read_lock_nesting < 0 &&
322
		   t->rcu_read_unlock_special.s) {
323 324 325 326 327 328

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
329 330 331 332 333 334 335 336 337 338 339
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
340
	rcu_preempt_qs();
341 342
}

343 344 345 346 347
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
348
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
349
{
350
	return rnp->gp_tasks != NULL;
351 352
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

368 369 370 371 372 373 374 375 376
/*
 * Return true if the specified rcu_node structure has tasks that were
 * preempted within an RCU read-side critical section.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
{
	return !list_empty(&rnp->blkd_tasks);
}

377 378 379 380 381
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
382
void rcu_read_unlock_special(struct task_struct *t)
383
{
384 385 386
	bool empty_exp;
	bool empty_norm;
	bool empty_exp_now;
387
	unsigned long flags;
388
	struct list_head *np;
389
	bool drop_boost_mutex = false;
390
	struct rcu_data *rdp;
391
	struct rcu_node *rnp;
392
	union rcu_special special;
393 394 395 396 397 398 399 400

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
401 402
	 * If RCU core is waiting for this CPU to exit its critical section,
	 * report the fact that it has exited.  Because irqs are disabled,
403
	 * t->rcu_read_unlock_special cannot change.
404 405
	 */
	special = t->rcu_read_unlock_special;
406
	if (special.b.need_qs) {
407
		rcu_preempt_qs();
408
		t->rcu_read_unlock_special.b.need_qs = false;
409
		if (!t->rcu_read_unlock_special.s) {
410 411 412
			local_irq_restore(flags);
			return;
		}
413 414
	}

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	/*
	 * Respond to a request for an expedited grace period, but only if
	 * we were not preempted, meaning that we were running on the same
	 * CPU throughout.  If we were preempted, the exp_need_qs flag
	 * would have been cleared at the time of the first preemption,
	 * and the quiescent state would be reported when we were dequeued.
	 */
	if (special.b.exp_need_qs) {
		WARN_ON_ONCE(special.b.blocked);
		t->rcu_read_unlock_special.b.exp_need_qs = false;
		rdp = this_cpu_ptr(rcu_state_p->rda);
		rcu_report_exp_rdp(rcu_state_p, rdp, true);
		if (!t->rcu_read_unlock_special.s) {
			local_irq_restore(flags);
			return;
		}
	}

433
	/* Hardware IRQ handlers cannot block, complain if they get here. */
434 435 436
	if (in_irq() || in_serving_softirq()) {
		lockdep_rcu_suspicious(__FILE__, __LINE__,
				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
437
		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
438 439
			 t->rcu_read_unlock_special.s,
			 t->rcu_read_unlock_special.b.blocked,
440
			 t->rcu_read_unlock_special.b.exp_need_qs,
441
			 t->rcu_read_unlock_special.b.need_qs);
442 443 444 445 446
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
447 448
	if (special.b.blocked) {
		t->rcu_read_unlock_special.b.blocked = false;
449

450
		/*
451 452 453 454 455
		 * Remove this task from the list it blocked on.  The task
		 * now remains queued on the rcu_node corresponding to
		 * the CPU it first blocked on, so the first attempt to
		 * acquire the task's rcu_node's ->lock will succeed.
		 * Keep the loop and add a WARN_ON() out of sheer paranoia.
456 457
		 */
		for (;;) {
458
			rnp = t->rcu_blocked_node;
459
			raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
460
			if (rnp == t->rcu_blocked_node)
461
				break;
462
			WARN_ON_ONCE(1);
P
Paul E. McKenney 已提交
463
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
464
		}
465
		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
466
		empty_exp = sync_rcu_preempt_exp_done(rnp);
467
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
468
		np = rcu_next_node_entry(t, rnp);
469
		list_del_init(&t->rcu_node_entry);
470
		t->rcu_blocked_node = NULL;
471
		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
472
						rnp->gpnum, t->pid);
473 474 475 476
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
477 478 479 480 481 482
		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
			if (&t->rcu_node_entry == rnp->boost_tasks)
				rnp->boost_tasks = np;
			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
		}
483 484 485 486

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
487 488
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
489
		 */
490
		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
491
		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
492
			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
493 494 495 496 497 498
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
499
			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
500
		} else {
501
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
502
		}
503

504
		/* Unboost if we were boosted. */
505
		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
506
			rt_mutex_unlock(&rnp->boost_mtx);
507

508 509 510 511
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
512
		if (!empty_exp && empty_exp_now)
513
			rcu_report_exp_rnp(rcu_state_p, rnp, true);
514 515
	} else {
		local_irq_restore(flags);
516 517 518
	}
}

519 520 521 522 523 524 525 526 527
/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

528
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
529 530 531 532
	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
533
	t = list_entry(rnp->gp_tasks->prev,
534 535 536 537
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

553 554
static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
555
	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
556 557 558 559 560
	       rnp->level, rnp->grplo, rnp->grphi);
}

static void rcu_print_task_stall_end(void)
{
561
	pr_cont("\n");
562 563
}

564 565 566 567
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
568
static int rcu_print_task_stall(struct rcu_node *rnp)
569 570
{
	struct task_struct *t;
571
	int ndetected = 0;
572

573
	if (!rcu_preempt_blocked_readers_cgp(rnp))
574
		return 0;
575
	rcu_print_task_stall_begin(rnp);
576
	t = list_entry(rnp->gp_tasks->prev,
577
		       struct task_struct, rcu_node_entry);
578
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
579
		pr_cont(" P%d", t->pid);
580 581
		ndetected++;
	}
582
	rcu_print_task_stall_end();
583
	return ndetected;
584 585
}

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each that is blocking the current
 * expedited grace period.
 */
static int rcu_print_task_exp_stall(struct rcu_node *rnp)
{
	struct task_struct *t;
	int ndetected = 0;

	if (!rnp->exp_tasks)
		return 0;
	t = list_entry(rnp->exp_tasks->prev,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
		pr_cont(" P%d", t->pid);
		ndetected++;
	}
	return ndetected;
}

607 608 609 610 611 612
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
613 614 615
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
616 617 618
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
619
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
620
	if (rcu_preempt_has_tasks(rnp))
621
		rnp->gp_tasks = rnp->blkd_tasks.next;
622
	WARN_ON_ONCE(rnp->qsmask);
623 624
}

625 626 627 628 629 630 631
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
632
static void rcu_preempt_check_callbacks(void)
633 634 635 636
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
637
		rcu_preempt_qs();
638 639
		return;
	}
640
	if (t->rcu_read_lock_nesting > 0 &&
641
	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
642
	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
643
		t->rcu_read_unlock_special.b.need_qs = true;
644 645
}

646 647
#ifdef CONFIG_RCU_BOOST

648 649
static void rcu_preempt_do_callbacks(void)
{
650
	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
651 652
}

653 654
#endif /* #ifdef CONFIG_RCU_BOOST */

655
/*
P
Paul E. McKenney 已提交
656
 * Queue a preemptible-RCU callback for invocation after a grace period.
657
 */
658
void call_rcu(struct rcu_head *head, rcu_callback_t func)
659
{
660
	__call_rcu(head, func, rcu_state_p, -1, 0);
661 662 663
}
EXPORT_SYMBOL_GPL(call_rcu);

664 665 666 667 668
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
669 670 671 672 673
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
674 675 676
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
677 678 679
 */
void synchronize_rcu(void)
{
680 681 682 683
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
			 lock_is_held(&rcu_lock_map) ||
			 lock_is_held(&rcu_sched_lock_map),
			 "Illegal synchronize_rcu() in RCU read-side critical section");
684 685
	if (!rcu_scheduler_active)
		return;
686
	if (rcu_gp_is_expedited())
687 688 689
		synchronize_rcu_expedited();
	else
		wait_rcu_gp(call_rcu);
690 691 692
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

693
/*
694 695 696 697 698
 * Remote handler for smp_call_function_single().  If there is an
 * RCU read-side critical section in effect, request that the
 * next rcu_read_unlock() record the quiescent state up the
 * ->expmask fields in the rcu_node tree.  Otherwise, immediately
 * report the quiescent state.
699
 */
700
static void sync_rcu_exp_handler(void *info)
701
{
702 703 704
	struct rcu_data *rdp;
	struct rcu_state *rsp = info;
	struct task_struct *t = current;
705 706

	/*
707 708 709 710
	 * Within an RCU read-side critical section, request that the next
	 * rcu_read_unlock() report.  Unless this RCU read-side critical
	 * section has already blocked, in which case it is already set
	 * up for the expedited grace period to wait on it.
711
	 */
712 713 714
	if (t->rcu_read_lock_nesting > 0 &&
	    !t->rcu_read_unlock_special.b.blocked) {
		t->rcu_read_unlock_special.b.exp_need_qs = true;
715
		return;
716
	}
717

718 719 720 721 722 723 724 725 726 727
	/*
	 * We are either exiting an RCU read-side critical section (negative
	 * values of t->rcu_read_lock_nesting) or are not in one at all
	 * (zero value of t->rcu_read_lock_nesting).  Or we are in an RCU
	 * read-side critical section that blocked before this expedited
	 * grace period started.  Either way, we can immediately report
	 * the quiescent state.
	 */
	rdp = this_cpu_ptr(rsp->rda);
	rcu_report_exp_rdp(rsp, rdp, true);
728 729
}

730 731 732 733 734 735 736 737 738 739 740
/**
 * synchronize_rcu_expedited - Brute-force RCU grace period
 *
 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.
 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 * please restructure your code to batch your updates, and then Use a
 * single synchronize_rcu() instead.
741 742 743
 */
void synchronize_rcu_expedited(void)
{
744
	struct rcu_node *rnp;
745
	struct rcu_node *rnp_unlock;
746
	struct rcu_state *rsp = rcu_state_p;
747
	unsigned long s;
748

749
	s = rcu_exp_gp_seq_snap(rsp);
750

751 752 753
	rnp_unlock = exp_funnel_lock(rsp, s);
	if (rnp_unlock == NULL)
		return;  /* Someone else did our work for us. */
754

755
	rcu_exp_gp_seq_start(rsp);
756

757
	/* Initialize the rcu_node tree in preparation for the wait. */
758
	sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler);
759

760
	/* Wait for snapshotted ->blkd_tasks lists to drain. */
761
	rnp = rcu_get_root(rsp);
762
	synchronize_sched_expedited_wait(rsp);
763 764

	/* Clean up and exit. */
765
	rcu_exp_gp_seq_end(rsp);
766
	mutex_unlock(&rnp_unlock->exp_funnel_mutex);
767 768 769
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

770 771
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
772 773 774 775 776
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
777 778 779
 */
void rcu_barrier(void)
{
780
	_rcu_barrier(rcu_state_p);
781 782 783
}
EXPORT_SYMBOL_GPL(rcu_barrier);

784
/*
P
Paul E. McKenney 已提交
785
 * Initialize preemptible RCU's state structures.
786 787 788
 */
static void __init __rcu_init_preempt(void)
{
789
	rcu_init_one(rcu_state_p, rcu_data_p);
790 791
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805
/*
 * Check for a task exiting while in a preemptible-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (likely(list_empty(&current->rcu_node_entry)))
		return;
	t->rcu_read_lock_nesting = 1;
	barrier();
806
	t->rcu_read_unlock_special.b.blocked = true;
807 808 809
	__rcu_read_unlock();
}

810
#else /* #ifdef CONFIG_PREEMPT_RCU */
811

812
static struct rcu_state *const rcu_state_p = &rcu_sched_state;
813
static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
814

815 816 817
/*
 * Tell them what RCU they are running.
 */
818
static void __init rcu_bootup_announce(void)
819
{
820
	pr_info("Hierarchical RCU implementation.\n");
821
	rcu_bootup_announce_oddness();
822 823
}

824 825 826 827
/*
 * Because preemptible RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
828
static void rcu_preempt_note_context_switch(void)
829 830 831
{
}

832
/*
P
Paul E. McKenney 已提交
833
 * Because preemptible RCU does not exist, there are never any preempted
834 835
 * RCU readers.
 */
836
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
837 838 839 840
{
	return 0;
}

841 842 843 844
/*
 * Because there is no preemptible RCU, there can be no readers blocked.
 */
static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
845
{
846
	return false;
847 848
}

849
/*
P
Paul E. McKenney 已提交
850
 * Because preemptible RCU does not exist, we never have to check for
851 852 853 854 855 856
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

857
/*
P
Paul E. McKenney 已提交
858
 * Because preemptible RCU does not exist, we never have to check for
859 860
 * tasks blocked within RCU read-side critical sections.
 */
861
static int rcu_print_task_stall(struct rcu_node *rnp)
862
{
863
	return 0;
864 865
}

866 867 868 869 870 871 872 873 874 875
/*
 * Because preemptible RCU does not exist, we never have to check for
 * tasks blocked within RCU read-side critical sections that are
 * blocking the current expedited grace period.
 */
static int rcu_print_task_exp_stall(struct rcu_node *rnp)
{
	return 0;
}

876
/*
P
Paul E. McKenney 已提交
877
 * Because there is no preemptible RCU, there can be no readers blocked,
878 879
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
880 881 882
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
883
	WARN_ON_ONCE(rnp->qsmask);
884 885
}

886
/*
P
Paul E. McKenney 已提交
887
 * Because preemptible RCU does not exist, it never has any callbacks
888 889
 * to check.
 */
890
static void rcu_preempt_check_callbacks(void)
891 892 893
{
}

894 895
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
P
Paul E. McKenney 已提交
896
 * But because preemptible RCU does not exist, map to rcu-sched.
897 898 899 900 901 902 903
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

904
/*
P
Paul E. McKenney 已提交
905
 * Because preemptible RCU does not exist, rcu_barrier() is just
906 907 908 909 910 911 912 913
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

914
/*
P
Paul E. McKenney 已提交
915
 * Because preemptible RCU does not exist, it need not be initialized.
916 917 918 919 920
 */
static void __init __rcu_init_preempt(void)
{
}

921 922 923 924 925 926 927 928
/*
 * Because preemptible RCU does not exist, tasks cannot possibly exit
 * while in preemptible RCU read-side critical sections.
 */
void exit_rcu(void)
{
}

929
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
930

931 932
#ifdef CONFIG_RCU_BOOST

933
#include "../locking/rtmutex_common.h"
934

935 936 937 938
#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
939
	if (!rcu_preempt_has_tasks(rnp))
940 941 942 943 944 945 946 947
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
948
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
949 950 951 952 953 954 955 956 957 958 959 960 961
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

T
Thomas Gleixner 已提交
962 963 964 965 966 967 968 969 970 971
static void rcu_wake_cond(struct task_struct *t, int status)
{
	/*
	 * If the thread is yielding, only wake it when this
	 * is invoked from idle
	 */
	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
		wake_up_process(t);
}

972 973 974 975 976 977 978 979 980 981 982 983 984 985
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;
	struct list_head *tb;

986 987
	if (READ_ONCE(rnp->exp_tasks) == NULL &&
	    READ_ONCE(rnp->boost_tasks) == NULL)
988 989
		return 0;  /* Nothing left to boost. */

990
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
1007
	if (rnp->exp_tasks != NULL) {
1008
		tb = rnp->exp_tasks;
1009 1010
		rnp->n_exp_boosts++;
	} else {
1011
		tb = rnp->boost_tasks;
1012 1013 1014
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
1033
	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1034
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1035 1036 1037
	/* Lock only for side effect: boosts task t's priority. */
	rt_mutex_lock(&rnp->boost_mtx);
	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1038

1039 1040
	return READ_ONCE(rnp->exp_tasks) != NULL ||
	       READ_ONCE(rnp->boost_tasks) != NULL;
1041 1042 1043
}

/*
1044
 * Priority-boosting kthread, one per leaf rcu_node.
1045 1046 1047 1048 1049 1050 1051
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

1052
	trace_rcu_utilization(TPS("Start boost kthread@init"));
1053
	for (;;) {
1054
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1055
		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1056
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1057
		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1058
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1059 1060 1061 1062 1063 1064
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
T
Thomas Gleixner 已提交
1065
			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1066
			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
T
Thomas Gleixner 已提交
1067
			schedule_timeout_interruptible(2);
1068
			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1069 1070 1071
			spincnt = 0;
		}
	}
1072
	/* NOTREACHED */
1073
	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1074 1075 1076 1077 1078 1079 1080 1081 1082
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
1083 1084 1085
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
1086
 */
1087
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1088
	__releases(rnp->lock)
1089 1090 1091
{
	struct task_struct *t;

1092 1093
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
1094
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1095
		return;
1096
	}
1097 1098 1099 1100 1101 1102 1103
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
1104
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1105
		t = rnp->boost_kthread_task;
T
Thomas Gleixner 已提交
1106 1107
		if (t)
			rcu_wake_cond(t, rnp->boost_kthread_status);
1108
	} else {
1109
		rcu_initiate_boost_trace(rnp);
1110 1111
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
1112 1113
}

1114 1115 1116 1117 1118 1119 1120 1121 1122
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
1123
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
T
Thomas Gleixner 已提交
1124 1125 1126 1127
	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
			      __this_cpu_read(rcu_cpu_kthread_status));
	}
1128 1129 1130
	local_irq_restore(flags);
}

1131 1132 1133 1134 1135 1136
/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
1137
	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1138 1139
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
1155
static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1156
				       struct rcu_node *rnp)
1157
{
T
Thomas Gleixner 已提交
1158
	int rnp_index = rnp - &rsp->node[0];
1159 1160 1161 1162
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

1163
	if (rcu_state_p != rsp)
1164
		return 0;
T
Thomas Gleixner 已提交
1165

1166
	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
T
Thomas Gleixner 已提交
1167 1168
		return 0;

1169
	rsp->boost = 1;
1170 1171 1172
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1173
			   "rcub/%d", rnp_index);
1174 1175
	if (IS_ERR(t))
		return PTR_ERR(t);
1176
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1177 1178
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1179
	sp.sched_priority = kthread_prio;
1180
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1181
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1182 1183 1184
	return 0;
}

1185 1186
static void rcu_kthread_do_work(void)
{
1187 1188
	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1189 1190 1191
	rcu_preempt_do_callbacks();
}

1192
static void rcu_cpu_kthread_setup(unsigned int cpu)
1193 1194 1195
{
	struct sched_param sp;

1196
	sp.sched_priority = kthread_prio;
1197
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1198 1199
}

1200
static void rcu_cpu_kthread_park(unsigned int cpu)
1201
{
1202
	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1203 1204
}

1205
static int rcu_cpu_kthread_should_run(unsigned int cpu)
1206
{
1207
	return __this_cpu_read(rcu_cpu_has_work);
1208 1209 1210 1211
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1212 1213
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
1214
 */
1215
static void rcu_cpu_kthread(unsigned int cpu)
1216
{
1217 1218
	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1219
	int spincnt;
1220

1221
	for (spincnt = 0; spincnt < 10; spincnt++) {
1222
		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1223 1224
		local_bh_disable();
		*statusp = RCU_KTHREAD_RUNNING;
1225 1226
		this_cpu_inc(rcu_cpu_kthread_loops);
		local_irq_disable();
1227 1228
		work = *workp;
		*workp = 0;
1229
		local_irq_enable();
1230 1231 1232
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
1233
		if (*workp == 0) {
1234
			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1235 1236
			*statusp = RCU_KTHREAD_WAITING;
			return;
1237 1238
		}
	}
1239
	*statusp = RCU_KTHREAD_YIELDING;
1240
	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1241
	schedule_timeout_interruptible(2);
1242
	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1243
	*statusp = RCU_KTHREAD_WAITING;
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
T
Thomas Gleixner 已提交
1255
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1256
{
T
Thomas Gleixner 已提交
1257
	struct task_struct *t = rnp->boost_kthread_task;
1258
	unsigned long mask = rcu_rnp_online_cpus(rnp);
1259 1260 1261
	cpumask_var_t cm;
	int cpu;

T
Thomas Gleixner 已提交
1262
	if (!t)
1263
		return;
T
Thomas Gleixner 已提交
1264
	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1265 1266 1267 1268
		return;
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
		if ((mask & 0x1) && cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
1269
	if (cpumask_weight(cm) == 0)
1270
		cpumask_setall(cm);
T
Thomas Gleixner 已提交
1271
	set_cpus_allowed_ptr(t, cm);
1272 1273 1274
	free_cpumask_var(cm);
}

1275 1276 1277 1278 1279 1280 1281 1282
static struct smp_hotplug_thread rcu_cpu_thread_spec = {
	.store			= &rcu_cpu_kthread_task,
	.thread_should_run	= rcu_cpu_kthread_should_run,
	.thread_fn		= rcu_cpu_kthread,
	.thread_comm		= "rcuc/%u",
	.setup			= rcu_cpu_kthread_setup,
	.park			= rcu_cpu_kthread_park,
};
1283 1284

/*
1285
 * Spawn boost kthreads -- called as soon as the scheduler is running.
1286
 */
1287
static void __init rcu_spawn_boost_kthreads(void)
1288 1289
{
	struct rcu_node *rnp;
T
Thomas Gleixner 已提交
1290
	int cpu;
1291

1292
	for_each_possible_cpu(cpu)
1293
		per_cpu(rcu_cpu_has_work, cpu) = 0;
1294
	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1295 1296
	rcu_for_each_leaf_node(rcu_state_p, rnp)
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1297 1298
}

1299
static void rcu_prepare_kthreads(int cpu)
1300
{
1301
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1302 1303 1304
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1305
	if (rcu_scheduler_fully_active)
1306
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1307 1308
}

1309 1310
#else /* #ifdef CONFIG_RCU_BOOST */

1311
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1312
	__releases(rnp->lock)
1313
{
1314
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1315 1316
}

1317
static void invoke_rcu_callbacks_kthread(void)
1318
{
1319
	WARN_ON_ONCE(1);
1320 1321
}

1322 1323 1324 1325 1326
static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

1327 1328 1329 1330
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

T
Thomas Gleixner 已提交
1331
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1332 1333 1334
{
}

1335
static void __init rcu_spawn_boost_kthreads(void)
1336 1337 1338
{
}

1339
static void rcu_prepare_kthreads(int cpu)
1340 1341 1342
{
}

1343 1344
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1345 1346 1347 1348 1349 1350 1351 1352
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
1353 1354
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
1355
 */
1356
int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1357
{
1358
	*nextevt = KTIME_MAX;
1359 1360
	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
	       ? 0 : rcu_cpu_has_callbacks(NULL);
1361 1362 1363 1364 1365 1366
}

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
1367
static void rcu_cleanup_after_idle(void)
1368 1369 1370
{
}

1371
/*
1372
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1373 1374
 * is nothing.
 */
1375
static void rcu_prepare_for_idle(void)
1376 1377 1378
{
}

1379 1380 1381 1382 1383 1384 1385 1386
/*
 * Don't bother keeping a running count of the number of RCU callbacks
 * posted because CONFIG_RCU_FAST_NO_HZ=n.
 */
static void rcu_idle_count_callbacks_posted(void)
{
}

1387 1388
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
1404 1405 1406
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
1407 1408 1409 1410 1411
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
1412
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1413
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1414

1415 1416 1417 1418
static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
module_param(rcu_idle_gp_delay, int, 0644);
static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
module_param(rcu_idle_lazy_gp_delay, int, 0644);
1419 1420

/*
1421 1422 1423
 * Try to advance callbacks for all flavors of RCU on the current CPU, but
 * only if it has been awhile since the last time we did so.  Afterwards,
 * if there are any callbacks ready for immediate invocation, return true.
1424
 */
1425
static bool __maybe_unused rcu_try_advance_all_cbs(void)
1426
{
1427 1428
	bool cbs_ready = false;
	struct rcu_data *rdp;
1429
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1430 1431
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1432

1433 1434
	/* Exit early if we advanced recently. */
	if (jiffies == rdtp->last_advance_all)
1435
		return false;
1436 1437
	rdtp->last_advance_all = jiffies;

1438 1439 1440
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		rnp = rdp->mynode;
1441

1442 1443 1444 1445 1446
		/*
		 * Don't bother checking unless a grace period has
		 * completed since we last checked and there are
		 * callbacks not yet ready to invoke.
		 */
1447
		if ((rdp->completed != rnp->completed ||
1448
		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1449
		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1450
			note_gp_changes(rsp, rdp);
1451

1452 1453 1454 1455
		if (cpu_has_callbacks_ready_to_invoke(rdp))
			cbs_ready = true;
	}
	return cbs_ready;
1456 1457
}

1458
/*
1459 1460 1461 1462
 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
 * caller to set the timeout based on whether or not there are non-lazy
 * callbacks.
1463
 *
1464
 * The caller must have disabled interrupts.
1465
 */
1466
int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1467
{
1468
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1469
	unsigned long dj;
1470

1471
	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1472
		*nextevt = KTIME_MAX;
1473 1474 1475
		return 0;
	}

1476 1477 1478
	/* Snapshot to detect later posting of non-lazy callback. */
	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;

1479
	/* If no callbacks, RCU doesn't need the CPU. */
1480
	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1481
		*nextevt = KTIME_MAX;
1482 1483
		return 0;
	}
1484 1485 1486 1487 1488

	/* Attempt to advance callbacks. */
	if (rcu_try_advance_all_cbs()) {
		/* Some ready to invoke, so initiate later invocation. */
		invoke_rcu_core();
1489 1490
		return 1;
	}
1491 1492 1493
	rdtp->last_accelerate = jiffies;

	/* Request timer delay depending on laziness, and round. */
1494
	if (!rdtp->all_lazy) {
1495
		dj = round_up(rcu_idle_gp_delay + jiffies,
1496
			       rcu_idle_gp_delay) - jiffies;
1497
	} else {
1498
		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1499
	}
1500
	*nextevt = basemono + dj * TICK_NSEC;
1501 1502 1503
	return 0;
}

1504
/*
1505 1506 1507 1508 1509 1510
 * Prepare a CPU for idle from an RCU perspective.  The first major task
 * is to sense whether nohz mode has been enabled or disabled via sysfs.
 * The second major task is to check to see if a non-lazy callback has
 * arrived at a CPU that previously had only lazy callbacks.  The third
 * major task is to accelerate (that is, assign grace-period numbers to)
 * any recently arrived callbacks.
1511 1512
 *
 * The caller must have disabled interrupts.
1513
 */
1514
static void rcu_prepare_for_idle(void)
1515
{
1516
	bool needwake;
1517
	struct rcu_data *rdp;
1518
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1519 1520
	struct rcu_node *rnp;
	struct rcu_state *rsp;
1521 1522
	int tne;

1523 1524 1525
	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
		return;

1526
	/* Handle nohz enablement switches conservatively. */
1527
	tne = READ_ONCE(tick_nohz_active);
1528
	if (tne != rdtp->tick_nohz_enabled_snap) {
1529
		if (rcu_cpu_has_callbacks(NULL))
1530 1531 1532 1533 1534 1535
			invoke_rcu_core(); /* force nohz to see update. */
		rdtp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;
1536

1537
	/* If this is a no-CBs CPU, no callbacks, just return. */
1538
	if (rcu_is_nocb_cpu(smp_processor_id()))
1539 1540
		return;

1541
	/*
1542 1543 1544
	 * If a non-lazy callback arrived at a CPU having only lazy
	 * callbacks, invoke RCU core for the side-effect of recalculating
	 * idle duration on re-entry to idle.
1545
	 */
1546 1547
	if (rdtp->all_lazy &&
	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1548 1549
		rdtp->all_lazy = false;
		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1550
		invoke_rcu_core();
1551 1552 1553
		return;
	}

1554
	/*
1555 1556
	 * If we have not yet accelerated this jiffy, accelerate all
	 * callbacks on this CPU.
1557
	 */
1558
	if (rdtp->last_accelerate == jiffies)
1559
		return;
1560 1561
	rdtp->last_accelerate = jiffies;
	for_each_rcu_flavor(rsp) {
1562
		rdp = this_cpu_ptr(rsp->rda);
1563 1564 1565
		if (!*rdp->nxttail[RCU_DONE_TAIL])
			continue;
		rnp = rdp->mynode;
1566
		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1567
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1568
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1569 1570
		if (needwake)
			rcu_gp_kthread_wake(rsp);
1571
	}
1572
}
1573

1574 1575 1576 1577 1578
/*
 * Clean up for exit from idle.  Attempt to advance callbacks based on
 * any grace periods that elapsed while the CPU was idle, and if any
 * callbacks are now ready to invoke, initiate invocation.
 */
1579
static void rcu_cleanup_after_idle(void)
1580
{
1581 1582
	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
	    rcu_is_nocb_cpu(smp_processor_id()))
1583
		return;
1584 1585
	if (rcu_try_advance_all_cbs())
		invoke_rcu_core();
1586 1587
}

1588
/*
1589 1590 1591 1592 1593 1594
 * Keep a running count of the number of non-lazy callbacks posted
 * on this CPU.  This running counter (which is never decremented) allows
 * rcu_prepare_for_idle() to detect when something out of the idle loop
 * posts a callback, even if an equal number of callbacks are invoked.
 * Of course, callbacks should only be posted from within a trace event
 * designed to be called from idle or from within RCU_NONIDLE().
1595 1596 1597
 */
static void rcu_idle_count_callbacks_posted(void)
{
1598
	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1599 1600
}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
/*
 * Data for flushing lazy RCU callbacks at OOM time.
 */
static atomic_t oom_callback_count;
static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);

/*
 * RCU OOM callback -- decrement the outstanding count and deliver the
 * wake-up if we are the last one.
 */
static void rcu_oom_callback(struct rcu_head *rhp)
{
	if (atomic_dec_and_test(&oom_callback_count))
		wake_up(&oom_callback_wq);
}

/*
 * Post an rcu_oom_notify callback on the current CPU if it has at
 * least one lazy callback.  This will unnecessarily post callbacks
 * to CPUs that already have a non-lazy callback at the end of their
 * callback list, but this is an infrequent operation, so accept some
 * extra overhead to keep things simple.
 */
static void rcu_oom_notify_cpu(void *unused)
{
	struct rcu_state *rsp;
	struct rcu_data *rdp;

	for_each_rcu_flavor(rsp) {
1630
		rdp = raw_cpu_ptr(rsp->rda);
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
		if (rdp->qlen_lazy != 0) {
			atomic_inc(&oom_callback_count);
			rsp->call(&rdp->oom_head, rcu_oom_callback);
		}
	}
}

/*
 * If low on memory, ensure that each CPU has a non-lazy callback.
 * This will wake up CPUs that have only lazy callbacks, in turn
 * ensuring that they free up the corresponding memory in a timely manner.
 * Because an uncertain amount of memory will be freed in some uncertain
 * timeframe, we do not claim to have freed anything.
 */
static int rcu_oom_notify(struct notifier_block *self,
			  unsigned long notused, void *nfreed)
{
	int cpu;

	/* Wait for callbacks from earlier instance to complete. */
	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1652
	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1653 1654 1655 1656 1657 1658 1659 1660 1661

	/*
	 * Prevent premature wakeup: ensure that all increments happen
	 * before there is a chance of the counter reaching zero.
	 */
	atomic_set(&oom_callback_count, 1);

	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1662
		cond_resched_rcu_qs();
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	}

	/* Unconditionally decrement: no need to wake ourselves up. */
	atomic_dec(&oom_callback_count);

	return NOTIFY_OK;
}

static struct notifier_block rcu_oom_nb = {
	.notifier_call = rcu_oom_notify
};

static int __init rcu_register_oom_notifier(void)
{
	register_oom_notifier(&rcu_oom_nb);
	return 0;
}
early_initcall(rcu_register_oom_notifier);

1682
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1683 1684 1685 1686 1687

#ifdef CONFIG_RCU_FAST_NO_HZ

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1688
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1689
	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1690

1691 1692 1693 1694 1695
	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
		ulong2long(nlpd),
		rdtp->all_lazy ? 'L' : '.',
		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1696 1697 1698 1699 1700 1701
}

#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
1702
	*cp = '\0';
1703 1704 1705 1706 1707 1708 1709
}

#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */

/* Initiate the stall-info list. */
static void print_cpu_stall_info_begin(void)
{
1710
	pr_cont("\n");
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
}

/*
 * Print out diagnostic information for the specified stalled CPU.
 *
 * If the specified CPU is aware of the current RCU grace period
 * (flavor specified by rsp), then print the number of scheduling
 * clock interrupts the CPU has taken during the time that it has
 * been aware.  Otherwise, print the number of RCU grace periods
 * that this CPU is ignorant of, for example, "1" if the CPU was
 * aware of the previous grace period.
 *
 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 */
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	char fast_no_hz[72];
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_dynticks *rdtp = rdp->dynticks;
	char *ticks_title;
	unsigned long ticks_value;

	if (rsp->gpnum == rdp->gpnum) {
		ticks_title = "ticks this GP";
		ticks_value = rdp->ticks_this_gp;
	} else {
		ticks_title = "GPs behind";
		ticks_value = rsp->gpnum - rdp->gpnum;
	}
	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1741 1742 1743 1744 1745 1746
	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
	       cpu,
	       "O."[!!cpu_online(cpu)],
	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
	       ticks_value, ticks_title,
1747 1748
	       atomic_read(&rdtp->dynticks) & 0xfff,
	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1749
	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1750
	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1751 1752 1753 1754 1755 1756
	       fast_no_hz);
}

/* Terminate the stall-info list. */
static void print_cpu_stall_info_end(void)
{
1757
	pr_err("\t");
1758 1759 1760 1761 1762 1763
}

/* Zero ->ticks_this_gp for all flavors of RCU. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
	rdp->ticks_this_gp = 0;
1764
	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1765 1766 1767 1768 1769
}

/* Increment ->ticks_this_gp for all flavors of RCU. */
static void increment_cpu_stall_ticks(void)
{
1770 1771 1772
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1773
		raw_cpu_inc(rsp->rda->ticks_this_gp);
1774 1775
}

P
Paul E. McKenney 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
#ifdef CONFIG_RCU_NOCB_CPU

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
 * kthread created that pulls the callbacks from the corresponding CPU,
 * waits for a grace period to elapse, and invokes the callbacks.
 * The no-CBs CPUs do a wake_up() on their kthread when they insert
 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
 * has been specified, in which case each kthread actively polls its
 * CPU.  (Which isn't so great for energy efficiency, but which does
 * reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callback processing could also in theory be used as
 * an energy-efficiency measure because CPUs with no RCU callbacks
 * queued are more aggressive about entering dyntick-idle mode.
 */


/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
static int __init rcu_nocb_setup(char *str)
{
	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
	have_rcu_nocb_mask = true;
	cpulist_parse(str, rcu_nocb_mask);
	return 1;
}
__setup("rcu_nocbs=", rcu_nocb_setup);

1809 1810 1811 1812 1813 1814 1815
static int __init parse_rcu_nocb_poll(char *arg)
{
	rcu_nocb_poll = 1;
	return 0;
}
early_param("rcu_nocb_poll", parse_rcu_nocb_poll);

1816
/*
1817 1818
 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 * grace period.
1819
 */
1820
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1821
{
1822
	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1823 1824 1825
}

/*
1826
 * Set the root rcu_node structure's ->need_future_gp field
1827 1828 1829 1830 1831
 * based on the sum of those of all rcu_node structures.  This does
 * double-count the root rcu_node structure's requests, but this
 * is necessary to handle the possibility of a rcu_nocb_kthread()
 * having awakened during the time that the rcu_node structures
 * were being updated for the end of the previous grace period.
1832
 */
1833 1834
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
1835
	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1836 1837 1838
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
1839
{
1840 1841
	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1842 1843
}

1844
#ifndef CONFIG_RCU_NOCB_CPU_ALL
L
Liu Ping Fan 已提交
1845
/* Is the specified CPU a no-CBs CPU? */
1846
bool rcu_is_nocb_cpu(int cpu)
P
Paul E. McKenney 已提交
1847 1848 1849 1850 1851
{
	if (have_rcu_nocb_mask)
		return cpumask_test_cpu(cpu, rcu_nocb_mask);
	return false;
}
1852
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
P
Paul E. McKenney 已提交
1853

1854 1855 1856 1857 1858 1859 1860
/*
 * Kick the leader kthread for this NOCB group.
 */
static void wake_nocb_leader(struct rcu_data *rdp, bool force)
{
	struct rcu_data *rdp_leader = rdp->nocb_leader;

1861
	if (!READ_ONCE(rdp_leader->nocb_kthread))
1862
		return;
1863
	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1864
		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1865
		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1866 1867 1868 1869
		wake_up(&rdp_leader->nocb_wq);
	}
}

1870 1871 1872 1873 1874 1875 1876
/*
 * Does the specified CPU need an RCU callback for the specified flavor
 * of rcu_barrier()?
 */
static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1877 1878
	unsigned long ret;
#ifdef CONFIG_PROVE_RCU
1879
	struct rcu_head *rhp;
1880
#endif /* #ifdef CONFIG_PROVE_RCU */
1881

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	/*
	 * Check count of all no-CBs callbacks awaiting invocation.
	 * There needs to be a barrier before this function is called,
	 * but associated with a prior determination that no more
	 * callbacks would be posted.  In the worst case, the first
	 * barrier in _rcu_barrier() suffices (but the caller cannot
	 * necessarily rely on this, not a substitute for the caller
	 * getting the concurrency design right!).  There must also be
	 * a barrier between the following load an posting of a callback
	 * (if a callback is in fact needed).  This is associated with an
	 * atomic_inc() in the caller.
	 */
	ret = atomic_long_read(&rdp->nocb_q_count);
1895

1896
#ifdef CONFIG_PROVE_RCU
1897
	rhp = READ_ONCE(rdp->nocb_head);
1898
	if (!rhp)
1899
		rhp = READ_ONCE(rdp->nocb_gp_head);
1900
	if (!rhp)
1901
		rhp = READ_ONCE(rdp->nocb_follower_head);
1902 1903

	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1904
	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1905
	    rcu_scheduler_fully_active) {
1906 1907 1908 1909 1910
		/* RCU callback enqueued before CPU first came online??? */
		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
		       cpu, rhp->func);
		WARN_ON_ONCE(1);
	}
1911
#endif /* #ifdef CONFIG_PROVE_RCU */
1912

1913
	return !!ret;
1914 1915
}

P
Paul E. McKenney 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
/*
 * Enqueue the specified string of rcu_head structures onto the specified
 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
 * counts are supplied by rhcount and rhcount_lazy.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
				    struct rcu_head *rhp,
				    struct rcu_head **rhtp,
1927 1928
				    int rhcount, int rhcount_lazy,
				    unsigned long flags)
P
Paul E. McKenney 已提交
1929 1930 1931 1932 1933 1934
{
	int len;
	struct rcu_head **old_rhpp;
	struct task_struct *t;

	/* Enqueue the callback on the nocb list and update counts. */
1935 1936
	atomic_long_add(rhcount, &rdp->nocb_q_count);
	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
P
Paul E. McKenney 已提交
1937
	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1938
	WRITE_ONCE(*old_rhpp, rhp);
P
Paul E. McKenney 已提交
1939
	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1940
	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
P
Paul E. McKenney 已提交
1941 1942

	/* If we are not being polled and there is a kthread, awaken it ... */
1943
	t = READ_ONCE(rdp->nocb_kthread);
1944
	if (rcu_nocb_poll || !t) {
1945 1946
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
				    TPS("WakeNotPoll"));
P
Paul E. McKenney 已提交
1947
		return;
1948
	}
P
Paul E. McKenney 已提交
1949 1950
	len = atomic_long_read(&rdp->nocb_q_count);
	if (old_rhpp == &rdp->nocb_head) {
1951
		if (!irqs_disabled_flags(flags)) {
1952 1953
			/* ... if queue was empty ... */
			wake_nocb_leader(rdp, false);
1954 1955 1956
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmpty"));
		} else {
1957
			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1958 1959 1960
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmptyIsDeferred"));
		}
P
Paul E. McKenney 已提交
1961 1962
		rdp->qlen_last_fqs_check = 0;
	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1963
		/* ... or if many callbacks queued. */
1964 1965 1966 1967 1968 1969 1970 1971 1972
		if (!irqs_disabled_flags(flags)) {
			wake_nocb_leader(rdp, true);
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeOvf"));
		} else {
			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeOvfIsDeferred"));
		}
P
Paul E. McKenney 已提交
1973
		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1974 1975
	} else {
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
P
Paul E. McKenney 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
	}
	return;
}

/*
 * This is a helper for __call_rcu(), which invokes this when the normal
 * callback queue is inoperable.  If this is not a no-CBs CPU, this
 * function returns failure back to __call_rcu(), which can complain
 * appropriately.
 *
 * Otherwise, this function queues the callback where the corresponding
 * "rcuo" kthread can find it.
 */
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1990
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
1991 1992
{

1993
	if (!rcu_is_nocb_cpu(rdp->cpu))
1994
		return false;
1995
	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1996 1997 1998
	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
					 (unsigned long)rhp->func,
1999 2000
					 -atomic_long_read(&rdp->nocb_q_count_lazy),
					 -atomic_long_read(&rdp->nocb_q_count));
2001 2002
	else
		trace_rcu_callback(rdp->rsp->name, rhp,
2003 2004
				   -atomic_long_read(&rdp->nocb_q_count_lazy),
				   -atomic_long_read(&rdp->nocb_q_count));
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

	/*
	 * If called from an extended quiescent state with interrupts
	 * disabled, invoke the RCU core in order to allow the idle-entry
	 * deferred-wakeup check to function.
	 */
	if (irqs_disabled_flags(flags) &&
	    !rcu_is_watching() &&
	    cpu_online(smp_processor_id()))
		invoke_rcu_core();

2016
	return true;
P
Paul E. McKenney 已提交
2017 2018 2019 2020 2021 2022 2023
}

/*
 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
 * not a no-CBs CPU.
 */
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2024 2025
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2026 2027 2028 2029 2030
{
	long ql = rsp->qlen;
	long qll = rsp->qlen_lazy;

	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2031
	if (!rcu_is_nocb_cpu(smp_processor_id()))
2032
		return false;
P
Paul E. McKenney 已提交
2033 2034 2035 2036 2037 2038
	rsp->qlen = 0;
	rsp->qlen_lazy = 0;

	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
	if (rsp->orphan_donelist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2039
					rsp->orphan_donetail, ql, qll, flags);
P
Paul E. McKenney 已提交
2040 2041 2042 2043 2044 2045
		ql = qll = 0;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}
	if (rsp->orphan_nxtlist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2046
					rsp->orphan_nxttail, ql, qll, flags);
P
Paul E. McKenney 已提交
2047 2048 2049 2050
		ql = qll = 0;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
2051
	return true;
P
Paul E. McKenney 已提交
2052 2053 2054
}

/*
2055 2056
 * If necessary, kick off a new grace period, and either way wait
 * for a subsequent grace period to complete.
P
Paul E. McKenney 已提交
2057
 */
2058
static void rcu_nocb_wait_gp(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2059
{
2060
	unsigned long c;
2061
	bool d;
2062
	unsigned long flags;
2063
	bool needwake;
2064 2065
	struct rcu_node *rnp = rdp->mynode;

2066
	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2067
	needwake = rcu_start_future_gp(rnp, rdp, &c);
2068
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2069 2070
	if (needwake)
		rcu_gp_kthread_wake(rdp->rsp);
P
Paul E. McKenney 已提交
2071 2072

	/*
2073 2074
	 * Wait for the grace period.  Do so interruptibly to avoid messing
	 * up the load average.
P
Paul E. McKenney 已提交
2075
	 */
2076
	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2077
	for (;;) {
2078 2079
		wait_event_interruptible(
			rnp->nocb_gp_wq[c & 0x1],
2080
			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2081
		if (likely(d))
2082
			break;
2083
		WARN_ON(signal_pending(current));
2084
		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2085
	}
2086
	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2087
	smp_mb(); /* Ensure that CB invocation happens after GP end. */
P
Paul E. McKenney 已提交
2088 2089
}

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
/*
 * Leaders come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_leader_wait(struct rcu_data *my_rdp)
{
	bool firsttime = true;
	bool gotcbs;
	struct rcu_data *rdp;
	struct rcu_head **tail;

wait_again:

	/* Wait for callbacks to appear. */
	if (!rcu_nocb_poll) {
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
		wait_event_interruptible(my_rdp->nocb_wq,
2107
				!READ_ONCE(my_rdp->nocb_leader_sleep));
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
		/* Memory barrier handled by smp_mb() calls below and repoll. */
	} else if (firsttime) {
		firsttime = false; /* Don't drown trace log with "Poll"! */
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
	}

	/*
	 * Each pass through the following loop checks a follower for CBs.
	 * We are our own first follower.  Any CBs found are moved to
	 * nocb_gp_head, where they await a grace period.
	 */
	gotcbs = false;
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2121
		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2122 2123 2124 2125
		if (!rdp->nocb_gp_head)
			continue;  /* No CBs here, try next follower. */

		/* Move callbacks to wait-for-GP list, which is empty. */
2126
		WRITE_ONCE(rdp->nocb_head, NULL);
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
		gotcbs = true;
	}

	/*
	 * If there were no callbacks, sleep a bit, rescan after a
	 * memory barrier, and go retry.
	 */
	if (unlikely(!gotcbs)) {
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
					    "WokeEmpty");
2139
		WARN_ON(signal_pending(current));
2140 2141 2142
		schedule_timeout_interruptible(1);

		/* Rescan in case we were a victim of memory ordering. */
2143 2144
		my_rdp->nocb_leader_sleep = true;
		smp_mb();  /* Ensure _sleep true before scan. */
2145
		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2146
			if (READ_ONCE(rdp->nocb_head)) {
2147
				/* Found CB, so short-circuit next wait. */
2148
				my_rdp->nocb_leader_sleep = false;
2149 2150 2151 2152 2153 2154 2155 2156 2157
				break;
			}
		goto wait_again;
	}

	/* Wait for one grace period. */
	rcu_nocb_wait_gp(my_rdp);

	/*
2158 2159
	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
	 * We set it now, but recheck for new callbacks while
2160 2161
	 * traversing our follower list.
	 */
2162 2163
	my_rdp->nocb_leader_sleep = true;
	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2164 2165 2166

	/* Each pass through the following loop wakes a follower, if needed. */
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2167
		if (READ_ONCE(rdp->nocb_head))
2168
			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2169 2170 2171 2172 2173 2174
		if (!rdp->nocb_gp_head)
			continue; /* No CBs, so no need to wake follower. */

		/* Append callbacks to follower's "done" list. */
		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
		*tail = rdp->nocb_gp_head;
2175
		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
			/*
			 * List was empty, wake up the follower.
			 * Memory barriers supplied by atomic_long_add().
			 */
			wake_up(&rdp->nocb_wq);
		}
	}

	/* If we (the leader) don't have CBs, go wait some more. */
	if (!my_rdp->nocb_follower_head)
		goto wait_again;
}

/*
 * Followers come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_follower_wait(struct rcu_data *rdp)
{
	bool firsttime = true;

	for (;;) {
		if (!rcu_nocb_poll) {
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "FollowerSleep");
			wait_event_interruptible(rdp->nocb_wq,
2203
						 READ_ONCE(rdp->nocb_follower_head));
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
		} else if (firsttime) {
			/* Don't drown trace log with "Poll"! */
			firsttime = false;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
		}
		if (smp_load_acquire(&rdp->nocb_follower_head)) {
			/* ^^^ Ensure CB invocation follows _head test. */
			return;
		}
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "WokeEmpty");
2216
		WARN_ON(signal_pending(current));
2217 2218 2219 2220
		schedule_timeout_interruptible(1);
	}
}

P
Paul E. McKenney 已提交
2221 2222
/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2223 2224 2225
 * callbacks queued by the corresponding no-CBs CPU, however, there is
 * an optional leader-follower relationship so that the grace-period
 * kthreads don't have to do quite so many wakeups.
P
Paul E. McKenney 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
 */
static int rcu_nocb_kthread(void *arg)
{
	int c, cl;
	struct rcu_head *list;
	struct rcu_head *next;
	struct rcu_head **tail;
	struct rcu_data *rdp = arg;

	/* Each pass through this loop invokes one batch of callbacks */
	for (;;) {
2237 2238 2239 2240 2241 2242 2243
		/* Wait for callbacks. */
		if (rdp->nocb_leader == rdp)
			nocb_leader_wait(rdp);
		else
			nocb_follower_wait(rdp);

		/* Pull the ready-to-invoke callbacks onto local list. */
2244
		list = READ_ONCE(rdp->nocb_follower_head);
2245 2246
		BUG_ON(!list);
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2247
		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2248
		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
P
Paul E. McKenney 已提交
2249 2250

		/* Each pass through the following loop invokes a callback. */
2251 2252 2253
		trace_rcu_batch_start(rdp->rsp->name,
				      atomic_long_read(&rdp->nocb_q_count_lazy),
				      atomic_long_read(&rdp->nocb_q_count), -1);
P
Paul E. McKenney 已提交
2254 2255 2256 2257 2258
		c = cl = 0;
		while (list) {
			next = list->next;
			/* Wait for enqueuing to complete, if needed. */
			while (next == NULL && &list->next != tail) {
2259 2260
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WaitQueue"));
P
Paul E. McKenney 已提交
2261
				schedule_timeout_interruptible(1);
2262 2263
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WokeQueue"));
P
Paul E. McKenney 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
				next = list->next;
			}
			debug_rcu_head_unqueue(list);
			local_bh_disable();
			if (__rcu_reclaim(rdp->rsp->name, list))
				cl++;
			c++;
			local_bh_enable();
			list = next;
		}
		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2275 2276 2277
		smp_mb__before_atomic();  /* _add after CB invocation. */
		atomic_long_add(-c, &rdp->nocb_q_count);
		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2278
		rdp->n_nocbs_invoked += c;
P
Paul E. McKenney 已提交
2279 2280 2281 2282
	}
	return 0;
}

2283
/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2284
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2285
{
2286
	return READ_ONCE(rdp->nocb_defer_wakeup);
2287 2288 2289 2290 2291
}

/* Do a deferred wakeup of rcu_nocb_kthread(). */
static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
2292 2293
	int ndw;

2294 2295
	if (!rcu_nocb_need_deferred_wakeup(rdp))
		return;
2296 2297
	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2298 2299
	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2300 2301
}

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
void __init rcu_init_nohz(void)
{
	int cpu;
	bool need_rcu_nocb_mask = true;
	struct rcu_state *rsp;

#ifdef CONFIG_RCU_NOCB_CPU_NONE
	need_rcu_nocb_mask = false;
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */

#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
		need_rcu_nocb_mask = true;
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2318 2319 2320 2321
		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
			return;
		}
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
		have_rcu_nocb_mask = true;
	}
	if (!have_rcu_nocb_mask)
		return;

#ifdef CONFIG_RCU_NOCB_CPU_ZERO
	pr_info("\tOffload RCU callbacks from CPU 0\n");
	cpumask_set_cpu(0, rcu_nocb_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
#ifdef CONFIG_RCU_NOCB_CPU_ALL
	pr_info("\tOffload RCU callbacks from all CPUs\n");
	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running)
		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
			    rcu_nocb_mask);
	}
2345 2346
	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
		cpumask_pr_args(rcu_nocb_mask));
2347 2348 2349 2350
	if (rcu_nocb_poll)
		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");

	for_each_rcu_flavor(rsp) {
2351 2352
		for_each_cpu(cpu, rcu_nocb_mask)
			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2353
		rcu_organize_nocb_kthreads(rsp);
2354
	}
2355 2356
}

P
Paul E. McKenney 已提交
2357 2358 2359 2360 2361
/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
	rdp->nocb_tail = &rdp->nocb_head;
	init_waitqueue_head(&rdp->nocb_wq);
2362
	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
P
Paul E. McKenney 已提交
2363 2364
}

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
 * brought online out of order, this can require re-organizing the
 * leader-follower relationships.
 */
static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
{
	struct rcu_data *rdp;
	struct rcu_data *rdp_last;
	struct rcu_data *rdp_old_leader;
	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
	struct task_struct *t;

	/*
	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
	 * then nothing to do.
	 */
	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
		return;

	/* If we didn't spawn the leader first, reorganize! */
	rdp_old_leader = rdp_spawn->nocb_leader;
	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
		rdp_last = NULL;
		rdp = rdp_old_leader;
		do {
			rdp->nocb_leader = rdp_spawn;
			if (rdp_last && rdp != rdp_spawn)
				rdp_last->nocb_next_follower = rdp;
2395 2396 2397 2398 2399 2400 2401
			if (rdp == rdp_spawn) {
				rdp = rdp->nocb_next_follower;
			} else {
				rdp_last = rdp;
				rdp = rdp->nocb_next_follower;
				rdp_last->nocb_next_follower = NULL;
			}
2402 2403 2404 2405 2406 2407 2408 2409
		} while (rdp);
		rdp_spawn->nocb_next_follower = rdp_old_leader;
	}

	/* Spawn the kthread for this CPU and RCU flavor. */
	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
			"rcuo%c/%d", rsp->abbr, cpu);
	BUG_ON(IS_ERR(t));
2410
	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
}

/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo kthreads, spawn them.
 */
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
	struct rcu_state *rsp;

	if (rcu_scheduler_fully_active)
		for_each_rcu_flavor(rsp)
			rcu_spawn_one_nocb_kthread(rsp, cpu);
}

/*
 * Once the scheduler is running, spawn rcuo kthreads for all online
 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
 * non-boot CPUs come online -- if this changes, we will need to add
 * some mutual exclusion.
 */
static void __init rcu_spawn_nocb_kthreads(void)
{
	int cpu;

	for_each_online_cpu(cpu)
		rcu_spawn_all_nocb_kthreads(cpu);
}

2440 2441 2442 2443 2444
/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
static int rcu_nocb_leader_stride = -1;
module_param(rcu_nocb_leader_stride, int, 0444);

/*
2445
 * Initialize leader-follower relationships for all no-CBs CPU.
2446
 */
2447
static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
P
Paul E. McKenney 已提交
2448 2449
{
	int cpu;
2450 2451
	int ls = rcu_nocb_leader_stride;
	int nl = 0;  /* Next leader. */
P
Paul E. McKenney 已提交
2452
	struct rcu_data *rdp;
2453 2454
	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
	struct rcu_data *rdp_prev = NULL;
P
Paul E. McKenney 已提交
2455

2456
	if (!have_rcu_nocb_mask)
P
Paul E. McKenney 已提交
2457
		return;
2458 2459 2460 2461 2462 2463 2464 2465 2466
	if (ls == -1) {
		ls = int_sqrt(nr_cpu_ids);
		rcu_nocb_leader_stride = ls;
	}

	/*
	 * Each pass through this loop sets up one rcu_data structure and
	 * spawns one rcu_nocb_kthread().
	 */
P
Paul E. McKenney 已提交
2467 2468
	for_each_cpu(cpu, rcu_nocb_mask) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
		if (rdp->cpu >= nl) {
			/* New leader, set up for followers & next leader. */
			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
			rdp->nocb_leader = rdp;
			rdp_leader = rdp;
		} else {
			/* Another follower, link to previous leader. */
			rdp->nocb_leader = rdp_leader;
			rdp_prev->nocb_next_follower = rdp;
		}
		rdp_prev = rdp;
P
Paul E. McKenney 已提交
2480 2481 2482 2483
	}
}

/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2484
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2485
{
2486
	if (!rcu_is_nocb_cpu(rdp->cpu))
2487
		return false;
2488

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	/* If there are early-boot callbacks, move them to nocb lists. */
	if (rdp->nxtlist) {
		rdp->nocb_head = rdp->nxtlist;
		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
		rdp->nxtlist = NULL;
		rdp->qlen = 0;
		rdp->qlen_lazy = 0;
	}
P
Paul E. McKenney 已提交
2499
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2500
	return true;
P
Paul E. McKenney 已提交
2501 2502
}

2503 2504
#else /* #ifdef CONFIG_RCU_NOCB_CPU */

2505 2506 2507 2508 2509 2510
static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
{
	WARN_ON_ONCE(1); /* Should be dead code. */
	return false;
}

2511
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
P
Paul E. McKenney 已提交
2512 2513 2514
{
}

2515 2516 2517 2518 2519 2520 2521
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}
P
Paul E. McKenney 已提交
2522 2523

static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2524
			    bool lazy, unsigned long flags)
P
Paul E. McKenney 已提交
2525
{
2526
	return false;
P
Paul E. McKenney 已提交
2527 2528 2529
}

static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2530 2531
						     struct rcu_data *rdp,
						     unsigned long flags)
P
Paul E. McKenney 已提交
2532
{
2533
	return false;
P
Paul E. McKenney 已提交
2534 2535 2536 2537 2538 2539
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

2540
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2541 2542 2543 2544 2545 2546 2547 2548
{
	return false;
}

static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
}

2549 2550 2551 2552 2553
static void rcu_spawn_all_nocb_kthreads(int cpu)
{
}

static void __init rcu_spawn_nocb_kthreads(void)
P
Paul E. McKenney 已提交
2554 2555 2556
{
}

2557
static bool init_nocb_callback_list(struct rcu_data *rdp)
P
Paul E. McKenney 已提交
2558
{
2559
	return false;
P
Paul E. McKenney 已提交
2560 2561 2562
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572

/*
 * An adaptive-ticks CPU can potentially execute in kernel mode for an
 * arbitrarily long period of time with the scheduling-clock tick turned
 * off.  RCU will be paying attention to this CPU because it is in the
 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
 * machine because the scheduling-clock tick has been disabled.  Therefore,
 * if an adaptive-ticks CPU is failing to respond to the current grace
 * period and has not be idle from an RCU perspective, kick it.
 */
2573
static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2574 2575 2576 2577 2578 2579
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(cpu))
		smp_send_reschedule(cpu);
#endif /* #ifdef CONFIG_NO_HZ_FULL */
}
2580 2581 2582 2583


#ifdef CONFIG_NO_HZ_FULL_SYSIDLE

2584
static int full_sysidle_state;		/* Current system-idle state. */
2585 2586 2587 2588 2589 2590
#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */

2591 2592 2593 2594 2595 2596
/*
 * Invoked to note exit from irq or task transition to idle.  Note that
 * usermode execution does -not- count as idle here!  After all, we want
 * to detect full-system idle states, not RCU quiescent states and grace
 * periods.  The caller must have disabled interrupts.
 */
2597
static void rcu_sysidle_enter(int irq)
2598 2599
{
	unsigned long j;
2600
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2601

2602 2603 2604 2605
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	/* Adjust nesting, check for fully idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting--;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
		if (rdtp->dynticks_idle_nesting != 0)
			return;  /* Still not fully idle. */
	} else {
		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
		    DYNTICK_TASK_NEST_VALUE) {
			rdtp->dynticks_idle_nesting = 0;
		} else {
			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
			return;  /* Still not fully idle. */
		}
	}

	/* Record start of fully idle period. */
	j = jiffies;
2625
	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2626
	smp_mb__before_atomic();
2627
	atomic_inc(&rdtp->dynticks_idle);
2628
	smp_mb__after_atomic();
2629 2630 2631
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
}

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
/*
 * Unconditionally force exit from full system-idle state.  This is
 * invoked when a normal CPU exits idle, but must be called separately
 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
 * is that the timekeeping CPU is permitted to take scheduling-clock
 * interrupts while the system is in system-idle state, and of course
 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
 * interrupt from any other type of interrupt.
 */
void rcu_sysidle_force_exit(void)
{
2643
	int oldstate = READ_ONCE(full_sysidle_state);
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
	int newoldstate;

	/*
	 * Each pass through the following loop attempts to exit full
	 * system-idle state.  If contention proves to be a problem,
	 * a trylock-based contention tree could be used here.
	 */
	while (oldstate > RCU_SYSIDLE_SHORT) {
		newoldstate = cmpxchg(&full_sysidle_state,
				      oldstate, RCU_SYSIDLE_NOT);
		if (oldstate == newoldstate &&
		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
			rcu_kick_nohz_cpu(tick_do_timer_cpu);
			return; /* We cleared it, done! */
		}
		oldstate = newoldstate;
	}
	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
}

2664 2665 2666 2667 2668
/*
 * Invoked to note entry to irq or task transition from idle.  Note that
 * usermode execution does -not- count as idle here!  The caller must
 * have disabled interrupts.
 */
2669
static void rcu_sysidle_exit(int irq)
2670
{
2671 2672
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);

2673 2674 2675 2676
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
	/* Adjust nesting, check for already non-idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting++;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
		if (rdtp->dynticks_idle_nesting != 1)
			return; /* Already non-idle. */
	} else {
		/*
		 * Allow for irq misnesting.  Yes, it really is possible
		 * to enter an irq handler then never leave it, and maybe
		 * also vice versa.  Handle both possibilities.
		 */
		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
			return; /* Already non-idle. */
		} else {
			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
		}
	}

	/* Record end of idle period. */
2699
	smp_mb__before_atomic();
2700
	atomic_inc(&rdtp->dynticks_idle);
2701
	smp_mb__after_atomic();
2702
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721

	/*
	 * If we are the timekeeping CPU, we are permitted to be non-idle
	 * during a system-idle state.  This must be the case, because
	 * the timekeeping CPU has to take scheduling-clock interrupts
	 * during the time that the system is transitioning to full
	 * system-idle state.  This means that the timekeeping CPU must
	 * invoke rcu_sysidle_force_exit() directly if it does anything
	 * more than take a scheduling-clock interrupt.
	 */
	if (smp_processor_id() == tick_do_timer_cpu)
		return;

	/* Update system-idle state: We are clearly no longer fully idle! */
	rcu_sysidle_force_exit();
}

/*
 * Check to see if the current CPU is idle.  Note that usermode execution
2722 2723
 * does not count as idle.  The caller must have disabled interrupts,
 * and must be running on tick_do_timer_cpu.
2724 2725 2726 2727 2728 2729 2730 2731
 */
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
	int cur;
	unsigned long j;
	struct rcu_dynticks *rdtp = rdp->dynticks;

2732 2733 2734 2735
	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
	if (!tick_nohz_full_enabled())
		return;

2736 2737 2738 2739 2740
	/*
	 * If some other CPU has already reported non-idle, if this is
	 * not the flavor of RCU that tracks sysidle state, or if this
	 * is an offline or the timekeeping CPU, nothing to do.
	 */
2741
	if (!*isidle || rdp->rsp != rcu_state_p ||
2742 2743
	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
		return;
2744 2745
	/* Verify affinity of current kthread. */
	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755

	/* Pick up current idle and NMI-nesting counter and check. */
	cur = atomic_read(&rdtp->dynticks_idle);
	if (cur & 0x1) {
		*isidle = false; /* We are not idle! */
		return;
	}
	smp_mb(); /* Read counters before timestamps. */

	/* Pick up timestamps. */
2756
	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
	/* If this CPU entered idle more recently, update maxj timestamp. */
	if (ULONG_CMP_LT(*maxj, j))
		*maxj = j;
}

/*
 * Is this the flavor of RCU that is handling full-system idle?
 */
static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
2767
	return rsp == rcu_state_p;
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
}

/*
 * Return a delay in jiffies based on the number of CPUs, rcu_node
 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
 * systems more time to transition to full-idle state in order to
 * avoid the cache thrashing that otherwise occur on the state variable.
 * Really small systems (less than a couple of tens of CPUs) should
 * instead use a single global atomically incremented counter, and later
 * versions of this will automatically reconfigure themselves accordingly.
 */
static unsigned long rcu_sysidle_delay(void)
{
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return 0;
	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
}

/*
 * Advance the full-system-idle state.  This is invoked when all of
 * the non-timekeeping CPUs are idle.
 */
static void rcu_sysidle(unsigned long j)
{
	/* Check the current state. */
2793
	switch (READ_ONCE(full_sysidle_state)) {
2794 2795 2796
	case RCU_SYSIDLE_NOT:

		/* First time all are idle, so note a short idle period. */
2797
		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		break;

	case RCU_SYSIDLE_SHORT:

		/*
		 * Idle for a bit, time to advance to next state?
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
		break;

	case RCU_SYSIDLE_LONG:

		/*
		 * Do an additional check pass before advancing to full.
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
		break;

	default:
		break;
	}
}

/*
 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
 * back to the beginning.
 */
static void rcu_sysidle_cancel(void)
{
	smp_mb();
2834
	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2835
		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2836 2837 2838 2839 2840 2841 2842 2843 2844
}

/*
 * Update the sysidle state based on the results of a force-quiescent-state
 * scan of the CPUs' dyntick-idle state.
 */
static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
			       unsigned long maxj, bool gpkt)
{
2845
	if (rsp != rcu_state_p)
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
		return;  /* Wrong flavor, ignore. */
	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return;  /* Running state machine from timekeeping CPU. */
	if (isidle)
		rcu_sysidle(maxj);    /* More idle! */
	else
		rcu_sysidle_cancel(); /* Idle is over. */
}

/*
 * Wrapper for rcu_sysidle_report() when called from the grace-period
 * kthread's context.
 */
static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
2862 2863 2864 2865
	/* If there are no nohz_full= CPUs, no need to track this. */
	if (!tick_nohz_full_enabled())
		return;

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
	rcu_sysidle_report(rsp, isidle, maxj, true);
}

/* Callback and function for forcing an RCU grace period. */
struct rcu_sysidle_head {
	struct rcu_head rh;
	int inuse;
};

static void rcu_sysidle_cb(struct rcu_head *rhp)
{
	struct rcu_sysidle_head *rshp;

	/*
	 * The following memory barrier is needed to replace the
	 * memory barriers that would normally be in the memory
	 * allocator.
	 */
	smp_mb();  /* grace period precedes setting inuse. */

	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2887
	WRITE_ONCE(rshp->inuse, 0);
2888 2889 2890 2891
}

/*
 * Check to see if the system is fully idle, other than the timekeeping CPU.
2892 2893
 * The caller must have disabled interrupts.  This is not intended to be
 * called unless tick_nohz_full_enabled().
2894 2895 2896 2897
 */
bool rcu_sys_is_idle(void)
{
	static struct rcu_sysidle_head rsh;
2898
	int rss = READ_ONCE(full_sysidle_state);
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918

	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
		return false;

	/* Handle small-system case by doing a full scan of CPUs. */
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
		int oldrss = rss - 1;

		/*
		 * One pass to advance to each state up to _FULL.
		 * Give up if any pass fails to advance the state.
		 */
		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
			int cpu;
			bool isidle = true;
			unsigned long maxj = jiffies - ULONG_MAX / 4;
			struct rcu_data *rdp;

			/* Scan all the CPUs looking for nonidle CPUs. */
			for_each_possible_cpu(cpu) {
2919
				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2920 2921 2922 2923
				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
				if (!isidle)
					break;
			}
2924
			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2925
			oldrss = rss;
2926
			rss = READ_ONCE(full_sysidle_state);
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
		}
	}

	/* If this is the first observation of an idle period, record it. */
	if (rss == RCU_SYSIDLE_FULL) {
		rss = cmpxchg(&full_sysidle_state,
			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
		return rss == RCU_SYSIDLE_FULL;
	}

	smp_mb(); /* ensure rss load happens before later caller actions. */

	/* If already fully idle, tell the caller (in case of races). */
	if (rss == RCU_SYSIDLE_FULL_NOTED)
		return true;

	/*
	 * If we aren't there yet, and a grace period is not in flight,
	 * initiate a grace period.  Either way, tell the caller that
	 * we are not there yet.  We use an xchg() rather than an assignment
	 * to make up for the memory barriers that would otherwise be
	 * provided by the memory allocator.
	 */
	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2951
	    !rcu_gp_in_progress(rcu_state_p) &&
2952 2953 2954
	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
		call_rcu(&rsh.rh, rcu_sysidle_cb);
	return false;
2955 2956
}

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
/*
 * Initialize dynticks sysidle state for CPUs coming online.
 */
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
}

#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */

2967
static void rcu_sysidle_enter(int irq)
2968 2969 2970
{
}

2971
static void rcu_sysidle_exit(int irq)
2972 2973 2974
{
}

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
}

static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
	return false;
}

static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
}

2990 2991 2992 2993 2994
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
}

#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2995 2996 2997 2998 2999 3000 3001 3002

/*
 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
 * grace-period kthread will do force_quiescent_state() processing?
 * The idea is to avoid waking up RCU core processing on such a
 * CPU unless the grace period has extended for too long.
 *
 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3003
 * CONFIG_RCU_NOCB_CPU CPUs.
3004 3005 3006 3007 3008 3009
 */
static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(smp_processor_id()) &&
	    (!rcu_gp_in_progress(rsp) ||
3010
	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
3011
		return true;
3012
#endif /* #ifdef CONFIG_NO_HZ_FULL */
3013
	return false;
3014
}
3015 3016 3017 3018 3019 3020 3021

/*
 * Bind the grace-period kthread for the sysidle flavor of RCU to the
 * timekeeping CPU.
 */
static void rcu_bind_gp_kthread(void)
{
3022
	int __maybe_unused cpu;
3023

3024
	if (!tick_nohz_full_enabled())
3025
		return;
3026 3027
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	cpu = tick_do_timer_cpu;
3028
	if (cpu >= 0 && cpu < nr_cpu_ids)
3029
		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3030
#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3031
	housekeeping_affine(current);
3032
#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3033
}
3034 3035 3036 3037 3038

/* Record the current task on dyntick-idle entry. */
static void rcu_dynticks_task_enter(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3039
	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
3040 3041 3042 3043 3044 3045 3046
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}

/* Record no current task on dyntick-idle exit. */
static void rcu_dynticks_task_exit(void)
{
#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3047
	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
3048 3049
#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
}